Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Antimicrob Agents Chemother ; 68(9): e0085324, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39058023

RESUMEN

Plasmodium vivax is now the main cause of malaria outside Africa. The gametocytocidal effects of antimalarial drugs are important to reduce malaria transmissibility, particularly in low-transmission settings, but they are not well characterized for P. vivax. The transmission-blocking effects of chloroquine, artesunate, and methylene blue on P. vivax gametocytes were assessed. Blood specimens were collected from patients presenting with vivax malaria, incubated with or without the tested drugs, and then fed to mosquitos from a laboratory-adapted colony of Anopheles dirus (a major malaria vector in Southeast Asia). The effects on oocyst and sporozoite development were analyzed under a multi-level Bayesian model accounting for assay variability and the heterogeneity of mosquito Plasmodium infection. Artesunate and methylene blue, but not chloroquine, exhibited potent transmission-blocking effects. Gametocyte exposures to artesunate and methylene blue reduced the mean oocyst count 469-fold (95% CI: 345 to 650) and 1,438-fold (95% CI: 970 to 2,064), respectively. The corresponding estimates for the sporozoite stage were a 148-fold reduction (95% CI: 61 to 470) and a 536-fold reduction (95% CI: 246 to 1,311) in the mean counts, respectively. In contrast, high chloroquine exposures reduced the mean oocyst count only 1.40-fold (95% CI: 1.20 to 1.64) and the mean sporozoite count 1.34-fold (95% CI: 1.12 to 1.66). This suggests that patients with vivax malaria often remain infectious to anopheline mosquitos after treatment with chloroquine. Use of artemisinin combination therapies or immediate initiation of primaquine radical cure should reduce the transmissibility of P. vivax infections.


Asunto(s)
Anopheles , Antimaláricos , Artesunato , Cloroquina , Malaria Vivax , Azul de Metileno , Plasmodium vivax , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Artesunato/farmacología , Artesunato/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Plasmodium vivax/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Malaria Vivax/transmisión , Animales , Humanos , Anopheles/parasitología , Anopheles/efectos de los fármacos , Esporozoítos/efectos de los fármacos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Oocistos/efectos de los fármacos
2.
Mol Biochem Parasitol ; 259: 111634, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38823647

RESUMEN

Asexual blood stage culture of Plasmodium falciparum is routinely performed but reproducibly inducing commitment to and maturation of viable gametocytes remains difficult. Culture media can be supplemented with human serum substitutes to induce commitment but these generally only allow for long-term culture of asexual parasites and not transmission-competent gametocytes due to their different lipid composition. Recent insights demonstrated the important roles lipids play in sexual commitment; elaborating on this we exposed ring stage parasites (20-24 hours hpi) for one day to AlbuMAX supplemented media to trigger induction to gametocytogenesis. We observed a significant increase in gametocytes after AlbuMAX induction compared to serum. We also tested the transmission potential of AlbuMAX inducted gametocytes and found a significant higher oocyst intensity compared to serum. We conclude that AlbuMAX supplemented media induces commitment, allows a more stable and predictable production of transmittable gametocytes than serum alone.


Asunto(s)
Medios de Cultivo , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/fisiología , Medios de Cultivo/química , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión
3.
Emerg Microbes Infect ; 13(1): 2321992, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38484290

RESUMEN

Tick-borne encephalitis virus (TBEV) is an emerging pathogen in the Netherlands. Multiple divergent viral strains are circulating and the focal distribution of TBEV remains poorly understood. This may, however, be explained by differences in the susceptibility of tick populations for specific viruses and viral strains, and by viral strains having higher infection success in their local tick population. We investigated this hypothesis by exposing Dutch Ixodes ricinus ticks to two different TBEV strains: TBEV-NL from the Netherlands and TBEV-Neudoerfl from Austria. In addition, we exposed ticks to louping Ill virus (LIV), which is endemic to large parts of the United Kingdom and Ireland, but has not been reported in the Netherlands. Ticks were collected from two locations in the Netherlands: one location without evidence of TBEV circulation and one location endemic for the TBEV-NL strain. Ticks were infected in a biosafety level 3 laboratory using an artificial membrane feeding system. Ticks collected from the region without evidence of TBEV circulation had lower infection rates for TBEV-NL as compared to TBEV-Neudoerfl. Vice versa, ticks collected from the TBEV-NL endemic region had higher infection rates for TBEV-NL compared to TBEV-Neudoerfl. In addition, LIV infection rates were much lower in Dutch ticks compared to TBEV, which may explain why LIV is not present in the Netherlands. Our findings show that ticks from two distinct geographical populations differ in their susceptibility to TBEV strains, which could be the result of differences in the genetic background of the tick populations.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Ixodes , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/epidemiología , Países Bajos/epidemiología , Austria
4.
Int J Infect Dis ; 143: 107010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38490637

RESUMEN

OBJECTIVE: A 15-month longitudinal study was conducted to determine the duration and infectivity of asymptomatic qPCR-detected Plasmodium falciparum and Plasmodium vivax infections in Ethiopia. METHOD: Total parasite and gametocyte kinetics were determined by molecular methods; infectivity to Anopheles arabiensis mosquitoes by repeated membrane feeding assays. Infectivity results were contrasted with passively recruited symptomatic malaria cases. RESULTS: For P. falciparum and P. vivax infections detected at enrolment, median durations of infection were 37 days (95% confidence interval [CI], 15-93) and 60 days (95% CI, 18-213), respectively. P. falciparum and P. vivax parasite densities declined over the course of infections. From 47 feeding assays on 22 asymptomatic P. falciparum infections, 6.4% (3/47) were infectious and these infected 1.8% (29/1579) of mosquitoes. No transmission was observed in feeding assays on asymptomatic P. vivax mono-infections (0/56); one mixed-species infection was highly infectious. Among the symptomatic cases, 4.3% (2/47) of P. falciparum and 73.3% (53/86) of P. vivax patients were infectious to mosquitoes. CONCLUSION: The majority of asymptomatic infections were of short duration and low parasite density. Only a minority of asymptomatic individuals were infectious to mosquitoes. This contrasts with earlier findings and is plausibly due to the low parasite densities in this population.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria Vivax , Plasmodium falciparum , Plasmodium vivax , Etiopía/epidemiología , Malaria Vivax/transmisión , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Humanos , Estudios Longitudinales , Malaria Falciparum/transmisión , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Animales , Plasmodium vivax/aislamiento & purificación , Plasmodium vivax/fisiología , Plasmodium falciparum/aislamiento & purificación , Anopheles/parasitología , Masculino , Femenino , Adulto , Adolescente , Niño , Adulto Joven , Preescolar , Infecciones Asintomáticas/epidemiología , Mosquitos Vectores/parasitología , Persona de Mediana Edad
5.
J Infect Dis ; 229(6): 1894-1903, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38408353

RESUMEN

BACKGROUND: Plasmodium falciparum and Plasmodium vivax account for >90% global malaria burden. Transmission intervention strategies encompassing transmission-blocking vaccines (TBV) and drugs represent ideal public health tools to eliminate malaria at the population level. The availability of mature P. falciparum gametocytes through in vitro culture has facilitated development of a standard membrane feeding assay to assess efficacy of transmission interventions against P. falciparum. The lack of in vitro culture for P. vivax has significantly hampered similar progress on P. vivax and limited studies have been possible using blood from infected patients in endemic areas. The ethical and logistical limitations of on-time access to blood from patients have impeded the development of P. vivax TBVs. METHODS: Transgenic murine malaria parasites (Plasmodium berghei) expressing TBV candidates offer a promising alternative for evaluation of P. vivax TBVs through in vivo studies in mice, and ex vivo membrane feeding assay (MFA). RESULTS: We describe the development of transmission-competent transgenic TgPbvs25 parasites and optimization of parameters to establish an ex vivo MFA to evaluate P. vivax TBV based on Pvs25 antigen. CONCLUSIONS: The MFA is expected to expedite Pvs25-based TBV development without dependence on blood from P. vivax-infected patients in endemic areas for evaluation.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Plasmodium berghei , Plasmodium vivax , Animales , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/genética , Plasmodium vivax/genética , Plasmodium vivax/inmunología , Malaria Vivax/transmisión , Malaria Vivax/prevención & control , Malaria Vivax/parasitología , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Ratones , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/genética , Humanos , Femenino , Antígenos de Superficie
6.
Malar J ; 23(1): 26, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238768

RESUMEN

BACKGROUND: Asymptomatic malaria transmission has become a public health concern across malaria-endemic Africa including Ethiopia. Specifically, Plasmodium vivax is more efficient at transmitting earlier in the infection and at lower densities than Plasmodium falciparum. Consequently, a greater proportion of individuals infected with P. vivax can transmit without detectable gametocytaemia. Mass treatment of livestock with macrocyclic lactones (MLs), e.g., ivermectin and doramectin, was suggested as a complementary malaria vector tool because of their insecticidal effects. However, the effects of MLs on P. vivax in Anopheles arabiensis has not yet been fully explored. Hence, comparative in-vitro susceptibility and ex-vivo studies were conducted to evaluate the effects of ivermectin, doramectin and moxidectin sub-lethal concentrations on P. vivax oocyst development in An. arabiensis. METHODS: The 7-day sub-lethal concentrations of 25% (LC25) and 5% (LC5) were determined from in-vitro susceptibility tests on female An. arabiensis in Hemotek® membrane feeding assay. Next, an ex-vivo study was conducted using P. vivax gametocytes infected patient's blood spiked with the LC25 and LC5 of the MLs. At 7-days post-feeding, each mosquito was dissected under a dissection stereo microscope, stained with 0.5% (w/v) mercurochrome solution, and examined for the presence of P. vivax oocysts. Statistical analysis was based on a generalized mixed model with binomially distributed error terms. RESULTS: A 7-day lethal concentration of 25% (LC25, in ng/mL) of 7.1 (95% CI: [6.3;8.0]), 20.0 (95%CI:[17.8;22.5]) and 794.3 (95%CI:[716.4;1516.3]) were obtained for ivermectin, doramectin and moxidectin, respectively. Similarly, a lethal concentration of 5% (LC5, in ng/mL) of 0.6 (95% CI: [0.5;0.7]), 1.8 (95% CI:[1.6;2.0]) and 53.7 (95% CI:[ 48.4;102.5]) were obtained respectively for ivermectin, doramectin and moxidectin. The oocyst prevalence in treatment and control groups did not differ significantly (p > 0.05) from each other. Therefore, no direct effect of ML endectocides on P. vivax infection in An. arabiensis mosquitoes was observed at the sub-lethal concentration (LC25 and LC5). CONCLUSIONS: The effects of ivermectin and doramectin on malaria parasite is more likely via indirect effects, particularly by reducing the vectors lifespan and causing mortality before completing the parasite's sporogony cycle or reducing their vector capacity as it affects the locomotor activity of the mosquito.


Asunto(s)
Anopheles , Macrólidos , Malaria Vivax , Malaria , Animales , Femenino , Humanos , Plasmodium vivax , Ivermectina/farmacología , Oocistos , Lactonas/farmacología , Mosquitos Vectores , Malaria Vivax/epidemiología , Etiopía , Plasmodium falciparum
7.
Artículo en Inglés | MEDLINE | ID: mdl-37637351

RESUMEN

When measuring human to mosquito transmission of Plasmodium spp., laboratory-adapted (colony) mosquitoes can be utilized. To connect transmission studies to the local epidemiology, it can be important to comprehend the relationship between infectivity in laboratory-adapted (colony) and wild-caught (wild) mosquitoes of the same species. Microscopically confirmed Plasmodium vivax cases were recruited from health facilities in Arba Minch town, and a nested polymerase chain reaction (nPCR) was used for subsequent confirmation. We performed paired membrane-feeding assays using colony An. arabiensis and three generations of wild origin An. arabiensis. Anopheles arabiensis aged 3-6 days were fed after being starved for 8-14 h. Microscopically, the oocyst development was evaluated at day 7 after feeding. Circumsporozoite proteins (CSPs) assay was carried out by enzyme-linked immunosorbent assay (ELISA). In 19 paired feeding experiments, the feeding efficiency was more than doubled in colony (median: 62.5%; interquartile range, IQR: 35-78%) than in wild mosquitoes (median: 28.5%; IQR: 17.5-40%; P < 0.001). Among the 19 P. vivax gametocyte-positive blood samples, 63.2% (n = 12) were infective to wild An. arabiensis and 73.7% (n = 14) were infective to colony An. arabiensis. The median infection rate was twice as high (26%) in the colony than in the wild (13%) An. arabiensis, although the difference was marginally insignificant (P = 0.06). Although the observed difference was not statistically significant (P = 0.19), the median number of oocysts per midgut was more than twice as high (17.8/midgut) in colony than in wild (7.2/midgut) An. arabiensis. The median feeding efficiency was 26.5% (IQR: 18-37%) in F1, 29.3% (IQR: 28-40%) in F2 and 31.2% (IQR: 30-37%) in F3 generations of wild An. arabiensis. Also, no significant difference was observed in oocyst infection rate and load between generations of wild An. arabiensis. CSP rate of P. vivax was 3.1% (3/97; 95% CI: 0.6-8.8%) in wild and 3.6% (3/84; 95% CI: 0.7-10.1%) in colony An. arabiensis. The results of the present study revealed that oocyst infection and load/midgut, and CSP rate were roughly comparable, indicating that colony mosquitoes can be employed for infectivity studies, while larger sample sizes may be necessary in future studies.

8.
Front Cell Infect Microbiol ; 13: 1146030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305421

RESUMEN

Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the Plasmodium lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "de novo" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review in vivo and in vitro systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible ex vivo systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.


Asunto(s)
Culicidae , Malaria , Humanos , Animales , Mosquitos Vectores , Ambiente , Tecnología
9.
Malar J ; 22(1): 136, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098534

RESUMEN

BACKGROUND: Measuring risk of malaria transmission is complex, especially in case of Plasmodium vivax. This may be overcome using membrane feeding assays in the field where P. vivax is endemic. However, mosquito-feeding assays are affected by a number of human, parasite and mosquito factors. Here, this study identified the contributions of Duffy blood group status of P. vivax-infected patients as a risk of parasite transmission to mosquitoes. METHODS: A membrane feeding assay was conducted on a total of 44 conveniently recruited P. vivax infected patients in Adama city and its surroundings in East Shewa Zone, Oromia region, Ethiopia from October, 2019 to January, 2021. The assay was performed in Adama City administration. Mosquito infection rates were determined by midgut dissections at seven to 8 days post-infection. Duffy genotyping was defined for each of the 44 P. vivax infected patients. RESULTS: The infection rate of Anopheles mosquitoes was 32.6% (296/907) with 77.3% proportion of infectious participants (34/44). Infectiousness of participants to Anopheles mosquitoes appeared to be higher among individuals with homozygous Duffy positive blood group (TCT/TCT) than heterozygous (TCT/CCT), but the difference was not statistically significant. The mean oocyst density was significantly higher among mosquitoes fed on blood of participants with FY*B/FY*BES than other genotypes (P = 0.001). CONCLUSION: Duffy antigen polymorphisms appears to contribute to transmissibility difference of P. vivax gametocytes to Anopheles mosquitoes, but further studies are required.


Asunto(s)
Anopheles , Antígenos de Grupos Sanguíneos , Malaria Vivax , Animales , Humanos , Plasmodium vivax/genética , Anopheles/parasitología , Malaria Vivax/epidemiología , Genotipo
10.
Ticks Tick Borne Dis ; 14(4): 102170, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36958097

RESUMEN

Genomes of ticks display reductions, to various extents, in genetic coding for enzymes of the haem biosynthetic pathway. Here, we mined available transcriptomes of soft tick species and identified transcripts encoding only half of the enzymes involved in haem biosynthesis. Transcripts identified across most species examined were those coding for porphobilinogen synthase, coproporphyrinogen oxidase, protoporphyrinogen oxidase, and ferrochelatase. Genomic retention of porphobilinogen synthase seems to be soft tick-restricted as no such homologue has been identified in any hard tick species. Bioinformatic mining is thus strongly indicative of the lack of biochemical capacity for de novo haem biosynthesis, suggesting a requirement for dietary haem. In the hard tick Ixodes ricinus, depletion of dietary haem, i.e. serum feeding, leads to oviposition of haem-free eggs, with no apparent embryogenesis and larvae formation. In this work, we show that serum-fed Ornithodoros moubata females, unlike those of I. ricinus, laid haem-containing eggs similarly to blood-fed controls, but only by a small proportion of the serum-fed females. To enhance the effect of dietary haem depletion, O. moubata ticks were serum-fed consecutively as last nymphal instars and females. These females laid eggs with profoundly reduced haem deposits, confirming the host origin of the haem. These data confirm the ability of soft ticks to take up and allocate host haem to their eggs in order to drive reproduction of the ticks.


Asunto(s)
Argasidae , Ixodidae , Ornithodoros , Animales , Femenino , Hemo , Porfobilinógeno Sintasa
11.
Front Cell Infect Microbiol ; 13: 1112952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743301

RESUMEN

Introduction: We developed a new simple method to assess the composition of proteinaceous components in the saliva of Ornithodoros moubata, the main vehicle for pathogen transmission and a likely source of bioactive molecules acting at the tick-vertebrate host interface. To collect naturally expectorated saliva from the ticks we employed an artificial membrane feeding technique using a simple, chemically defined diet containing phagostimulants and submitted native saliva samples collected in this way for liquid chromatography-mass spectrometry (LC-MS) analysis. These experiments were conducted with groups of uninfected ticks as well as with O. moubata infected with B. duttonii. The ticks exhibited a fair feeding response to the tested diet with engorgement rates reaching as high as 60-100% of ticks per feeding chamber. The LC-MS analysis identified a total of 17 and 15 proteins in saliva samples from the uninfected and infected O. moubata nymphs, respectively. Importantly, the analysis was sensitive enough to detect up to 9 different proteins in the samples of saliva containing diet upon which as few as 6 nymphal ticks fed during the experiments. Some of the proteins recognized in the analysis are well known for their immunomodulatory activity in a vertebrate host, whereas others are primarily thought of as structural or "housekeeping" proteins and their finding in the naturally expectorated tick saliva confirms that they can be secreted and might serve some functions at the tick-host interface. Most notably, some of the proteins that have long been suspected for their importance in the vector-pathogen interactions of Borrelia spirochetes were detected only in the samples from infected ticks, suggesting that their expression was altered by the persistent colonization of the tick's salivary glands by spirochetes. The simple method described herein is an important addition to the toolbox available to study the vector-host-pathogen interactions in the rapidly feeding soft ticks.


Asunto(s)
Argasidae , Borrelia , Ornithodoros , Animales , Saliva , Borrelia/fisiología
12.
Parasite Epidemiol Control ; 21: e00285, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36714884

RESUMEN

Understanding the contribution of asymptomatic Plasmodium carriers in malaria transmission might be helpful to design and implement new control measures. The present study explored the prevalence of asymptomatic and symptomatic Plasmodium infections (asexual and sexual stages) and the contribution of asymptomatic P. falciparum carriers to Anopheles-mediated malaria transmission in Ouidah (Benin). Thick and thin blood smears were examined from finger-prick blood specimens using light microscopy, and the density of both asexual and sexual stages of Plasmodium species was calculated. Infectivity of gametocyte-infected blood samples to Anopheles gambiae was assessed through direct membrane feeding assays. The prevalence of asymptomatic Plasmodium infections was 28.73% (289/1006). All the asymptomatic gametocyte-carriers (19/19), with gametocytaemia ranging from 10 - 1200 gametocytes/µL of blood, were infectious to An. gambiae mosquitoes. The mean oocyst prevalences varied significantly (χ 2  = 16.42, df = 7, p = 0.02) among laboratory mosquito strains (6.9 - 39.4%) and near-field mosquitoes (4.9 - 27.2%). Likewise, significant variation (χ 2  = 56.85, df = 7, p = 6.39 × 10-10) was observed in oocyst intensity. Our findings indicate that asymptomatic Plasmodium carriers could significantly contribute to malaria transmission. Overall, this study highlights the importance of diagnosing and treating asymptomatic and symptomatic infection carriers during malaria control programmes.

13.
PeerJ ; 10: e14247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325181

RESUMEN

Blood feeding is a necessary part of laboratory studies involving mosquitoes and other hematophagous arthropods of interest in medical and ecological research. However, methods involving hosts may present serious risks, require ethics approvals and can be expensive. Here we describe an insect blood feeder made using common laboratory materials, which is low cost (

Asunto(s)
Aedes , Animales , Femenino , Humanos , Mosquitos Vectores , Laboratorios , Fertilidad , Conducta Alimentaria
14.
Antimicrob Agents Chemother ; 66(12): e0100122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36321830

RESUMEN

The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 µM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 µM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum , Primaquina , Malaria Falciparum/prevención & control , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico
15.
Parasit Vectors ; 15(1): 384, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271436

RESUMEN

BACKGROUND: Insecticide-based vector control interventions in combination with case management with artemisinin-based combination therapy has reduced malaria incidence and prevalence worldwide. Current control methods focus on the primary malaria vectors, Anopheles gambiae sensu lato (s.l.) and the An. funestus group; however, the impact of secondary and suspected vectors has been either sidelined or received limited attention. Defining the susceptibility of secondary, suspected vector species to different parasites in time and space is essential for efficient malaria control and elimination programs. The aim of this study was to assess the susceptibility of An. gambiae s.l., An. coustani complex and An. pharoensis to Plasmodium vivax and P. falciparum infection in Ethiopia. METHODS: Larvae of Anopheles spp. were collected from different aquatic habitats and reared to adults under laboratory conditions, with the temperature and humidity maintained at 27 ± 1 °C and 75 ± 5%, respectively. Adult female mosquitoes were identified to species as An. gambiae s.l., An. coustani complex and An. pharoensis. Females of these three Anopheles spp. were allowed to feed in parallel feeding assays on infected blood containing the same gametocytes isolated from P. falciparum and P. vivax gametocyte-positive patients by indirect membrane feeding assays. All blood-fed mosquitoes were held under laboratory conditions. After 7 days, all surviving mosquitoes were dissected to detect mid-gut oocyst and enumerated under a microscope. RESULTS: Of 5915 female Anopheles mosquitoes exposed to gametocyte-infected blood, 2106 (35.6%)s fed successfully in the 32 independent infection experiments. There was a significant variation in feeding rates among An. gambiae s.l., An. pharoensis and An. coustani complex (G-test = 48.43, P = 3.049e-11). All three exposed mosquito species were receptive to P. vivax and P. falciparum infection development. The percentage of infected mosquitoes following feeding on an infected blood meal was significantly different among species (G-test = 6.49, P = 0.03886). The median infection intensity (II) for An. coustani complex, An. gambiae s.l. and An. pharoensis was 1.16, 2.00 and 1.25, respectively. Although the proportion of infected mosquitoes significantly differed in terms of II, infection rate (IR) and mean oocyst density among the species, mean oocyst density and IR were highly correlated with gametocyte density in all tests (P < 0.001). CONCLUSION: Primary, secondary and suspected vectors were experimentally susceptible to both P. vivax and P. falciparum infection. An effective malaria elimination program might include surveillance and control tools which target secondary and suspected vectors that might play an outdoor transmission role, possibly resulting in reduced focal malaria transmission. Comparison of the three species' mean infection rates with standard deviation.


Asunto(s)
Anopheles , Artemisininas , Insecticidas , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Humanos , Femenino , Plasmodium vivax , Plasmodium falciparum , Mosquitos Vectores/parasitología , Etiopía/epidemiología , Malaria Falciparum/parasitología , Anopheles/parasitología , Malaria Vivax/parasitología , Oocistos
16.
Microbiol Spectr ; 10(5): e0062822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36066239

RESUMEN

The membrane feeding assay is widely used to evaluate the efficacy of transmission-blocking interventions (TBIs) and identify the reservoir of malaria. This study aimed to determine the infectivity of blood meals from symptomatic Plasmodium-infected patients to an Anopheles arabiensis colony in Ethiopia. A membrane feeding assay was conducted on a total of 63 Plasmodium falciparum- and/or Plasmodium vivax-infected clinical patients in East Shoa Zone, Ethiopia. Detection of P. falciparum and P. vivax in blood samples was done using microscopy. Mosquito infection rates were determined by dissection of mosquitoes' midguts, while mosquito infectiousness was observed by dissection of their salivary glands. The proportion of infectious symptomatic patients was 68.3% (43/63). Using the chi-square or Fisher's exact test, the oocyst infection levels were higher among patients infected with P. vivax, females, and rural residents. Nearly 57% (56.7%, 17/30) of assays produced sporozoites in the salivary glands of mosquitoes. Both oocyst and sporozoite infection rates had positive correlations with parasitemia and gametocytemia. High infectiousness of symptomatic patients was observed, with a greater proportion of infectious mosquitoes per assay. Demonstrating oocyst infection in the mosquitoes might confirm estimates of the infectiousness of mosquitoes, although some of the oocyst-infected mosquitoes failed to produce sporozoites. IMPORTANCE Malaria remains one of the most devastating infectious diseases globally, and transmission-blocking activities are needed. Plasmodium transmission from human to mosquitoes is poorly studied, particularly in endemic countries, and the membrane feeding assay allows it to be determined. In this study, we demonstrated human infectious reservoirs of malaria. Moreover, the effect of Plasmodium-infected patients on the infectiousness of mosquitoes was also observed. These findings are therefore important for designing future evaluation of transmission-blocking interventions that will support the malaria elimination program.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Femenino , Humanos , Etiopía/epidemiología , Plasmodium vivax , Malaria Vivax/epidemiología , Plasmodium falciparum , Malaria Falciparum/epidemiología , Oocistos
17.
Parasit Vectors ; 15(1): 52, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151358

RESUMEN

Physical methods to control pest arthropods are increasing in importance, but detailed knowledge of the effects of some of these methods on the target organisms is lacking. The aim of this study was to use light sheet fluorescence microscopy (LSFM) in anatomical studies of blood-sucking arthropods in vivo to assess the suitability of this method to investigate the morphological structures of arthropods and changes in these structures over time, using the human louse Pediculus humanus (Phthiraptera: Pediculidae) as sample organism. Plasma treatment was used as an example of a procedure employed to control arthropods. The lice were prepared using an artificial membrane feeding method involving the ingestion of human blood alone and human blood with an added fluorescent dye in vitro. It was shown that such staining leads to a notable enhancement of the imaging contrast with respect to unstained whole lice and internal organs that can normally not be viewed by transmission microscopy but which become visible by this approach. Some lice were subjected to plasma treatment to inflict damage to the organisms, which were then compared to untreated lice. Using LSFM, a change in morphology due to plasma treatment was observed.These results demonstrate that fluorescence staining coupled with LSFM represents a powerful and straightforward method enabling the investigation of the morphology-including anatomy-of blood-sucking lice and other arthropods.


Asunto(s)
Artrópodos , Infestaciones por Piojos , Pediculus , Animales , Colorantes , Ingestión de Alimentos , Humanos , Membranas Artificiales , Microscopía Fluorescente
18.
Front Cell Infect Microbiol ; 12: 1081666, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699720

RESUMEN

In addition to being vectors of pathogenic bacteria, ticks also harbor intracellular bacteria that associate with ticks over generations, aka symbionts. The biological significance of such bacterial symbiosis has been described in several tick species but its function in Ixodes ricinus is not understood. We have previously shown that I. ricinus ticks are primarily inhabited by a single species of symbiont, Midichloria mitochondrii, an intracellular bacterium that resides and reproduces mainly in the mitochondria of ovaries of fully engorged I. ricinus females. To study the functional integration of M. mitochondrii into the biology of I. ricinus, an M. mitochondrii-depleted model of I. ricinus ticks was sought. Various techniques have been described in the literature to achieve dysbiosed or apo-symbiotic ticks with various degrees of success. To address the lack of a standardized experimental procedure for the production of apo-symbiotic ticks, we present here an approach utilizing the ex vivo membrane blood feeding system. In order to deplete M. mitochondrii from ovaries, we supplemented dietary blood with tetracycline. We noted, however, that the use of tetracycline caused immediate toxicity in ticks, caused by impairment of mitochondrial proteosynthesis. To overcome the tetracycline-mediated off-target effect, we established a protocol that leads to the production of an apo-symbiotic strain of I. ricinus, which can be sustained in subsequent generations. In two generations following tetracycline administration and tetracycline-mediated symbiont reduction, M. mitochondrii was gradually eliminated from the lineage. Larvae hatched from eggs laid by such M. mitochondrii-free females repeatedly performed poorly during blood-feeding, while the nymphs and adults performed similarly to controls. These data indicate that M. mitochondrii represents an integral component of tick ovarian tissue, and when absent, results in the formation of substandard larvae with reduced capacity to blood-feed.


Asunto(s)
Ixodes , Animales , Femenino , Ixodes/microbiología , Tetraciclina , Antibacterianos , Mitocondrias , Simbiosis
19.
Parasitol Int ; 87: 102497, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34748969

RESUMEN

Malaria elimination means cessation of parasite transmission. At present, the declining malaria incidence in many countries has made elimination a feasible goal. Transmission control has thus been placed at the center of the national malaria control programs. The efficient transmission of Plasmodium vivax from humans to mosquitoes is a key factor that helps perpetuate malaria in endemic areas. A better understanding of transmission is crucial to the success of elimination efforts. Biological delineation of the parasite transmission process is important for identifying and prioritizing new targets of intervention. Identification of the infectious parasite reservoir in the community is key to devising an effective elimination strategy. Here we describe the fundamental characteristics of P. vivax gametocytes - the dynamics of their production, longevity, and the relationship with the total parasitemia - as well as recent advances in the molecular understanding of parasite sexual development. In relation to malaria elimination, factors influencing the human infectivity and the current evidence for a role of asymptomatic carriers in transmission are presented.


Asunto(s)
Malaria Vivax/transmisión , Plasmodium vivax/fisiología , Animales , Anopheles/parasitología , Femenino , Humanos , Malaria Vivax/inmunología , Malaria Vivax/parasitología , Masculino , Mosquitos Vectores/parasitología , Parasitemia/parasitología , Parasitemia/transmisión
20.
Methods Mol Biol ; 2410: 581-587, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34914069

RESUMEN

Plasmodium falciparum is the parasite responsible for the disease malaria. In vitro cultivation of mature gametocytes of P. falciparum plays a central role in evaluating and developing the transmission-blocking drugs and sexual stage vaccines. These types of preventive molecules are crucial for controlling malaria in the future. Among different Plasmodium species that are involved in human malaria, only P. falciparum is cultivable. Therefore, an efficient method is required for in vitro culture of P. falciparum producing mature and infective gametocytes. This chapter describes a reliable and efficient protocol for the production of adult and infective gametocytes that is suitable for small- and large-scale culture.


Asunto(s)
Anopheles , Malaria Falciparum , Plasmodium falciparum , Animales , Bioensayo , Humanos , Malaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA