Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Expert Rev Vaccines ; 22(1): 738-748, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622470

RESUMEN

INTRODUCTION: Neisseria meningitidis serogroup B (NmB) antigens are inherently diverse with variable expression among strains. Prediction of meningococcal B (MenB) vaccine effectiveness therefore requires an assay suitable for use against large panels of epidemiologically representative disease-causing NmB strains. Traditional serum bactericidal antibody assay using exogenous human complement (hSBA) is limited to the quantification of MenB vaccine immunogenicity on a small number of indicator strains. AREAS COVERED: Additional and complementary methods for assessing strain coverage developed previously include the Meningococcal Antigen Typing System (MATS), Meningococcal Antigen Surface Expression (MEASURE) assay, and genotyping approaches, but these do not estimate vaccine effectiveness. We provide a narrative review of these methods, highlighting a more recent approach involving the hSBA assay in conjunction with expanded NmB strain panels: hSBA assay using endogenous complement in each vaccinated person's serum (enc-hSBA) against a 110-strain NmB panel and the traditional hSBA assay against 14 (4 + 10) NmB strains. EXPERT OPINION: The enc-hSBA is a highly standardized, robust method that can be used in clinical trials to measure the immunological effectiveness of MenB vaccines under conditions that mimic real-world settings as closely as possible, through the use of endogenous complement and a diverse, epidemiologically representative panel of NmB strains.


Meningococcal disease refers to illnesses caused by the bacterium Neisseria meningitidis (meningococcus), including infections of the brain lining and spinal cord (meningitis) and bloodstream (septicemia). It is rare but often severe and can be deadly. Invasive meningococcal disease can be prevented through vaccination. Nearly all cases are caused by six serogroups (types) of meningococci, including meningococcal serogroup B. Vaccines are available against meningococcal serogroup B but, because of the uncommonness of the disease, standard clinical trials could not be performed to prove these vaccines are effective. Instead, an indirect measure, called the 'hSBA assay' (serum bactericidal antibody assay using human complement), is used to measure the ability of vaccines to provide protection against specific N. meningitidis strains that have antigens (substances that cause the immune system to react) sharing characteristics with components of the vaccines. However, meningococcal serogroup B strains are diverse in the genetic composition and expression of vaccine antigens. Hence, a large number of N. meningitidis serogroup B strains would have to be tested to make sure that the vaccine is effective against these strains. This is not feasible using the traditional hSBA assay, which requires a human complement (a protein system, which is part of the immune system) that has not come from the vaccinated person and is difficult and time-consuming to source. Recently, an alternative hSBA assay was developed that uses the complement present in each vaccinated person's blood (endogenous complement) and which overcomes these challenges. By allowing testing against a broad panel of N. meningitidis serogroup B strains, this new assay may enable a more accurate estimation of the effectiveness of vaccines against serogroup B meningococci.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Neisseria meningitidis , Humanos , Determinación de Anticuerpos Séricos Bactericidas/métodos , Serogrupo , Eficacia de las Vacunas , Anticuerpos Antibacterianos , Antígenos Bacterianos/genética , Neisseria meningitidis Serogrupo B/genética , Proteínas del Sistema Complemento , Infecciones Meningocócicas/prevención & control
2.
Infect Dis Ther ; 12(9): 2193-2219, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37428339

RESUMEN

Recombinant vaccines against invasive meningococcal disease due to Neisseria meningitidis serogroup B (MenB) have shown substantial impact in reducing MenB disease in targeted populations. 4CMenB targets four key N. meningitidis protein antigens; human factor H binding protein (fHbp), Neisserial heparin binding antigen (NHBA), Neisseria adhesin A (NadA) and the porin A protein (PorA P1.4), with one or more of these expressed by most pathogenic MenB strains, while MenB-FHbp targets two distinct fHbp variants. While many countries recommend MenB immunisation in adults considered at high risk due to underlying medical conditions or immunosuppression, there are no recommendations for routine use in the general adult population. We reviewed the burden of MenB in adults, where, while incidence rates remain low (and far lower than in young children < 5 years of age at greatest risk), a substantial proportion of MenB cases (20% or more) is now observed in the adult population; evident in Europe, Australia, and in the United States. We also reviewed immunogenicity data in adults from clinical studies conducted during MenB vaccine development and subsequent post-licensure studies. A 2-dose schedule of 4CMenB generates hSBA titres ≥ 1:4 towards all four key vaccine target antigens in up to 98-100% of subjects. For MenB-FHbp, a ≥ fourfold rise in hSBA titres against the four primary representative test strains was observed in 70-95% of recipients following a 3-dose schedule. While this suggests potential benefits for MenB immunisation if used in adult populations, data are limited (especially for adults > 50 years) and key aspects relating to duration of protection remain unclear. Although a broader adult MenB immunisation policy could provide greater protection of the adult population, additional data are required to support policy decision-making.

3.
Hum Vaccin Immunother ; 19(1): 2165382, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36715008

RESUMEN

In the United States (US), meningococcal serogroup B (MenB) vaccination has been recommended for 16-23-year-olds (preferably 16-18 years) based on shared clinical decision-making since 2015. MenB vaccine coverage (≥1 dose) by age 17 years has been reported, but initiation at older ages and by insurance type is unknown. In this retrospective cohort study, MarketScan claims data were analyzed to assess MenB vaccine series initiation (i.e. receipt of a first dose) during 2017-2020 among US commercially insured and Medicaid-covered individuals aged 16-18 and 19-23 years. Kaplan-Meier curves were generated to estimate series initiation at various times from index (latest of 1/1/2017 or 16th/19th birthday, depending on the cohort). Multivariable analyses were conducted to identify factors associated with series initiation. Among 1,450,354 Commercial and 1,140,977 Medicaid 16-18-year-olds, MenB vaccine series initiation rates within 3 years of each person's first eligibility were estimated to be 33% and 20%, respectively; among 1,857,628 Commercial and 747,483 Medicaid 19-23-year-olds, 3% and 1%, respectively. Factors identified to be significantly associated with increased likelihood of initiating a MenB vaccine series included co-administration of meningococcal serogroups ACWY (MenACWY) vaccine, younger age, female sex, nonwhite race (Medicaid only), New England or Middle Atlantic location (Commercial only), urban residence, and previous influenza vaccination. MenB vaccine series initiation among the studied US adolescents and young adults was low. There is a need for continued efforts to better understand barriers to the uptake of vaccines that are recommended based on shared clinical decision-making.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Adolescente , Adulto Joven , Humanos , Estados Unidos , Femenino , Serogrupo , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/prevención & control , Estudios Retrospectivos , Vacunación , Análisis de Datos
4.
mSphere ; 7(5): e0038522, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36129279

RESUMEN

Predictions of vaccine efficacy against Neisseria meningitidis serogroup B (NmB) disease are hindered by antigenic variability, limiting the representativeness of individual NmB isolates. A qualitative human serum bactericidal assay using endogenous complements of individual subjects (enc-hSBA) enables large panels of NmB isolates to be tested. A 110-isolate panel was randomly selected from 442 invasive NmB isolates from United States cases reported to the Centers for Disease Control (CDC) from 2000 to 2008. Typing analyses confirmed the 110-isolate panel is representative of the 442 isolates. The genetic features of the 110-isolate panel were compared against over 4,200 invasive NmB isolates collected from 2000 to 2018 in the United States, Australia, Canada, and nine European countries. Clonal complexes in the 110-isolate panel are also present in each geographical region; cumulative percentages show that these account for around 81% of the clonal complexes found in NmB isolates in other panels. For the antigens (fHbp, NHBA, PorA1.4, NadA) included in the currently licensed meningococcal serogroup B (MenB) vaccines, specifically considering the presence of at least one antigen with a matched genotype, the 110-isolate panel represents approximately 89% of the NmB isolates circulating worldwide, ranging from 87% for the European isolates to 95% and 97% for NmB isolates in the United States and Australia, respectively. The 110-isolate panel includes the most prevalent clonal complexes and genetic variants of MenB vaccine antigens found in a multinational collection of invasive NmB isolates. This panel is useful for assessing the efficacy of MenB vaccines in clinical trials worldwide. IMPORTANCE Neisseria meningitidis serogroup B (NmB) is a major cause of invasive meningococcal disease (IMD). Predicting the effectiveness of vaccines against NmB is difficult because NmB is an uncommon disease and because antigens targeted by meningococcal serogroup B (MenB) vaccines have highly variable genetic features and expression levels. Therefore, a large number of NmB isolates from different regions would need to be tested to comprehensively assess vaccine effectiveness. We examined a panel of 110 isolates obtained from NmB IMD cases in the United States and compared the genetic features of this panel with those of panels from different countries around the world. We found the 110-isolate panel included the most common clonal complexes and genetic variants of MenB vaccine antigens that exist in the global collections of invasive NmB isolates. This confirms the value of the NmB 110-isolate panel in understanding the effectiveness of MenB vaccines in clinical trials worldwide.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Humanos , Estados Unidos , Antígenos Bacterianos/genética , Infecciones Meningocócicas/prevención & control , Genotipo
5.
Vaccine ; 40(2): 351-358, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34961633

RESUMEN

BACKGROUND: The MenB-FHbp vaccine is licensed to prevent meningococcal serogroup B disease on either a 2-dose (0, 6 months) or 3-dose (0, 1-2, 6 months) series. This phase 3 study further assessed the immunogenicity and safety of the 2-dose MenB-FHbp schedule. METHODS: Subjects 10-25 years of age received MenB-FHbp (months 0, 6) and the quadrivalent meningococcal conjugate vaccine MenACWY-CRM (month 0). Primary immunogenicity endpoints included percentages of subjects achieving ≥ 4-fold increases from baseline in serum bactericidal antibody using human complement (hSBA) titers for 4 diverse, vaccine-heterologous primary serogroup B test strains and titers ≥ lower limit of quantitation (LLOQ; 1:8 or 1:16) for all 4 primary strains combined (composite response) after dose 2; a titer ≥ 1:4 is the accepted correlate of protection. Percentages of participants with hSBA titers ≥ LLOQ for 10 additional vaccine-heterologous strains were also assessed; positive predictive values of primary strain responses for secondary strain responses were determined. Safety was assessed. RESULTS: Overall, 1057 subjects received dose 1 and 946 received dose 2 of MenB-FHbp. Percentages of participants achieving ≥ 4-fold increases in hSBA titers against each primary strain after dose 2 ranged from 67.4% to 95.0% and the composite response was 74.3%. Primary strain responses were highly predictive of secondary strain responses. Most reactogenicity events were mild-to-moderate in severity and did not lead to withdrawal from the study. Adverse events (AEs) considered by the investigator to be related to vaccination occurred in 4.2% (44/1057) of subjects, and there were no serious AEs or newly diagnosed chronic medical conditions considered related to vaccination. CONCLUSIONS: MenB-FHbp administered at 0, 6 months was well tolerated and induced protective bactericidal antibody responses against diverse serogroup B strains. Findings provide further support for the continued use of MenB-FHbp on a 2-dose schedule in this population.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Neisseria meningitidis , Adolescente , Anticuerpos Antibacterianos , Humanos , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/efectos adversos , Serogrupo , Vacunación , Adulto Joven
6.
Vaccine ; 39(11): 1621-1630, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33597116

RESUMEN

Invasive meningococcal disease (IMD) is associated with high case fatality rates and long-term sequelae among survivors. Meningococci belonging to six serogroups (A, B, C, W, X, and Y) cause nearly all IMD worldwide, with serogroup B meningococci (MenB) the predominant cause in many European countries, including Greece (~80% of all IMD). In the absence of protein-conjugate polysaccharide MenB vaccines, two protein-based vaccines are available to prevent MenB IMD in Greece: 4CMenB (Bexsero™, GlaxoSmithKline), available since 2014; and MenB-FHbp, (Trumenba™, Pfizer), since 2018. This study investigated the potential coverage of MenB vaccines in Greece using 107 MenB specimens, collected from 2010 to 2017 (66 IMD isolates and 41 clinical samples identified solely by non-culture PCR), alongside 6 MenB isolates from a carriage study conducted during 2017-2018. All isolates were characterized by multilocus sequence typing (MLST), PorA, and FetA antigen typing. Whole Genome Sequencing (WGS) was performed on 66 isolates to define the sequences of vaccine components factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA), and Neisseria adhesin A (NadA). The expression of fHbp was investigated with flow cytometric meningococcal antigen surface expression (MEASURE) assay. The fHbp gene was present in-frame in all isolates tested by WGS and in 41 MenB clinical samples. All three variant families of fHbp peptides were present, with subfamily B peptides (variant 1) occurring in 69.2% and subfamily A in 30.8% of the samples respectively. Sixty three of 66 (95.5%) MenB isolates expressed sufficient fHbp to be susceptible to bactericidal killing by MenB-fHbp induced antibodies, highlighting its potential to protect against most IMD in Greece.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Antígenos Bacterianos/genética , Europa (Continente) , Grecia/epidemiología , Humanos , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/prevención & control , Tipificación de Secuencias Multilocus , Neisseria meningitidis Serogrupo B/genética , Estudios Retrospectivos , Serogrupo
7.
J Infect ; 81(6): 862-872, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32745637

RESUMEN

Serogroup B meningococci (MenB) remain a prominent cause of invasive meningococcal disease (IMD). The protein-based multicomponent 4CMenB and the bivalent MenB-FHbp are the only currently available vaccines against MenB-caused IMD. Efficacy studies are not possible, due to the low incidence of IMD. Therefore, the vaccines' immunogenicity has been evaluated against several target strains chosen to quantify complement-mediated killing induced by each vaccine component in the serum bactericidal antibody assay. However, due to the wide genetic diversity and different expression levels of vaccine antigens across MenB strains, vaccine performance may differ from one strain to another. Here, we review the methods used to predict MenB strain coverage for 4CMenB and MenB-FHbp. Phenotypic assays such as the meningococcal antigen typing system (MATS, 4CMenB-specific) and the flow cytometric meningococcal antigen surface expression assay (MEASURE; MenB-FHbp-specific) were developed. Genomic approaches are also available, such as genetic MATS (gMATS) and the Bexsero antigen sequence type (BAST) scheme, both 4CMenB-specific. All methods allow tentative predictions of coverage across MenB strains, including that afforded by each vaccine antigen, and are rapid and reproducible. Real-world data on vaccine effectiveness are needed to confirm predictions obtained by these methods.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Antígenos Bacterianos/genética , Humanos , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/prevención & control , Neisseria meningitidis Serogrupo B/genética , Serogrupo
8.
Infect Dis Ther ; 9(3): 641-656, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32700260

RESUMEN

INTRODUCTION: Two phase 3 studies in adolescents and young adults demonstrated that MenB-FHbp, a meningococcal serogroup B (MenB) vaccine, elicits protective immune responses after 2 or 3 doses based on serum bactericidal antibody assays using human complement (hSBA) against 4 primary and 10 additional diverse, vaccine-heterologous MenB test strains. Lower limits of quantitation (LLOQs; titers 1:8 or 1:16; titers ≥ 1:4 correlate with protection) were used to evaluate responses to individual strains and all 4 primary strains combined (composite response). A post hoc analysis evaluated percentages of subjects with protective responses to as many as 8 strains combined (4 primary plus additional strains). METHODS: Immune responses were measured using hSBAs against 4 primary strains in adolescents (n = 1509, MenB-FHbp; n = 898, hepatitis A virus vaccine/saline) and young adults (n = 2480, MenB-FHbp; n = 824, saline) receiving MenB-FHbp or control at 0, 2, and 6 months. Ten additional strains were evaluated in subsets of subjects from approximately 1800 MenB-FHbp recipients across both studies. Percentages of subjects with hSBA titers ≥ LLOQ for different numbers of primary strains or primary plus additional strains combined (7 or 8 strains total per subset) were determined before vaccination, 1 month post-dose 2, and 1 month post-dose 3. RESULTS: Across the panel of primary plus additional strains, at 1 month post-dose 3, titers ≥ LLOQ were elicited in 93.7-95.7% of adolescents and 91.7-95.0% of young adults for ≥ 5 test strains combined and in 70.5-85.8% of adolescents and 67.5-81.4% of young adults for ≥ 7 strains combined. Among adolescents, 99.8%, 99.0%, 92.8%, and 82.7% had titers ≥ LLOQ against at least 1, 2, 3, and all 4 primary strains, respectively; corresponding percentages for young adults were 99.7%, 97.7%, 94.0%, and 84.5%. CONCLUSIONS: Results support the ability of MenB-FHbp to provide broad coverage against MenB strains expressing diverse FHbp variants. TRIAL REGISTRATION: ClinicalTrials.gov identifiers NCT01830855, NCT01352845.

9.
J Clin Pharm Ther ; 45(2): 270-281, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31820483

RESUMEN

WHAT IS KNOWN AND OBJECTIVE: This review describes invasive meningococcal disease (IMD) epidemiology in the United States, provides a brief overview of available meningococcal vaccines and discusses meningococcal serogroup B (MenB) vaccine development. Particular focus is given to the recombinant protein MenB vaccine, MenB-FHbp (Trumenba® , bivalent rLP2086) in light of recent publication of phase 3 data; the other MenB vaccine (Bexsero® , MenB-4C) has been recently reviewed. Current recommendations of the US Advisory Committee on Immunization Practices (ACIP) for MenB vaccination and potential barriers to immunization are also discussed. METHODS: Using the published literature, this article reviews the development and use of MenB-FHbp to date, with a focus on the United States. RESULTS AND DISCUSSION: Despite the availability of medical treatment, IMD is associated with significant mortality and frequently occurring serious permanent sequelae in surviving individuals. Worldwide, most IMD is caused by six serogroups (A, B, C, W, X and Y). MenB is the most common disease-causing meningococcal serogroup in the United States and has caused several recent university-based IMD outbreaks. MenB vaccines, including MenB-FHbp, are available in the United States. ACIP recommends that all individuals ≥10 years of age at increased risk for meningococcal disease receive MenB vaccination; healthy individuals 16-23 years of age are recommended MenB vaccines based on individual clinical decision-making. MenB-FHbp is used on a 2-dose schedule (0, 6 months) when vaccinating healthy individuals and on a tailored 3-dose schedule (0, 1-2, 6 months) in cases of increased risk. WHAT IS NEW AND CONCLUSION: Because vaccination provides the most effective protection against IMD, pharmacists are in an excellent position to offer evidence-based vaccine information, as well as to encourage and provide meningococcal immunizations to adolescents and young adults.


Asunto(s)
Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/administración & dosificación , Neisseria meningitidis Serogrupo B/inmunología , Adolescente , Niño , Humanos , Esquemas de Inmunización , Infecciones Meningocócicas/inmunología , Vacunas Meningococicas/efectos adversos , Vacunas Meningococicas/inmunología , Farmacéuticos/organización & administración , Rol Profesional , Estados Unidos , Vacunación , Adulto Joven
10.
Hum Vaccin Immunother ; 15(11): 2729-2737, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30932730

RESUMEN

Meningococcal serogroup B (MenB) is the predominant cause of invasive meningococcal disease in the United States, with older adolescents and young adults attending college at increased risk. Notably, MenB caused all meningococcal disease outbreaks at US colleges between 2011 and 2018. MenB disease is vaccine-preventable. The MenB-FHbp vaccine can be administered on a 2-dose (0 and 6 months) schedule to healthy adolescents and young adults or as a tailored 3-dose (0, 1-2, and 6 months) schedule for individuals at increased risk. This review focuses on the 2-dose schedule (0 and 6 months) of MenB-FHbp. Clinical evidence demonstrating strong and broadly protective immunogenicity in adolescents after primary vaccination, immune persistence up to 48 months post-primary vaccination (18-61% of subjects across schedules), and immune memory evidenced by robust response to a single booster dose are described. Implementation approaches to ensure adolescents and young adults are fully vaccinated against meningococcal disease are discussed.


Asunto(s)
Esquemas de Inmunización , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/administración & dosificación , Guías de Práctica Clínica como Asunto , Adolescente , Brotes de Enfermedades , Humanos , Inmunización Secundaria , Inmunogenicidad Vacunal , Memoria Inmunológica , Neisseria meningitidis Serogrupo B , Médicos , Estados Unidos , Adulto Joven
11.
Expert Rev Vaccines ; 18(3): 225-239, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30821535

RESUMEN

INTRODUCTION: Invasive meningococcal disease (IMD) can be devastating; it is associated with high case fatality rates and long-term sequelae among many survivors. Five serogroups (A, B, C, W, and Y) cause nearly all IMD cases worldwide, and serogroup B (MenB) is the most prevalent in Europe. The European Medicines Agency approved the use of MenB-fHbp (Trumenba®; Pfizer Ltd, Sandwich, UK) in individuals ≥10 years of age for the prevention of MenB IMD in May 2017. MenB-fHbp contains two lipidated recombinant fHbp variants from two different fHbp subfamilies that help provide broad coverage against circulating meningococcal strains and may also improve antibody response compared to a nonlipidated antigen. AREAS COVERED: This review summarizes the latest epidemiology evaluating the disease burden of MenB in Europe, introduces MenB-fHbp (the vaccine most recently approved in the European Union for the prevention of MenB IMD), and provides an overview of its development. EXPERT OPINION: MenB is by far the most prevalent meningococcal serogroup in Europe, and its epidemiology is not currently addressed by European immunization recommendations. New strategies to prevent MenB IMD in Europe will continue to develop with the growing use of vaccines to prevent MenB disease, with increasing support through national immunization programs.


Asunto(s)
Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/administración & dosificación , Vacunación/métodos , Niño , Europa (Continente) , Humanos , Programas de Inmunización , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/microbiología , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Salud Pública
12.
Hum Vaccin Immunother ; 15(9): 2205-2216, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30779683

RESUMEN

Invasive meningococcal disease (IMD), a rapidly progressing and potentially fatal illness, disproportionately affects adolescents and young adults. While IMD is best prevented by vaccination, vaccine uptake in these groups is low. An evidence-based understanding of the safety and effectiveness of concomitant vaccination of meningococcal vaccines, including the newer MenB protein vaccines and the more established MenACWY conjugate vaccines, with other vaccines recommended for adolescents and young adults may help maximize vaccination opportunities. We identified 21 studies assessing concomitant administration of meningococcal vaccines with other vaccines in adolescents and adults. Although studies varied in methodology, concomitant administration generally did not affect immunogenicity of the meningococcal or coadministered vaccines. In some cases, reactogenicity increased following concomitant administration, but no definitive safety concerns were raised. In general, data suggest that meningococcal vaccines can be safely and effectively coadministered with other vaccines.


Asunto(s)
Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/administración & dosificación , Vacunación/métodos , Vacunas/administración & dosificación , Adolescente , Adulto , Femenino , Humanos , Masculino , Neisseria meningitidis , Vacunas Conjugadas/inmunología , Adulto Joven
13.
Hum Vaccin Immunother ; 15(4): 978-986, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30526279

RESUMEN

Serogroup B (MenB) is the leading cause of meningococcal disease among 16- to 23-year-olds in the United States and has been responsible for all 10 college outbreaks between 2011 and 2017. Outbreak-associated costs levy a substantial and unforeseen burden on colleges/universities and surrounding communities, in part because they involve collaboration with local and state health departments to develop points-of-dispensing (PODs) outbreak response plans and rapid mass vaccination of a large at-risk student population. The MenB outbreak at Providence College in 2015 was used as a case study to develop an Excel-based Meningococcal Outbreak Cost Calculator that uses target populations for mass vaccination to estimate the costs and resources associated with a meningococcal disease outbreak response. Resources include labor, medical supply, and other nonlabor costs (eg, vaccine-related adverse event costs) over an 18-month period following the outbreak declaration. Based on the actual Providence College population partially or fully vaccinated with MenB-FHbp (Trumenba®, Bivalent rLP2086) (3-dose schedule), the calculator estimated aggregate direct costs of $1,350,963 over 18 months post-outbreak for 4,418 individuals. For planned full vaccination of the enrolled undergraduate population (4,795 individuals), the tool estimated total costs of $1,798,399. In both cases, the majority of costs were for medical supplies (88%-89%) and contract services (7%-9%). This calculator can help to plan a mass vaccination campaign for MenB outbreak control, and underscores the need to vaccinate pre-emptively against diverse disease-causing strains before an outbreak occurs.


Asunto(s)
Brotes de Enfermedades/economía , Vacunación Masiva/economía , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/economía , Universidades/estadística & datos numéricos , Adolescente , Brotes de Enfermedades/prevención & control , Humanos , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/administración & dosificación , Neisseria meningitidis Serogrupo B/inmunología , Serogrupo , Estudiantes/estadística & datos numéricos , Estados Unidos , Adulto Joven
14.
Vaccine ; 36(45): 6867-6874, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30269916

RESUMEN

MenB-FHbp (Trumenba®; bivalent rLP2086) is a meningococcal serogroup B vaccine containing 2 variants of the recombinant lipidated factor H binding protein (FHbp) antigen. The expression of FHbp, an outer membrane protein, is not restricted to serogroup B strains of Neisseria meningitidis (MenB). This study investigated whether antibodies elicited by MenB-FHbp vaccination also protect against non-MenB strains. Immunological responses were assessed in serum bactericidal assays using human complement (hSBAs) with non-MenB disease-causing test strains from Europe, Africa, and the United States. Importantly, FHbp variant distribution varies among meningococcal serogroups; therefore, strains that code for serogroup-specific prevalent variants (ie, representative of the 2 antigenically distinct FHbp subfamilies, designated subfamily A and subfamily B) and with moderate levels of FHbp surface expression were selected for testing by hSBA. After 2 or 3 doses of MenB-FHbp, 53% to 100% of individuals had bactericidal responses (hSBA titers ≥ 1:8) against meningococcal serogroup C, W, Y, and X strains, and 20% to 28% had bactericidal responses against serogroup A strains; in fact, these bactericidal responses elicited by MenB-FHbp antibodies against non-MenB strains, including strains associated with emerging disease, were greater than the serological correlate of protection for meningococcal disease (ie, hSBA titers ≥ 1:4). This is in comparison to a quadrivalent polysaccharide conjugate vaccine, MCV4 (Menactra®, targeting meningococcal serogroups A, C, W, and Y), which elicited bactericidal responses of 90% to 97% against the serogroup A, C, W, and Y strains and had no activity against serogroup X. Together, these results provide clinical evidence that MenB-FHbp may protect against meningococcal disease regardless of serogroup.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Vacunas Bacterianas/inmunología , Proteínas Portadoras , Factor H de Complemento/inmunología , Humanos , Serogrupo , Prueba Bactericida de Suero/métodos , Vacunación/métodos
15.
Expert Rev Vaccines ; 17(6): 461-477, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29883226

RESUMEN

INTRODUCTION: Given the characteristics of meningococcal carriage and transmission and the sudden, often severe onset and long-term consequences of disease, vaccination can most effectively provide large-scale control of invasive disease. Six serogroups (A, B, C, W, X, and Y) cause nearly all meningococcal disease globally. Capsular polysaccharide conjugate vaccines can prevent serogroups A, C, W, and Y disease. More recently, recombinant protein vaccines for preventing serogroup B meningococcal (MenB) disease have become available, with a major target of vaccine-induced immune response for both vaccines being bacterial factor H binding protein (FHbp). Importantly, FHbp segregates into only two distinct subfamilies (A [also classified as variants 2 and 3] and B [variant 1]). This review summarizes the complete clinical development program supporting licensure of MenB-FHbp (Trumenba®, Bivalent rLP2086), the only MenB vaccine containing antigens from both FHbp subfamilies. Areas covered: Eleven published clinical studies assessing MenB-FHbp efficacy and safety among 20,803 adolescents and adults are examined. Particular focus is on the methodology of immunogenicity assessments used as a surrogate for clinical efficacy. Expert commentary: Clinical studies in adolescents and adults consistently demonstrated MenB-FHbp safety and induction of immunologic responses against antigenically and epidemiologically diverse MenB isolates, supporting licensure and immunization recommendations.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/administración & dosificación , Adolescente , Adulto , Humanos , Inmunización/métodos , Inmunogenicidad Vacunal/inmunología , Meningitis Meningocócica/inmunología , Vacunas Meningococicas/efectos adversos , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Vacunación/métodos , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología
16.
Vaccine ; 36(28): 4004-4013, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29861182

RESUMEN

Invasive meningococcal disease (IMD) caused by Neisseria meningitidis is a potentially devastating condition that can result in death and is associated with serious long-term sequelae in survivors. Vaccination is the preferred preventative strategy. Quadrivalent polysaccharide-based vaccines that protect against infection caused by meningococcal serogroups A, C, W, and Y are not effective against meningococcal serogroup B (MenB), which was responsible for approximately 60% and 35% of confirmed IMD cases in the European Union and the United States in 2016, respectively. A recombinant protein MenB vaccine (MenB-FHbp [bivalent rLP2086; Trumenba®]) has been approved for protection against MenB infection in persons 10-25 years of age in the United States and Canada and for individuals ≥10 years of age in the European Union and Australia. In these regions, MenB-FHbp is approved as a 2- or 3-dose primary vaccination schedule. This report will review the current evidence supporting administration of MenB-FHbp as a 2-dose primary vaccination schedule. Different contexts in which a 2- or 3-dose primary vaccination schedule might be preferred (eg, routine prospective vaccination vs outbreak control) are reviewed.


Asunto(s)
Antígenos Bacterianos/administración & dosificación , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/inmunología , Esquemas de Inmunización , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/administración & dosificación , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Adolescente , Australia , Canadá , Unión Europea , Humanos , Estados Unidos , Adulto Joven
17.
J Infect Dis ; 216(9): 1130-1140, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28968661

RESUMEN

Background: Limited data exist on the impact of the serogroup B meningococcal (MenB) vaccines MenB-FHbp and MenB-4C on meningococcal carriage and herd protection. We therefore assessed meningococcal carriage following a MenB vaccination campaign in response to a university serogroup B meningococcal disease outbreak in 2015. Methods: A convenience sample of students recommended for vaccination provided oropharyngeal swab specimens and completed questionnaires during 4 carriage surveys over 11 months. Isolates were tested by real-time polymerase chain reaction analysis, slide agglutination, and whole-genome sequencing. Vaccination history was verified via university records and the state immunization registry. Results: A total of 4225 oropharyngeal swab specimens from 3802 unique participants were analyzed. Total meningococcal and genotypically serogroup B carriage prevalence among sampled students were stable, at 11%-17% and 1.2%-2.4% during each round, respectively; no participants carried the outbreak strain. Neither 1-3 doses of MenB-FHbp nor 1-2 doses of MenB-4C was associated with decreased total or serogroup B carriage prevalence. Conclusions: While few participants completed the full MenB vaccination series, limiting analytic power, these data suggest that MenB-FHbp and MenB-4C do not have a large, rapid impact on meningococcal carriage and are unlikely to provide herd protection in the context of an outbreak response.


Asunto(s)
Antígenos Bacterianos/inmunología , Brotes de Enfermedades/prevención & control , Programas de Inmunización , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/administración & dosificación , Vacunas Meningococicas/inmunología , Vacunación , Femenino , Humanos , Masculino , Oregon , Universidades
18.
Vaccine ; 35(11): 1530-1537, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28196734

RESUMEN

OBJECTIVES: Bivalent rLP2086 (Trumenba®; MenB-FHbp), composed of two factor H binding proteins (FHbps), is a vaccine approved in the United States for prevention of Neisseria meningitidis serogroup B (MnB) invasive meningococcal disease (IMD). Bactericidal activity of sera from subjects vaccinated with bivalent rLP2086 was assessed against MnB isolates from recent disease outbreaks in France. METHODS: MnB isolates from IMD cases were characterized by whole genome sequencing and FHbp expression was assessed using a flow cytometry-based assay. Sera from subjects (11-<19years old) vaccinated with bivalent rLP2086 at 0, 2, and 6months were evaluated. Bactericidal activity was measured in serum bactericidal assays using human complement (hSBAs). The response rate (RR) represents the percentage of subjects with an hSBA titer ⩾1:4. RESULTS: The six MnB outbreak isolates expressed diverse FHbp variants: A22, B03, B24 (two isolates), B44, and B228. FHbp expression levels ranged from 1309 to 8305 (mean fluorescence intensity units). The RR of preimmune sera from subjects was 7% to 27%. RRs increased for all isolates after each vaccine dose. After two doses, RRs ranged from 40% to 93%. After dose 3, RRs were ⩾73% for all isolates (range, 73%-100%). CONCLUSIONS: Each of the representative French outbreak isolates was killed by sera from subjects vaccinated with bivalent rLP2086. Vaccination elicited an immune response with bactericidal activity against these diverse isolates in a large proportion of subjects at risk. These results provide additional support for the licensure strategy of testing MnB strains expressing vaccine-heterologous FHbp variants in hSBAs and further illustrate the breadth of efficacy of this protein-based MnB vaccine.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Actividad Bactericida de la Sangre , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Adolescente , Antígenos Bacterianos/análisis , Antígenos Bacterianos/genética , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Niño , Proteínas del Sistema Complemento/inmunología , Brotes de Enfermedades , Femenino , Francia/epidemiología , Perfilación de la Expresión Génica , Humanos , Masculino , Vacunas Meningococicas/administración & dosificación , Viabilidad Microbiana , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/aislamiento & purificación
19.
Postgrad Med ; 128(6): 548-56, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27467048

RESUMEN

Neisseria meningitidis is a common cause of bacterial meningitis, often leading to permanent sequelae or death. N. meningitidis is classified into serogroups based on the composition of the bacterial capsular polysaccharide; the 6 major disease-causing serogroups are designated A, B, C, W, X, and Y. Four of the 6 disease-causing serogroups (A, C, Y, and W) can be effectively prevented with available quadrivalent capsular polysaccharide protein conjugate vaccines; however, capsular polysaccharide conjugate vaccines are not effective against meningococcal serogroup B (MnB). There is no vaccine available for serogroup X. The public health need for an effective serogroup B vaccine is evident, as MnB is the most common cause of meningococcal disease in the United States and is responsible for almost half of all cases in persons aged 17 to 22 years. In fact, serogroup B meningococci were responsible for the recent meningococcal disease outbreaks on college campuses. However, development of a suitable serogroup B vaccine has been challenging, as serogroup B polysaccharide-based vaccines were found to be poorly immunogenic. Vaccine development for MnB focused on identifying potential outer membrane protein targets that elicit broadly protective immune responses across strains from the vast number of proteins that exist on the bacterial surface. Human factor H binding protein (fHBP; also known as LP2086), a conserved surface-exposed bacterial lipoprotein, was identified as a promising vaccine candidate. Two recombinant protein-based serogroup B vaccines that contain fHBP have been successfully developed and licensed in the United States under an accelerated approval process: bivalent rLP2086 (MenB-FHbp; Trumenba®) and 4CMenB (MenB-4 C; Bexsero®). This review will focus on bivalent rLP2086 only, including vaccine components, mechanism of action, and potential coverage across serogroup B strains in the United States.


Asunto(s)
Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Antígenos Bacterianos/inmunología , Cápsulas Bacterianas/inmunología , Proteínas Bacterianas/inmunología , Factor H de Complemento/inmunología , Humanos , Proteínas Recombinantes/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA