Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Future Microbiol ; : 1-15, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235058

RESUMEN

Aim: To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; 'PfMFSDT') as a drug transporter, using Candida glabrata for orthologous protein expression.Methods: Complementary Determining Sequence encoding PfMFSDT was integrated into the genome of genetically engineered C. glabrata strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter.Results & conclusion: The modified C. glabrata strain exhibited plasma membrane localization of PfMFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole. The nanomolar inhibitory effects of the drugs on the intra-erythrocytic growth of Plasmodium falciparum highlight their antimalarial properties. This study proposes PfMFSDT as a drug transporter, expanding the repertoire of the currently known antimalarial 'resistome'.


[Box: see text].

2.
Mar Pollut Bull ; 205: 116584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878421

RESUMEN

Decreasing ocean surface pH, called ocean acidification (OA), is among the major risks for marine ecosystems due to human-driven atmospheric pCO2 increase. Understanding the molecular mechanisms of adaptation enabling marine species to tolerate a lowered seawater pH could support predictions of consequences of future OA scenarios for marine life. This study examined whether the ATP-binding cassette (ABC)-like gene slr2019 confers tolerance to the marine cyanobacterium Halomicronema metazoicum to low seawater pH conditions (7.7, 7.2, 6.5) in short- and long-term exposures (7 and 30 d). Photosynthetic pigment content indicated that the species can tolerate all three lowered-pH conditions. At day 7, slr2019 was up-regulated at pH 7.7 while no changes were observed at lower pH. After 30-d exposure, a significant decrease in slr2019 transcript levels was observed in all low-pH treatments. These first results indicate an effect of low pH on the examined transporter expression in H. metazoicum.


Asunto(s)
Cianobacterias , Agua de Mar , Agua de Mar/química , Concentración de Iones de Hidrógeno , Cianobacterias/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Dióxido de Carbono , Acidificación de los Océanos
3.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38587863

RESUMEN

Previously, we reported an engineered Saccharomyces cerevisiae CEN.PK113-1A derivative able to produce succinic acid (SA) from glycerol with net CO2 fixation. Apart from an engineered glycerol utilization pathway that generates NADH, the strain was equipped with the NADH-dependent reductive branch of the TCA cycle (rTCA) and a heterologous SA exporter. However, the results indicated that a significant amount of carbon still entered the CO2-releasing oxidative TCA cycle. The current study aimed to tune down the flux through the oxidative TCA cycle by targeting the mitochondrial uptake of pyruvate and cytosolic intermediates of the rTCA pathway, as well as the succinate dehydrogenase complex. Thus, we tested the effects of deletions of MPC1, MPC3, OAC1, DIC1, SFC1, and SDH1 on SA production. The highest improvement was achieved by the combined deletion of MPC3 and SDH1. The respective strain produced up to 45.5 g/L of SA, reached a maximum SA yield of 0.66 gSA/gglycerol, and accumulated the lowest amounts of byproducts when cultivated in shake-flasks. Based on the obtained data, we consider a further reduction of mitochondrial import of pyruvate and rTCA intermediates highly attractive. Moreover, the approaches presented in the current study might also be valuable for improving SA production when sugars (instead of glycerol) are the source of carbon.


Asunto(s)
Saccharomyces cerevisiae , Ácido Succínico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Glicerol/metabolismo , Dióxido de Carbono/metabolismo , NAD/metabolismo , Ácido Pirúvico/metabolismo , Membranas Mitocondriales/metabolismo , Carbono/metabolismo , Ingeniería Metabólica/métodos
4.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396666

RESUMEN

Aquaporins (AQPs), membrane proteins responsible for facilitating water transport, found in plant membrane vesicles (MV), have been related to the functionality and stability of MV. We focused on AQPs obtained from broccoli, as they show potential for biotechnological applications. To gain further insight into the role of AQPs in MV, we describe the heterologous overexpression of two broccoli AQPs (BoPIP1;2 and BoPIP2;2) in Pichia pastoris, resulting in their purification with high yield (0.14 and 0.99 mg per gram cells for BoPIP1;2 and BoPIP2;2). We reconstituted AQPs in liposomes to study their functionality, and the size of proteoliposomes did not change concerning liposomes. BoPIP2;2 facilitated water transport, which was preserved for seven days at 4 °C and at room temperature but not at 37 °C. BoPIP2;2 was incorporated into liposomes to encapsulate a resveratrol extract, resulting in increased entrapment efficiency (EE) compared to conventional liposomes. Molecular docking was utilized to identify binding sites in PIP2s for resveratrol, highlighting the role of aquaporins in the improved EE. Moreover, interactions between plant AQP and human integrin were shown, which may increase internalization by the human target cells. Our results suggest AQP-based alternative encapsulation systems can be used in specifically targeted biotechnological applications.


Asunto(s)
Acuaporinas , Brassica , Proteolípidos , Humanos , Liposomas/metabolismo , Resveratrol/metabolismo , Simulación del Acoplamiento Molecular , Acuaporinas/metabolismo , Brassica/genética , Brassica/metabolismo , Agua/química
5.
Microbiol Spectr ; 12(2): e0325623, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38171001

RESUMEN

Bacteria absorb different forms of iron through various channels to meet their needs. Our previous studies have shown that TseF, a type VI secretion system effector for Fe uptake, facilitates the delivery of outer membrane vesicle-associated Pseudomonas quinolone signal (PQS)-Fe3+ to bacterial cells by a process involving the Fe(III) pyochelin receptor FptA and the porin OprF. However, the form in which the PQS-Fe3+ complex enters the periplasm and how it is moved into the cytoplasm remain unclear. Here, we first demonstrate that the PQS-Fe3+ complex enters the cell directly through FptA or OprF. Next, we show that inner membrane transporters such as FptX, PchHI, and FepBCDG are not only necessary for Pseudomonas aeruginosa to absorb PQS-Fe3+ and pyochelin (PCH)-Fe3+ but are also necessary for the virulence of P. aeruginosa toward Galleria mellonella larvae. Furthermore, we suggest that the function of PQS-Fe3+ (but not PQS)-mediated quorum-sensing regulation is dependent on FptX, PchHI, and FepBCDG. Additionally, the findings indicate that unlike FptX, neither FepBCDG nor PchHI play roles in the autoregulatory loop involving PchR, but further deletion of fepBCDG and pchHI can reverse the inactive PchR phenotype caused by fptX deletion and reactivate the expression of the PCH pathway genes under iron-limited conditions. Finally, this work identifies the interaction between FptX, PchHI, and FepBCDG, indicating that a larger complex could be formed to mediate the uptake of PQS-Fe3+ and PCH-Fe3+. These results pave the way for a better understanding of the PQS and PCH iron absorption pathways and provide future directions for research on tackling P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa has evolved a number of strategies to acquire the iron it needs from its host, with the most common being the synthesis, secretion, and uptake of siderophores such as pyoverdine, pyochelin, and the quorum-sensing signaling molecule Pseudomonas quinolone signal (PQS). However, despite intensive studies of the siderophore uptake pathways of P. aeruginosa, our understanding of how siderophores transport iron across the inner membrane into the cytoplasm is still incomplete. Herein, we reveal that PQS and pyochelin in P. aeruginosa share inner membrane transporters such as FptX, PchHI, and FepBCDG to mediate iron uptake. Meanwhile, PQS and pyochelin-mediated signaling operate to a large extent via these inner membrane transporters. Our study revealed the existence of shared uptake pathways between PQS and pyochelin, which could lead us to reexamine the role of these two molecules in the iron uptake and virulence of P. aeruginosa.


Asunto(s)
Hierro , Fenoles , Pseudomonas aeruginosa , Quinolonas , Tiazoles , Hierro/metabolismo , Pseudomonas aeruginosa/genética , Proteínas de Transporte de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sideróforos/metabolismo , Proteínas Bacterianas/metabolismo
6.
J Biol Chem ; 300(2): 105649, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237683

RESUMEN

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.


Asunto(s)
Fosfolípidos , Receptores Acoplados a Proteínas G , Animales , Transporte Biológico , Colesterol , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Bovinos , Pavos
7.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38045315

RESUMEN

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs, yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.

8.
Pflugers Arch ; 476(4): 533-543, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38110744

RESUMEN

Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.


Asunto(s)
Riñón , Nefronas , Animales , Ratones , Humanos , Presión Sanguínea/fisiología , Transportadores de Sulfato , Riñón/metabolismo , Nefronas/metabolismo , Cloruro de Sodio , Cloruros/metabolismo , Proteínas de Transporte de Anión/genética
9.
Protein Sci ; 33(3): e4855, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063271

RESUMEN

P4-ATPases in complex with Cdc50 subunits are lipid flippases that couple ATP hydrolysis with lipid transport to the cytoplasmic leaflet of membranes to create lipid asymmetry. Such vectorial transport has been shown to contribute to vesicle formation in the late secretory pathway. Some flippases are regulated by autoinhibitory regions that can be destabilized by protein kinase-mediated phosphorylation and possibly by binding of cytosolic proteins. In addition, the binding of lipids to flippases may also induce conformational changes required for the activity of these transporters. Here, we address the role of phosphatidylinositol-4-phosphate (PI4P) and the terminal autoinhibitory tails on the lipid flipping activity of the yeast lipid flippase Drs2-Cdc50. By functionally reconstituting the full-length and truncated forms of Drs2 in a 1:1 complex with the Cdc50 subunit, we provide compelling evidence that lipid flippase activity is exclusively detected for the truncated Drs2 variant and is dependent on the presence of the phosphoinositide PI4P. These findings highlight the critical role of phosphoinositides as lipid co-factors in the regulation of lipid transport by the Drs2-Cdc50 flippase.

10.
Front Immunol ; 14: 1276196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077407

RESUMEN

Solute carrier (SLC) transporters are membrane-bound proteins that facilitate nutrient transport, and the movement across cellular membranes of various substrates ranging from ions to amino acids, metabolites and drugs. Recently, SLCs have gained increased attention due to their functional linkage to innate immunological processes such as the clearance of dead cells and anti-microbial defense. Further, the druggable nature of these transporters provides unique opportunities for improving outcomes in different immunological diseases. Although the SLCs represent the largest group of transporters and are often identified as significant hits in omics data sets, their role in immunology has been insufficiently explored. This is partly due to the absence of tools that allow identification of SLC expression in particular immune cell types and enable their comparison before embarking on functional studies. In this study, we used publicly available RNA-Seq data sets to analyze the transcriptome in adaptive and innate immune cells, focusing on differentially and highly expressed SLCs. This revealed several new insights: first, we identify differentially expressed SLC transcripts in phagocytes (macrophages, dendritic cells, and neutrophils) compared to adaptive immune cells; second, we identify new potential immune cell markers based on SLC expression; and third, we provide user-friendly online tools for researchers to explore SLC genes of interest (and the rest of the genes as well), in three-way comparative dot plots among immune cells. We expect this work to facilitate SLC research and comparative transcriptomic studies across different immune cells.


Asunto(s)
Aminoácidos , Proteínas de Transporte de Membrana , Ratones , Animales , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Membrana Celular/metabolismo , Aminoácidos/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
11.
Chemistry ; 29(66): e202302093, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37668304

RESUMEN

The cellular compartment plays an essential role in organizing the complex and diverse biochemical reactions within the cell. By mimicking the function of such cellular compartments, the challenge of constructing artificial compartments has been taken up to develop new biochemical tools for efficient material production and diagnostics. The important features required for the artificial compartment are that it isolates the interior from the external environment and is further functionalized to control the transport of target chemicals to regulate the interior concentration of both substrate and reaction products. In this study, an artificial compartment with size-selective molecular transport function was constructed by using a DNA origami-guided liposome prepared by modifying the method reported by Perrault et al. This completely isolates the liposome interior, including the DNA origami skeleton, from the external environment and allows the assembly of a defined number of molecules of interest inside and/or outside the compartment. By incorporating a bacterial membrane protein, OmpF, into the liposome, the resulting artificial compartment was shown to transport only the molecule of interest with a molecular weight below 600 Da from the external environment into the interior of the compartment.


Asunto(s)
ADN , Liposomas , Liposomas/química , Transporte Biológico , ADN/química
12.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645971

RESUMEN

The Bile Acid Sodium Symporter (BASS) family transports a wide array of molecules across membranes, including bile acids in humans, and small metabolites in plants. These transporters, many of which are sodium-coupled, have been shown to use an elevator mechanism of transport, but exactly how substrate binding is coupled to sodium ion binding and transport is not clear. Here we solve the crystal structure at 2.3 Å of a transporter from Neisseria Meningitidis (ASBTNM) in complex with pantoate, a potential substrate of ASBTNM. The BASS family is characterised by two helices that cross-over in the centre of the protein in an arrangement that is intricately held together by two sodium ions. We observe that the pantoate binds, specifically, between the N-termini of two of the opposing helices in this cross-over region. During molecular dynamics simulations the pantoate remains in this position when sodium ions are present but is more mobile in their absence. Comparison of structures in the presence and absence of pantoate demonstrates that pantoate elicits a conformational change in one of the cross-over helices. This modifies the interface between the two domains that move relative to one another to elicit the elevator mechanism. These results have implications, not only for ASBTNM but for the BASS family as a whole and indeed other transporters that work through the elevator mechanism.

13.
Chemosphere ; 340: 139888, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37604343

RESUMEN

Selenium (Se) can counteract cadmium (Cd) toxicity in wheat, but the molecular mechanism of different Se forms reducing Cd uptake and accumulation in wheat seedlings remain unclear. Here, a hydroponic experiment was conducted to investigate the effects of three Se forms (selenite (Se(IV)), selenate (Se(VI)) and seleno-L-methionine (SeMet)) on Cd2+ influx, Cd subcellular distribution, and Cd accumulation in wheat seedlings, and the underlying molecular mechanisms were investigated through transcriptome analysis. Consequently, Se(IV) and Se(VI) addition significantly reduced root Cd concentration by 74.3% and 80.8%, respectively, and all Se treatments significantly decreased shoot Cd concentration by approximately 34.2%-74.9%, with Se(IV) addition having the most pronounced reducing effect. Transcriptome analysis showed the reduction of Cd accumulation after Se(IV) addition was mainly due to the downregulation of Cd uptake genes. The inhibition of Cd accumulation after Se(VI) addition was not only associated with the downregulation of Cd uptake genes, but also related to the sequestration of Cd in vacuole. For SeMet addition, the reduction of Cd accumulation was mainly related to the sequestration of Cd in vacuole as GSH-Cd. The above findings provide novel insights to understand the effects of different forms of Se on Cd uptake and accumulation and tolerance in wheat.


Asunto(s)
Intoxicación por Cadmio , Selenio , Selenio/farmacología , Cadmio/toxicidad , Triticum/genética , Plantones/genética , Perfilación de la Expresión Génica , Metionina , Racemetionina
14.
Bio Protoc ; 13(11): e4694, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37342157

RESUMEN

Lipid-conjugated pH sensors based on fluorophores coupled to lipids are a powerful tool for monitoring pH gradients in biological microcompartments and reconstituted membrane systems. This protocol describes the synthesis of pH sensors based on amine-reactive pHrodo esters and the amino phospholipid phosphatidylethanolamine. The major features of this sensor include efficient partitioning into membranes and strong fluorescence under acidic conditions. The protocol described here can be used as a template to couple other amine-reactive fluorophores to phosphatidylethanolamines. Graphical overview Synthesis of lipid-conjugated pH sensors based on amine-reactive fluorophore esters and the aminophospholipid phosphoethanolamine (PE).

15.
Membranes (Basel) ; 13(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37233523

RESUMEN

The major facilitator superfamily (MFS) of transporters consists of three classes of membrane transporters: symporters, uniporters, and antiporters. Despite such diverse functions, MFS transporters are believed to undergo similar conformational changes within their distinct transport cycles, known as the rocker-switch mechanism. While the similarities between conformational changes are noteworthy, the differences are also important since they could potentially explain the distinct functions of symporters, uniporters, and antiporters of the MFS superfamily. We reviewed a variety of experimental and computational structural data on a select number of antiporters, symporters, and uniporters from the MFS family to compare the similarities and differences of the conformational dynamics of three different classes of transporters.

16.
Mol Biol Rep ; 50(7): 6147-6157, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37212961

RESUMEN

Humans frequently consume plant-based foods in their daily life. Contamination of agricultural soils by heavy metals (HMs) is a major food and nutritional security issue. The crop plants grown in HM-contaminated agricultural soil may accumulate more HMs in their edible part, further transferring into the food chain. Consumption of HM-rich crops can cause severe health issues in humans. On the other hand, the low content of the essential HM in the edible part of the crop also causes health problems. Therefore, researchers must try to reduce the non-essential HM in the edible part of the crop plants and improve the essential HMs. Phytoremediation and biofortification are the two strategies for resolving this problem. The genetic component helps to improve the efficiency of phytoremediation and biofortification processes in plants. They help eliminate HMs from soil and improve essential HM content in crop plants. The membrane transporter genes (genetic components) are critical in these two strategies. Therefore, engineering membrane transporter genes may help reduce the non-essential HM content in the edible part of crop plants. Targeted gene editing by genome editing tools like CRISPR could help plants achieve efficient phytoremediation and biofortification. This article covers gene editing's scope, application, and implication to improve the phytoremediation and biofortification processes in non-crop and crop plants.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Biofortificación , Biodegradación Ambiental , Metales Pesados/análisis , Productos Agrícolas/genética , Suelo , Contaminantes del Suelo/análisis
17.
Zoolog Sci ; 40(2): 91-104, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37042689

RESUMEN

For adaptation to a high salinity marine environment, cartilaginous fishes have evolved a ureosmotic strategy. They have a highly elaborate "four-loop nephron" in the kidney, which is considered to be important for reabsorption of urea from the glomerular filtrate to maintain a high concentration of urea in the body. However, the function and regulation, generally, of the "four-loop nephron" are still largely unknown due to the complicated configuration of the nephron and its many subdivided segments. Laser microdissection (LMD) followed by RNA-sequencing (RNA-seq) analysis is a powerful technique to obtain segment-dependent gene expression profiles. In the present study, using the kidney of cloudy catshark, Scyliorhinus torazame, we tested several formaldehyde-free and formaldehyde-based fixatives to optimize the fixation methods. Fixation by 1% neutral buffered formalin for 15 min resulted in sufficient RNA and structural integrities, which allowed LMD clipping of specific nephron segments and subsequent RNA-seq analysis. RNA-seq from the LMD samples of the second-loop, the fourth-loop, and the five tubular segments in the bundle zone revealed a number of specific membrane transporter genes that can characterize each segment. Among them, we examined expressions of the Na + -coupled cotransporters abundantly expressed in the second loop samples. Although the proximal II segment of the second loop is known for the elimination of excess solutes, the present results imply that the PII segment is also crucial for reabsorption of valuable solutes. Looking ahead to future studies, the segment-dependent gene expression profiling will be a powerful technique for unraveling the renal mechanisms and regulation in euryhaline elasmobranchs.


Asunto(s)
Microdisección , Nefronas , Animales , Peces , Perfilación de la Expresión Génica , ARN , Urea/metabolismo
19.
Front Physiol ; 14: 1122895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909239

RESUMEN

Numerous cellular proteins are post-translationally modified by addition of a lipid group to their structure, which dynamically influences the proteome by increasing hydrophobicity of proteins often impacting protein conformation, localization, stability, and binding affinity. These lipid modifications include myristoylation and palmitoylation. Palmitoylation involves a 16-carbon saturated fatty acyl chain being covalently linked to a cysteine thiol through a thioester bond. Palmitoylation is unique within this group of modifications, as the addition of the palmitoyl group is reversible and enzyme driven, rapidly affecting protein targeting, stability and subcellular trafficking. The palmitoylation reaction is catalyzed by a large family of Asp-His-His-Cys (DHHCs) motif-containing palmitoyl acyltransferases, while the reverse reaction is catalyzed by acyl-protein thioesterases (APTs), that remove the acyl chain. Palmitoyl-CoA serves an important dual purpose as it is not only a key metabolite fueling energy metabolism, but is also a substrate for this PTM. In this review, we discuss protein palmitoylation in regulating substrate metabolism, focusing on membrane transport proteins and kinases that participate in substrate uptake into the cell. We then explore the palmitoylation of mitochondrial proteins and the palmitoylation regulatory enzymes, a less explored field for potential lipid metabolic regulation.

20.
Sheng Wu Gong Cheng Xue Bao ; 39(3): 961-977, 2023 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-36994565

RESUMEN

Aromatic compounds are a class of organic compounds with benzene ring(s). Aromatic compounds are hardly decomposed due to its stable structure and can be accumulated in the food cycle, posing a great threat to the ecological environment and human health. Bacteria have a strong catabolic ability to degrade various refractory organic contaminants (e.g., polycyclic aromatic hydrocarbons, PAHs). The adsorption and transportation are prerequisites for the catabolism of aromatic compounds by bacteria. While remarkable progress has been made in understanding the metabolism of aromatic compounds in bacterial degraders, the systems responsible for the uptake and transport of aromatic compounds are poorly understood. Here we summarize the effect of cell-surface hydrophobicity, biofilm formation, and bacterial chemotaxis on the bacterial adsorption of aromatic compounds. Besides, the effects of outer membrane transport systems (such as FadL family, TonB-dependent receptors, and OmpW family), and inner membrane transport systems (such as major facilitator superfamily (MFS) transporter and ATP-binding cassette (ABC) transporter) involved in the membrane transport of these compounds are summarized. Moreover, the mechanism of transmembrane transport is also discussed. This review may serve as a reference for the prevention and remediation of aromatic pollutants.


Asunto(s)
Bacterias , Hidrocarburos Policíclicos Aromáticos , Humanos , Adsorción , Bacterias/metabolismo , Compuestos Orgánicos , Transporte Biológico , Transportadoras de Casetes de Unión a ATP , Hidrocarburos Policíclicos Aromáticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA