Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 707
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39258865

RESUMEN

The threshold behavior and the ion diffusion dynamics in diffusive volatile memristors have a very uncanny resemblance to the transduction process of biological nociceptors. Hence, the diffusive memristors are considered the most suited for making artificial nociceptive systems. To facilitate their widespread adoption, it is imperative to develop polymeric or organic-inorganic hybrid material-based diffusive memristors that are economical, biocompatible, and easily processable. In this study, we present a cluster-type polymeric diffusive memristor where copper is used as the active top electrode. The switching medium comprises copper(II) sulfide (CuS) nanoparticles embedded in poly(ethylene oxide) (PEO). The devices show electrochemical metalization (ECM)-type and bidirectional diffusive volatile memory with high nonlinearity (104) and turn-on slope (5.6 mV/dec). They reliably remain diffusive volatile with up to 10 wt % CuS in PEO and for a wide range of compliance (10-6 to 10-2 A) without transitioning to the bipolar nonvolatile type. The low reduction potential of CuS and optimal segmental dynamics of PEO work synergistically to ensure stable and reproducible diffusive memory. The CuS nanoparticles act as bipolar electrodes, undergoing local oxidation and reduction under the influence of the bias. The switching of resistance states in the CuS-PEO memristors is attributed to the formation of cluster-type filaments between CuS nanoparticles within the PEO matrix supported by the participation of copper ions from the top Cu electrode. The observation of low filament temperature and the independence of on-state resistance with respect to the device area and temperature further corroborate the cluster-type filament in CuS-PEO memristors. Using a 5 wt % CuS-based device, an artificial nociceptor is realized, which successfully mimics most of the nociceptive plasticities such as threshold, relaxation, no adaptation, and sensitization.

2.
Adv Sci (Weinh) ; : e2408648, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250339

RESUMEN

According to the United Nations, around 53 million metric tons of electronic waste is produced every year, worldwide, the big majority of which goes unprocessed. With the rapid advances in AI technologies and adoption of smart gadgets, the demand for powerful logic and memory chips is expected to boom. Therefore, the development of green electronics is crucial to minimizing the impact of the alarmingly increasing e-waste. Here, it is shown the application of a green synthesized, chemically stable, carbonyl-decorated 2D organic, and biocompatible polymer as an active layer in a memristor device, sandwiched between potentially fully recyclable electrodes. The 2D polymer's ultramicro channels, decorated with C═O and O─H groups, efficiently promote the formation of copper nanofilaments. As a result, the device shows excellent bipolar resistive switching behavior with the potential to mimic synaptic plasticity. A large resistive switching window (103), low SET/RESET voltage of ≈0.5/-1.5 V), excellent device-to-device stability and synaptic features are demonstrated. Leveraging the device's synaptic characteristics, its applications in image denoising and edge detection is examined. The results show a reduction in power consumption by a factor of 103 compared to a traditional Tesla P40 graphics processing unit, indicating great promise for future sustainable AI-based applications.

3.
Adv Mater ; : e2406608, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246123

RESUMEN

Smart memristors with innovative properties are crucial for the advancement of next-generation information storage and bioinspired neuromorphic computing. However, the presence of significant sneak currents in large-scale memristor arrays results in operational errors and heat accumulation, hindering their practical utility. This study successfully synthesizes a quasi-free-standing Bi2O2Se single-crystalline film and achieves layer-controlled oxidation by developing large-scale UV-assisted intercalative oxidation, resulting ß-Bi2SeO5/Bi2O2Se heterostructures. The resulting ß-Bi2SeO5/Bi2O2Se memristor demonstrates remarkable self-rectifying resistive switching performance (over 105 for ON/OFF and rectification ratios, as well as nonlinearity) in both nanoscale (through conductive atomic force microscopy) and microscale (through memristor array) regimes. Furthermore, the potential for scalable production of self-rectifying ß-Bi2SeO5/Bi2O2Se memristor, achieving sub-pA sneak currents to minimize cross-talk effects in high-density memristor arrays is demonstrated. The memristors also exhibit ultrafast resistive switching (sub-100 ns) and low power consumption (1.2 pJ) as characterized by pulse-mode testing. The findings suggest a synergetic effect of interfacial Schottky barriers and oxygen vacancy migration as the self-rectifying switching mechanism, elucidated through controllable ß-Bi2SeO5 thickness modulation and theoretical ab initio calculations.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39264355

RESUMEN

Ferroelectric tunnel junctions (FTJs) are a class of memristor which promise low-power, scalable, field-driven analog operation. In order to harness their full potential, operation with identical pulses is targeted. In this paper, several weight update schemes for FTJs are investigated, using either nonidentical or identical pulses, and with time delays between the pulses ranging from 1 µs to 10 s. Experimentally, a method for achieving nonlinear weight update with identical pulses at long programming delays is demonstrated by limiting the switching current via a series resistor. Simulations show that this concept can be expanded to achieve weight update in a 1T1C cell by limiting the switching current through a transistor operating in subthreshold or saturation mode. This leads to a maximum linearity in the weight update of 86% for a dynamic range (maximum switched polarization) of 30 µC/cm2. It is further demonstrated via simulation that engineering the device to achieve a narrower switching peak increases the linearity in scaled devices to >93% for the same range.

5.
Angew Chem Int Ed Engl ; : e202412674, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292967

RESUMEN

The field of bioinspired iontronics, bridging electronic devices and ionic systems, has multiple biological applications. Carbon-based ultracapacitive devices hold promise for controlling bioactive ions via electric double layers due to their high-surface-area and biocompatible porous carbon electrodes. However, the interplay between complex bioactive ions and porous carbons remains unclear due to the variety of structures of bioactive ions present in biological systems. Herein, we investigate the adsorption behavior of a series of bioactive ammonium-based cations with varying alkyl chain lengths in nanoporous carbons. We find that strong physisorption results from the synergistic hydrophobic interaction and electrostatic attraction between porous carbons (with a negative zeta potential) and bioactive cations. Bioactive cations with varying alkyl chain lengths can be irreversibly physically adsorbed and confined within nanoporous carbons resulting in anion enrichment and depletion during electric polarization. This situation, in turn, results in a characteristic memristive behavior in all-carbon capacitive ionic memristor devices. Our findings highlight the relationship between the resistance state of the memristor and ion adsorption mechanisms in all-carbon capacitive devices, which hold potential for future transmitter delivery, biointerfacing, and neuromorphic devices.

6.
J Colloid Interface Sci ; 678(Pt B): 325-335, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39245022

RESUMEN

The human perception and learning heavily rely on the visual system, where the retina plays a vital role in preprocessing visual information. Developing neuromorphic vision hardware is based on imitating the neurobiological functions of the retina. In this work, an optoelectronic neuron is developed by combining a gate-modulated PDVT-10 channel with a volatile threshold switching memristor, enabling the achievement of optoelectronic performance through a resistance-matching mechanism. The optoelectronic spiking neuron exhibits the ability to alter its spiking behavior in a manner resembling that of a retina. Incorporating electrical and optical modulation, the artificial neuron accurately replicates neuronal signal transmission in a biologically manner. Moreover, it demonstrates inhibition of neuronal firing during darkness and activation upon exposure to light. Finally, the evaluation of a perceptron spiking neural network utilizing these leaky integrate-and-fire neurons is conducted through simulation to assess its capability in classifying image recognition algorithms. This research offers a hopeful direction for the development of easily expandable and hierarchically structured spiking electronics, broadening the range of potential applications in biomimetic vision within the emerging field of neuromorphic hardware.

7.
Cogn Neurodyn ; 18(4): 1989-2001, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104681

RESUMEN

The functional neurons are basic building blocks of the nervous system and are responsible for transmitting information between different parts of the body. However, it is less known about the interaction between the neuron and the field. In this work, we propose a novel functional neuron by introducing a flux-controlled memristor into the FitzHugh-Nagumo neuron model, and the field effect is estimated by the memristor. We investigate the dynamics and energy characteristics of the neuron, and the stochastic resonance is also considered by applying the additive Gaussian noise. The intrinsic energy of the neuron is enlarged after introducing the memristor. Moreover, the energy of the periodic oscillation is larger than that of the adjacent chaotic oscillation with the changing of memristor-related parameters, and same results is obtained by varying stimuli-related parameters. In addition, the energy is proved to be another effective method to estimate stochastic resonance and inverse stochastic resonance. Furthermore, the analog implementation is achieved for the physical realization of the neuron. These results shed lights on the understanding of the firing mechanism for neurons detecting electromagnetic field.

8.
Cogn Neurodyn ; 18(4): 1943-1953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104706

RESUMEN

In this paper, the exponential synchronization of quaternion-valued memristor-based Cohen-Grossberg neural networks with time-varying delays is discussed. By using the differential inclusion theory and the set-valued map theory, the discontinuous quaternion-valued memristor-based Cohen-Grossberg neural networks are transformed into an uncertain system with interval parameters. A novel controller is designed to achieve the control goal. With some inequality techniques, several criteria of exponential synchronization for quaternion-valued memristor-based Cohen-Grossberg neural networks are given. Different from the existing results using decomposition techniques, a direct analytical approach is used to study the synchronization problem by introducing an improved one-norm method. Moreover, the activation function is less restricted and the Lyapunov analysis process is simpler. Finally, a numerical simulation is given to prove the validity of the main results.

9.
Small ; : e2404177, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106238

RESUMEN

The presence of neurons is crucial in neuromorphic computing systems as they play a vital role in modulating the strength of synapses through the release of either excitatory or inhibitory stimuli. Hence, the development of sensory neurons plays a pivotal role in broadening the scope of brain-inspired neural computing. The present study introduces an artificial sensory neuron, which is constructed using a temperature-sensitive volatile complementary resistance switch memristor based on the functional layer of the chitosan/PNIPAM bilayer. The resistive switching behavior arises from the formation and ionization of oxygen vacancy filaments, whereby the threshold voltage and low resistive resistance of the device exhibit a temperature-dependent increase within the range of 290-410 K. A functional replication of a neuron with leaky integration and firing has been successfully developed, effectively simulating essential biological functions such as firing triggered by threshold, refractory period implementation, and modulation of spiking frequency. The artificial sensory neuron exhibits characteristics similar to those of leaky integrated firing neurons that receive temperature inputs. It has the potential to control the output frequency and amplitude under varying temperature conditions, making it suitable for temperature-sensing applications. This study presents a potential hardware implementation for developing efficient artificial intelligence systems that can support temperature detections.

10.
Nano Lett ; 24(34): 10475-10481, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39116301

RESUMEN

Memristors show promising features for neuromorphic computing. Here we report a soft memristor based on the liquid-vapor surface of a microbubble. The thickness of the liquid film was modulated by electrostatic and interfacial forces, enabling resistance switches. We found a pinched current hysteresis at scanning periods between 1.6 and 51.2 s, while representing a resistor below 1.6 s and a diode-like behavior above 51.2 s. We approximate the thickening/thinning dynamics of liquid film by pressure-driven flow at the interface and derived the impacts of salt concentration and voltage amplitude on the memory effects. Our work opens a new approach to building nanofluidic memristors by a soft interface, which may be useful for new types of neuromorphic computing in the future.

11.
ACS Appl Mater Interfaces ; 16(33): 43816-43826, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39129500

RESUMEN

We report on hybrid memristor devices consisting of germanium dioxide nanoparticles (GeO2 NP) embedded within a poly(methyl methacrylate) (PMMA) thin film. Besides exhibiting forming-free resistive switching and an uncommon "ON" state in pristine conditions, the hybrid (nanocomposite) devices demonstrate a unique form of mixed-mode switching. The observed stopping voltage-dependent switching enables state-of-the-art bifunctional synaptic behavior with short-term (volatile/temporal) and long-term (nonvolatile/nontemporal) modes that are switchable depending on the stopping voltage applied. The short-term memory mode device is demonstrated to further emulate important synaptic functions such as short-term potentiation (STP), short-term depression (STD), paired-pulse facilitation (PPF), post-tetanic potentiation (PTP), spike-voltage-dependent plasticity (SVDP), spike-duration-dependent plasticity (SDDP), and, more importantly, the "learning-forgetting-rehearsal" behavior. The long-term memory mode gives additional long-term potentiation (LTP) and long-term depression (LTD) characteristics for long-term plasticity applications. The work shows a unique coexistence of the two resistive switching modes, providing greater flexibility in device design for future adaptive and reconfigurable neuromorphic computing systems at the hardware level.

12.
ACS Nano ; 18(33): 21685-21713, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39110686

RESUMEN

Neuromorphic computing seeks to replicate the capabilities of parallel processing, progressive learning, and inference while retaining low power consumption by drawing inspiration from the human brain. By further overcoming the constraints imposed by the traditional von Neumann architecture, this innovative approach has the potential to revolutionize modern computing systems. Memristors have emerged as a solution to implement neuromorphic computing in hardware, with research based on developing functional materials for resistive switching performance enhancement. Recently, two-dimensional MXenes, a family of transition metal carbides, nitrides, and carbonitrides, have begun to be integrated into these devices to achieve synaptic emulation. MXene-based memristors have already demonstrated diverse neuromorphic characteristics while enhancing the stability and reducing power consumption. The possibility of changing the physicochemical properties through modifications of the surface terminations, bandgap, interlayer spacing, and oxidation for each existing MXene makes them very promising. Here, recent advancements in MXene synthesis, device fabrication, and characterization of MXene-based neuromorphic artificial synapses are discussed. Then, we focus on understanding the resistive switching mechanisms and how they connect with theoretical and experimental data, along with the innovations made during the fabrication process. Additionally, we provide an in-depth review of the neuromorphic performance, making a connection with the resistive switching mechanism, along with a compendium of each relevant performance factor for nonvolatile and volatile applications. Finally, we state the remaining challenges in MXene-based devices for artificial synapses and the next steps that could be taken for future development.

13.
ACS Nano ; 18(33): 21966-21974, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39115225

RESUMEN

Beyond-Moore computing technologies are expected to provide a sustainable alternative to the von Neumann approach not only due to their down-scaling potential but also via exploiting device-level functional complexity at the lowest possible energy consumption. The dynamics of the Mott transition in correlated electron oxides, such as vanadium dioxide, has been identified as a rich and reliable source of such functional complexity. However, its full potential in high-speed and low-power operation has been largely unexplored. We fabricated nanoscale VO2 devices embedded in a broadband test circuit to study the speed and energy limitations of their resistive switching operation. Our picosecond time-resolution, real-time resistive switching experiments and numerical simulations demonstrate that tunable low-resistance states can be set by the application of 20 ps long, <1.7 V amplitude voltage pulses at 15 ps incubation times and switching energies starting from a few femtojoule. Moreover, we demonstrate that at nanometer-scale device sizes not only the electric field induced insulator-to-metal transition but also the thermal conduction limited metal-to-insulator transition can take place at time scales of 100s of picoseconds. These orders of magnitude breakthroughs can be utilized to design high-speed and low-power dynamical circuits for a plethora of neuromorphic computing applications from pattern recognition to numerical optimization.

14.
Chemphyschem ; : e202400265, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119992

RESUMEN

Iontronic fluidic ionic/electronic components are emerging as promising elements for artificial brain-like computation systems. Nanopore ionic rectifiers can be operated as a synapse element, exhibiting conductance modulation in response to a train of voltage impulses, thus producing programmable resistive states. We propose a model that replicates hysteresis, rectification, and time domain response properties, based on conductance modulation between two conducting modes and a relaxation time of the state variable. We show that the kinetic effects observed in hysteresis loops govern the potentiation phenomena related to conductivity modulation. To illustrate the efficacy of the model, we apply it to replicate rectification, hysteresis and conductance modulation of two different experimental systems: a polymer membrane with conical pores, and a blind-hole nanoporous anodic alumina membrane with a barrier oxide layer. We show that the time transient analysis of the model develops the observed potentiation and depression phenomena of the synaptic properties.

15.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124048

RESUMEN

This study explores memristor-based true random number generators (TRNGs) through their evolution and optimization, stemming from the concept of memristors first introduced by Leon Chua in 1971 and realized in 2008. We will consider memristor TRNGs coming from various entropy sources for producing high-quality random numbers. However, we must take into account both their strengths and weaknesses. The comparison with CMOS-based TRNGs will serve as an illustration that memristor TRNGs stand out due to their simpler circuits and lower power consumption- thus leading us into a case study involving electroless YMnO3 (YMO) memristors as TRNG entropy sources that demonstrate good security properties by being able to produce unpredictable random numbers effectively. The end of our analysis sees us pinpointing challenges: post-processing algorithm optimization coupled with ensuring reliability over time for memristor-based TRNGs aimed at next-generation security applications.

16.
Nano Lett ; 24(35): 10865-10873, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39142648

RESUMEN

Threshold switching (TS) memristors are promising candidates for artificial neurons in neuromorphic systems. However, they often lack biological plausibility, typically functioning solely in an excitation mode. The absence of an inhibitory mode limits neurons' ability to synergistically process both excitatory and inhibitory synaptic signals. To address this limitation, we propose a novel memristive neuron capable of operating in both excitation and inhibition modes. The memristor's threshold voltage can be reversibly tuned using voltages of different polarities because of its bipolar TS behavior, enabling the device to function as an electronically reconfigurable bi-mode neuron. A variety of neuronal activities such as all-or-nothing behavior and tunable firing probability are mimicked under both excitatory and inhibitory stimuli. Furthermore, we develop a self-adaptive neuromorphic vision sensor based on bi-mode neurons, demonstrating effective object recognition in varied lighting conditions. Thus, our bi-mode neuron offers a versatile platform for constructing neuromorphic systems with rich functionality.


Asunto(s)
Neuronas , Neuronas/fisiología , Redes Neurales de la Computación , Electrónica
17.
ACS Nano ; 18(35): 24004-24011, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39175442

RESUMEN

Key neuronal functions have been successfully replicated in various hardware systems. Noticeable examples are neuronal networks constructed from memristors, which emulate complex electrochemical biological dynamics such as the efficacy and plasticity of a neuron. Neurons are highly active cells, communicating with chemical and electrical stimuli, but also emit light. These so-called biophotons are suspected to be a complementary vehicle to transport information across the brain. Here, we show that a memristor also releases photons during its operation akin to the production of neuronal light. Critical attributes of biophotons, such as self-generation, stochasticity, spectral coverage, sparsity, and correlation with the neuron's electrical activity, are replicated by our solid-state approach. Importantly, our time-resolved analysis of the correlated current transport and photon activity shows that emission takes place within a nanometer-sized active area and relies on electrically induced single-to-few active electroluminescent centers excited with moderate voltage (<3 V). Our findings further extend the emulating capability of a memristor to encompass neuronal optical activity and allow to construct memristive atomic-scale devices capable of handling simultaneously electrons and photons as information carriers.


Asunto(s)
Luz , Neuronas , Fotones
18.
Angew Chem Int Ed Engl ; : e202413311, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39104289

RESUMEN

Organic memristors based on covalent organic frameworks (COFs) exhibit significant potential for future neuromorphic computing applications. The preparation of high-quality COF nanosheets through appropriate structural design and building block selection is critical for the enhancement of memristor performance. In this study, a novel room-temperature single-phase method was used to synthesize Ta-Cu3 COF, which contains two redox-active units: trinuclear copper and triphenylamine. The resultant COF nanosheets were dispersed through acid-assisted exfoliation and subsequently spin-coated to fabricate a high-quality COF film on an indium tin oxide (ITO) substrate. The synergistic effect of the dual redox-active centers in the COF film, combined with its distinct crystallinity, significantly reduces the redox energy barrier, enabling the efficient modulation of 128 non-volatile conductive states in the Al/Ta-Cu3 COF/ITO memristor. Utilizing a convolutional neural network (CNN) based on these 128 conductance states, image recognition for ten representative campus landmarks was successfully executed, achieving a high recognition accuracy of 95.13% after 25 training epochs. Compared to devices based on binary conductance states, the memristor with 128 conductance states exhibits a 45.56% improvement in recognition accuracy and significantly enhances the efficiency of neuromorphic computing.

19.
ACS Nano ; 18(36): 25128-25143, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39167108

RESUMEN

This paper suggests the practical implications of utilizing a high-density crossbar array with self-compliance (SC) at the conductive filament (CF) formation stage. By limiting the excessive growth of CF, SC functions enable the operation of a crossbar array without access transistors. An AlOx/TiOy, internal overshoot limitation structure, allows the SC to have resistive random-access memory. In addition, an overshoot-limited memristor crossbar array makes it possible to implement vector-matrix multiplication (VMM) capability in neuromorphic systems. Furthermore, AlOx/TiOy structure optimization was conducted to reduce overshoot and operation current, verifying uniform bipolar resistive switching behavior and analog switching properties. Additionally, extensive electric pulse stimuli are confirmed, evaluating long-term potentiation (LTP), long-term depression (LTD), and other forms of synaptic plasticity. We found that LTP and LTD characteristics for training an online learning neural network enable MNIST classification accuracies of 92.36%. The SC mode quantized multilevel in offline learning neural networks achieved 95.87%. Finally, the 32 × 32 crossbar array demonstrated spiking neural network-based VMM operations to classify the MNIST image. Consequently, weight programming errors make only a 1.2% point of accuracy drop to software-based neural networks.

20.
ACS Appl Mater Interfaces ; 16(33): 43742-43751, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39114944

RESUMEN

With the development of artificial intelligence systems, it is necessary to develop optoelectronic devices with photoresponse and storage capacity to simulate human visual perception systems. The key to an artificial visual perception system is to integrate components with both sensing and storage capabilities of illumination information. Although module integration components have made useful progress, they still face challenges such as multispectral response and high energy consumption. Here, we developed a light-adapted optoelectronic-memristive device integrated by an organic photodetector and ferroelectric-based memristor to simulate human visual perception. ITO/P3HT:PC71BM/Au as the light sensor unit shows a high on/off ratio (Iph/Id) reaching ∼5 × 104 at 0 V. The memristor unit, consisting of ITO/CBI@P(VDF-TrFE)/Cu, has a RON/ROFF ratio window of ∼106 under 0.05 V read voltage and ultralow power consumption of ∼1 pW. Moreover, the artificial visual perception unit shows stable light-adapted memory windows under different wavelengths of irradiation light (400, 500, and 600 nm; they meet the spectral range of human visual recognition) and can clearly identify the target image ("T" shape) because of the apparent contrast, which results from the high ROFF/RON ratio values. These results provide a potential design strategy for the development of intelligent artificial vision systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA