Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Infect Dis ; : 107225, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197743

RESUMEN

BACKGROUND: Spondylitis is a spinal infection which has been increasing in susceptible populations globally. This disease is caused by various microorganisms. Fungal spondylitis is rare in clinical practice and is strongly associated with immunosuppression and diabetes. Here, we report a case of suspected ca Melampsora spondylitis. CASE PRESENTATION: A patient was suspected with Melampsora spondylitis at the L3-S1 level. The patient received two surgical operations and antifungal treatments. The Next-generation sequencing (NGS) analysis of the tissue specimen obtained during the two surgical procedures confirmed the diagnosis of Melampsora spondylitis. The patient was successfully treated with voriconazole, vancomycin, and meropenem following surgical debridement with pedicle screw internal fixation. CONCLUSION: The diagnosis of fungal spondylitis is often delayed or missed. Physicians should consider fungal spondylitis in the differential diagnosis of neck pain to facilitate early treatment and prevent spinal cord injury and disability. Although fungal infections often occur in immunocompromised patients, fungal spondylitis has also been reported in immunocompetent patients in recent years. In addition, Candida albicans is usually considered a common bacterium in fungal spondylitis. This case underscores the need to develop more advanced diagnostic and therapeutic techniques to identify the pathogenic bacteria associated with fungal spondylitis besides Candida albicans.

2.
J Exp Bot ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836523

RESUMEN

DNA methylation is environment-sensitive and can mediate stress responses. In long-lived trees, changing environments might cumulatively shape the methylome landscape over their lifetime. However, because high-resolution methylome studies usually focus on single environmental cues, it remains unclear to what extent the methylation responses are generic or stress-specific, and how this relates to their long-term stability. Here, we studied the methylome plasticity of a Populus nigra cv. 'Italica' clone that is widespread across Europe. Adult trees from a variety of geographic locations were clonally propagated in a common garden experiment, and the ramets were exposed to cold, heat, drought, herbivory, rust infection, and salicylic acid treatments. Through comprehensive whole-genome bisulfite sequencing, we analyzed stress-induced and naturally occurring DNA methylation variants. Stress-induced methylation changes predominantly targeted transposable elements. When occurring in CG/CHG contexts, the same regions were often affected by multiple stresses, suggesting a generic response of the methylome. Drought stress caused a distinct CHH hypermethylation response in transposable elements, affecting entire TE superfamilies near drought-responsive genes. Methylation differences in CG/CHG contexts that were induced by stress treatments showed striking overlap with methylation differences observed between trees from distinct geographical locations. Thus, we revealed genomic hotspots of methylation change that are not stress-specific and that contribute to natural DNA methylation variation, and we identified specific transposable element superfamilies that respond to a specific stress with possible functional consequences. Our results underscore the importance of studying the effects of multiple stressors in a single experiment for recognizing general versus stress-specific methylome responses.

3.
Gene ; 920: 148506, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38670390

RESUMEN

The acquisition of nutrients from host plants by phytopathogenic fungi is critically important for their invasion success. Melampsora larici-populina, an obligate biotrophic pathogenic fungus, causes the poplar leaf rust disease and can severely damage host poplar plants. Previously, we found that oligopeptide transporters (OPTs) have undergone a convergent expansion, which might reflect adaptation to a phytoparasitic lifestyle. Here, we used various methods to evaluate this hypothesis, including conserved motif identification, positive selection signal mining, expression pattern clustering analysis, and neutral selection tests. The motif composition of the five clades in the OPT family differed, and positive selection was observed during clade differentiation. This suggests that OPTs in these five clades may be functionally differentiated, which would increase the range of transported substrates and promote the absorption of more types of nitrogen compounds from the hosts. According to clustering analysis of gene expression patterns, the expression of most genes from the two expanded clades (clade 2 and 4) was up-regulated during the infection of poplar trees, indicating that the expansion of OPTs likely occurred to promote the uptake of oligopeptides from host poplar plants. The MellpOPT4g gene was determined to be under significant balancing selection based on the neutral selection tests, suggesting that it plays a role in the pathogenic process. In conclusion, these three observations provide preliminary evidence supporting our hypothesis, as they indicate that the expansion of OPTs in M. larici-populina has aided the ability of this pathogen to acquire nutrients from host plants.


Asunto(s)
Basidiomycota , Proteínas Fúngicas , Oligopéptidos , Enfermedades de las Plantas , Populus , Populus/genética , Populus/parasitología , Populus/microbiología , Oligopéptidos/metabolismo , Oligopéptidos/genética , Basidiomycota/genética , Basidiomycota/patogenicidad , Basidiomycota/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Filogenia , Adaptación Fisiológica/genética , Regulación Fúngica de la Expresión Génica , Selección Genética
4.
Ecol Evol ; 13(10): e10579, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37881228

RESUMEN

Variation in fitness components can be linked in some cases to variation in key traits. Metric traits that lie at the intersection of development, defense, and ecological interactions may be expected to experience environmental selection, informing our understanding of evolutionary and ecological processes. Here, we use quantitative genetic and population genomic methods to investigate disease dynamics in hybrid and non-hybrid populations. We focus our investigation on morphological and ecophysiological traits which inform our understanding of physiology, growth, and defense against a pathogen. In particular, we investigate stomata, microscopic pores on the surface of a leaf that regulate gas exchange during photosynthesis and are sites of entry for various plant pathogens. Stomatal patterning traits were highly predictive of disease risk. Admixture mapping identified a polygenic basis of disease resistance. Candidate genes for stomatal and disease resistance map to the same genomic regions and experienced positive selection. Genes with functions to guard cell homeostasis, the plant immune system, components of constitutive defenses, and growth-related transcription factors were identified. Our results indicate positive selection acted on candidate genes for stomatal patterning and disease resistance, potentially acting in concert to structure their variation in naturally formed backcrossing hybrid populations.

5.
Plant Dis ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580888

RESUMEN

Hypericum przewalskii (Hypericum) is a resurgent herb. Hypericin extracted from the same genus, exhibits significant clinical effects and high medicinal value. It has been used in treating AIDS and other medical fields (Song et al., 2005). The plant possesses high ornamental value, strong ecological adaptability, and is a wildflower resource worthy of promotion (Guan et al., 2002; Tan and Zhou, 2014). In August 2022, rust disease caused by a Melampsora species was observed on the leaves of H. przewalskii near the Xianmi Forest Farm in Menyuan, Qinghai Province. Roughly 12% of observed plants were infected. Specimens were examined under a microscope and compared with type specimen descriptions in published literature. Uredinia were found on the undersides of leaves,, scattered, pulverulent, and elliptical, measuring 0.21-0.45mm in length, orange when fresh, yellowing with age, surrounded by the ruptured epidermis mixed with numerous capitate paraphyses. Urediniospores were globose to ellipsoid, containing yellowish, 15.37-20.01×12.73-18.77 µm (mean 17.7-15.8 µm), echinulate, cell walls around 3.6µm. Telial hypophyllous, scattered or aggregated in small irregular groups, subepidermal, 0.3-0.5 mm diam., chestnut-brown when fresh, black with age, teliospores were cylindrical or rod-shaped, colorless to pale yellow, and measured 20.4-31.45×5.76-12.31 µm (mean 25.9-9.1 µm), cell walls around 3.3µm, thick and ranged in color from deep yellow-brown to light brown. A voucher specimen (accession No. QHU194) was deposited in the Department of Agriculture and Animal Husbandry at Qinghai University. DNA was extracted using the CTAB method. PCR amplifications were performed for the internal transcribed spacer (ITS) and large subunit (LSU) rDNA, using specific primer pairs ITS4/ITS5 (Chen 2007) rust and universal primers NL1/NL4 (Liu et al. 2011), respectively. The resulting sequences were assembled and deposited in GenBank (accession nos. OQ676524, OQ678007). Phylogenetic relationships also indicated a high homology between the obtained ITS and LSU sequence was highly homologous to Melampsora sp. (KU641030) and M. gelmii (GU058014). These results further confirmed that the rust fungus collected in Qinghai belongs to Melampsora genus. Based on the morphological characteristics and sequences data, these isolates were identified as M. kusanoi, previously reported on H. gramineum in New Zealand (Dietel P. 1905). Pathogenicity was demonstrated by spraying 5 ml of a suspension of urediniospores (1×104 spores/ml) recovered from infected leaves onto leaves of 10 healthy H. przewalskii, and 10 noninoculated plants served as controls. All plants were maintained in darkness at temperatures of 20 to 25℃ for 2 days and then transferred to a greenhouse at 23℃ and 80% relative humidity, receiving 16 hours of light each day. All the inoculated plants developed characteristic disease symptoms within 8-10 days, the control plants remained symptomless. In this study, the urediospores wall of M. kusanoi was found to be thicker than that reported by Dietel, and we suspect that this may be due to the Qinghai-Tibet Plateau's unique geographical environment. To our knowledge, this is the first report of rust disease on H. przewalskii caused by M. kusanoi in China. Although the severity of disease caused by M. kusanoi in Qinghai is currently minimal, delving into its epidemiology and management in the future is imperative.

6.
Plant J ; 114(6): 1209-1226, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37323061

RESUMEN

Protein-protein interactions (PPIs) are a fundamental process in cellular biogenesis. Here we have developed a split GAL4 RUBY assay that enables macroscopically visual PPI detection in plant leaves in real time. Candidate interacting protein partners are fused to specific domains of the yeast GAL4 and herpes simplex virus VP16 transcription factors and transiently expressed in Nicotiana benthamina leaves by Agrobacterium infiltration. PPI, that may be either direct or indirect, results in transcriptional activation of a RUBY reporter gene leading to the production of the highly visual metabolite, betalain, in leaf tissue of living plants. Samples require no processing for in planta visual qualitative assessment, but with very simple processing steps the assay is quantitative. Its accuracy is demonstrated using a series of known interacting protein partners and mutant derivatives including transcription factors, signalling molecules and plant resistance proteins with cognate pathogen effectors. Using this assay, association between the wheat Sr27 stem rust disease resistance protein and corresponding AvrSr27 avirulence effector family produced by the rust pathogen is detected. Interaction is also observed between this resistance protein and the effector encoded by the corresponding avrSr27-3 virulence allele. However, this association appears weaker in the split GAL4 RUBY assay, which coupled with lower avrSr27-3 expression during stem rust infection, likely enables virulent races of the rust pathogen to avoid Sr27-mediated detection.


Asunto(s)
Basidiomycota , Basidiomycota/genética , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo , Factores de Transcripción/genética , Enfermedades de las Plantas/microbiología
7.
3 Biotech ; 13(6): 213, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37251733

RESUMEN

Melampsora medusae f. sp. deltoidae is causing serious foliar rust disease on Populus deltoides clones in India. In the present study, a novel fungal hyperparasite on M. medusae has been reported. The hyperparasitic fungus was isolated from the uredeniospores of the rust fungi and identified as Cladosporium oxysporum by morphological characterization and DNA barcode technique based on the Internal Transcribed Spacer (ITS) region of nrDNA and beta-tubulin (TUB) gene region. Hyperparasitism was further confirmed through leaf assay and cavity slide methods. Leaf assay method showed no adverse effect of C. oxysporum on poplar leaves. However, the mean germination percentage of urediniospores was significantly decreased (p < 0.05) in the cavity slide method when a conidial suspension (1.5 × 107 conidia per ml) of C. oxysporum was applied in different deposition sequences. Scanning and light microscopic observations were made to explore the mode of action of the hyperparasitism. The antagonistic fungus vividly showed three different types of antagonism mechanisms, including enzymatic, direct, and contact parasitism. Alternatively, by screening 25 high-yielding clones of P. deltoides, five clones (FRI-FS-83, FRI-FS-92, FRI-FS-140, FRI-AM-111, and D-121) were enlisted under highly resistant category. Present study revealed an antagonistic relationship between C. oxysporum and M. medusae, which could be an effective method of biocontrol in field plantations of poplar. Combining this biocontrol approach with the use of resistant host germplasm could be an environment friendly strategy for preventing foliar rust and increasing poplar productivity in northern India. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03623-x.

8.
Front Plant Sci ; 14: 1111001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890907

RESUMEN

Forests are at increasing risk from pathogen outbreak. Climate change for example enhance the risk of local disease outbreaks, and naturalization of exotic pathogens may follow human activities, warranting robust pest surveillance routines to support forest management. Melampsora pinitorqua (pine twisting rust) is of concern in Swedish forestry, and here we evaluate the use of visible rust scores (VRS) on its obligate summer host, European aspen (Populus tremula) as a tool for quantification of the pathogen. With use of species-specific primers, we could detect the native rust, but we failed to detect two exotic rusts (M. medusae and M. larici-populina). We found that aspen genotype determined the presence of fungal genetic markers (amplifying the ITS2 region of the fungal rDNA sequence) as well as DNA sequences specific to M. pinitorqua. We correlated VRS with the amount of fungal DNA in the same leaf, and we related the findings to aspen genotype-specific parameters such as the ability to synthesize and store leaf condensed tannins (CT). At the genotype level both positive and negative relationships were observed between CTs, fungal markers, and rust infestations. However, at the population level, foliar CT concentrations correlated negatively with general fungal- and rust-specific marker abundances. Our results, therefore, do not support the use of VRS to assess Melampsora infestation in Aspen. They do, however, suggest that the relationship between European aspen and rust infestation may be characterized as autochthonous in northern Sweden.

9.
New Phytol ; 239(1): 222-239, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36631975

RESUMEN

To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.


Asunto(s)
Basidiomycota , ARN Mensajero/genética , ARN Mensajero/metabolismo , Basidiomycota/genética , Hongos/genética , Pirofosfatasas/metabolismo , Virulencia/genética , Enfermedades de las Plantas/microbiología , Hidrolasas Nudix
10.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361849

RESUMEN

Melampsora larici-populina (Mlp), M. medusae (Mmed), M. magnusiana (Mmag), and M. pruinosae (Mpr) are epidemic rust fungi in China. The first two are macrocyclic rust fungi distributed in temperate humid environments. The latter two are hemicyclic rusts, mainly distributed in arid and semi-arid areas. Ontogenetic variation that comes with this arid-resistance is of great interest-and may help us predict the influence of a warmer, drier, climate on fungal phylogeny. To compare the differences in the life history and ontogeny between the two types of rust, we cloned mating type genes, STE3.4 and STE3.3 using RACE-smart technology. Protein structures, functions, and mutant loci were compared across each species. We also used microscopy to compare visible cytological differences at each life stage for the fungal species, looking for variation in structure and developmental timing. Quantitative PCR technology was used to check the expression of nuclear fusion and division genes downstream of STE3.3 and STE3.4. Encoding amino acids of STE3.3 and STE3.4 in hemicyclic rusts are shorter than these in the macrocyclic rusts. Both STE3.3 and STE3.4 interact with a protein kinase superfamily member EGG12818 and an E3 ubiquitin protein ligase EGG09709 directly, and activating G-beta conformational changes. The mutation at site 74th amino acid in the conserved transmembrane domain of STE3.3 ascribes to a positive selection, in which alanine (Ala) is changed to phenylalanine (Phe) in hemicyclic rusts, and a mutation with Tyr lost at site 387th in STE3.4, where it is the binding site for ß-D-Glucan. These mutants are speculated corresponding to the insensitivity of hemicyclic rust pheromone receptors to interact with MFa pheromones, and lead to Mnd1 unexpressed in teliospora, and they result in the diploid nuclei division failure and the sexual stage missing in the life cycle. A Phylogenic tree based on STE3.4 gene suggests these two rust types diverged about 14.36 million years ago. Although these rusts share a similar uredia and telia stage, they show markedly different wintering strategies. Hemicyclic rusts overwinter in the poplar buds endophytically, their urediniospores developing thicker cell walls. They form haustoria with a collar-like extrahaustorial membrane neck and induce host thickened callose cell walls, all ontogenetic adaptations to arid environments.


Asunto(s)
Basidiomycota , Populus , Basidiomycota/genética , Populus/genética , Populus/microbiología , Filogenia , Feromonas , China , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
11.
Plants (Basel) ; 11(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36145786

RESUMEN

Melampsora rust is a devastating disease of shrub willow in North America. Previous work has identified Melampsora paradoxa as one of two identified rust species in New York State that infect Salix purpurea and other important Salix host species, however little is known about the population of this rust species in this region. Genotyping-by-sequencing was used to identify single nucleotide polymorphisms (SNPs) and assess population diversity of M. paradoxa isolates collected from three Salix breeding populations in Geneva, NY between 2015 and 2020. Statistical analyses of SNP revealed that all isolates collected were clonally derived even though they were collected across years. In 2020, isolates were collected from stem infections where uredospore pustules were observed, and these isolates were also identical to M. paradoxa collected in previous seasons. These data suggest that M. paradoxa sampled across multiple years overwintered and reproduced asexually and that stem infection is a possible mechanism for overwintering, both of which are novel findings for this rust species. Additionally, field disease ratings were conducted on a S. purpurea × S. suchowensis F1 breeding population with high disease severity, enabling the discovery of QTL for resistance on chromosomes 1 and 19. Lastly, Colletotrichum salicis was frequently associated with stem rust and may play a role in M. paradoxa stem infection. Together, this work is the first substantial exploration into M. paradoxa population biology, stem infection, and host resistance in Salix.

12.
J Fungi (Basel) ; 8(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35628778

RESUMEN

Tropospheric ozone and nitrogen deposition are two major environmental pollutants. A great deal of research has focused on the negative impacts of elevated O3 and the complementary effect of soil N addition on the physiological properties of trees. However, it has been overlooked how elevated O3 and N addition affect tree immunity in face of pathogen infection, as well as of the important roles of phyllosphere microbiome community in host-pathogen-environment interplay. Here, we examined the effects of elevated O3 and soil N addition on poplar leaf rust [Melampsora larici-populina] severity of two susceptible hybrid poplars [clone '107': Populus euramericana cv. '74/76'; clone '546': P. deltoides Í P. cathayana] in Free-Air-Controlled-Environment plots, in addition, the link between Mlp-susceptibility and changes in microbial community was determined using Miseq amplicon sequencing. Rust severity of clone '107' significantly increased under elevated O3 or N addition only; however, the negative impact of elevated O3 could be significantly mitigated when accompanied by N addition, likewise, this trade-off was reflected in its phyllosphere microbial α-diversity responding to elevated O3 and N addition. However, rust severity of clone '546' did not differ significantly in the cases of elevated O3 and N addition. Mlp infection altered microbial community composition and increased its sensitivity to elevated O3, as determined by the markedly different abundance of taxa. Elevated O3 and N addition reduced the complexity of microbial community, which may explain the increased severity of poplar rust. These findings suggest that poplars require a changing phyllosphere microbial associations to optimize plant immunity in response to environmental changes.

13.
Fungal Genet Biol ; 161: 103698, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483517

RESUMEN

Fungi of the order Pucciniales are obligate plant biotrophs causing rust diseases. They exhibit a complex life cycle with the production of up to five spore types, infection of two unrelated hosts and an overwintering stage. Transcription factors (TFs) are key regulators of gene expression in eukaryote cells. In order to better understand genetic programs expressed during major transitions of the rust life cycle, we surveyed the complement of TFs in fungal genomes with an emphasis on Pucciniales. We found that despite their large gene numbers, rust genomes have a reduced repertoire of TFs compared to other fungi. The proportions of C2H2 and Zinc cluster - two of the most represented TF families in fungi - indicate differences in their evolutionary relationships in Pucciniales and other fungal taxa. The regulatory gene family encoding cold shock protein (CSP) showed a striking expansion in Pucciniomycotina with specific duplications in the order Pucciniales. The survey of expression profiles collected by transcriptomics along the life cycle of the poplar rust fungus revealed TF genes related to major biological transitions, e.g. response to environmental cues and host infection. Particularly, poplar rust CSPs were strongly expressed in basidia produced after the overwintering stage suggesting a possible role in dormancy exit. Expression during transition from dormant telia to basidia confirmed the specific expression of the three poplar rust CSP genes. Their heterologous expression in yeast improved cell growth after cold stress exposure, suggesting a probable regulatory function when the poplar rust fungus exits dormancy. This study addresses for the first time TF and regulatory genes involved in developmental transition in the rust life cycle opening perspectives to further explore molecular regulation in the biology of the Pucciniales.


Asunto(s)
Basidiomycota , Populus , Animales , Basidiomycota/genética , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Estadios del Ciclo de Vida , Enfermedades de las Plantas/microbiología , Populus/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
14.
Mol Ecol ; 31(10): 3018-3030, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35313045

RESUMEN

Closely related species are expected to have similar functional traits due to shared ancestry and phylogenetic inertia. However, few tests of this hypothesis are available for plant-associated fungal symbionts. Fungal leaf endophytes occur in all land plants and can protect their host plant from disease by a variety of mechanisms, including by parasitizing pathogens (e.g., mycoparasitism). Here, we tested whether phylogenetic relatedness among species of Cladosporium, a widespread genus that includes mycoparasitic species, predicts the effect of this endophyte on the severity of leaf rust disease. First, we used congruence among different marker sequences (i.e., genealogical concordance phylogenetic species recognition criterion) to delimit species of Cladosporium. Next, in a controlled experiment, we quantified both mycoparasitism and disease modification for the selected Cladosporium species. We identified 17 species of Cladosporium; all the species reduced rust disease severity in our experiment. Cladosporium phylogeny was a significant predictor of mycoparasitism. However, we did not observe a phylogenetic effect on disease severity overall, indicating that other mechanism/s operating independently of shared ancestry also contributed to endophyte effects on disease severity. Indeed, a second experiment showed that Cladosporium endophyte exudates (no live organism) from divergent species groups equally reduced disease severity. Our results reveal that multiple mechanisms contribute to the protective effects of an endophyte against a plant pathogen, but not all traits underlying these mechanisms are phylogenetically conserved.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Basidiomycota/genética , Cladosporium/genética , Endófitos , Hongos , Filogenia , Enfermedades de las Plantas/microbiología , Plantas/microbiología
15.
BMC Genomics ; 23(1): 71, 2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35065596

RESUMEN

BACKGROUND: Melampsora spp. rusts are the greatest pathogen threat to shrub willow (Salix spp.) bioenergy crops. Genetic resistance is key to limit the effects of these foliar diseases on host response and biomass yield, however, the genetic basis of host resistance has not been characterized. The addition of new genomic resources for Salix provides greater power to investigate the interaction between S. purpurea and M. americana, species commonly found in the Northeast US. Here, we utilize 3' RNA-seq to investigate host-pathogen interactions following controlled inoculations of M. americana on resistant and susceptible F2 S. purpurea genotypes identified in a recent QTL mapping study. Differential gene expression, network analysis, and eQTL mapping were used to contrast the response to inoculation and to identify associated candidate genes. RESULTS: Controlled inoculation in a replicated greenhouse study identified 19 and 105 differentially expressed genes between resistant and susceptible genotypes at 42 and 66 HPI, respectively. Defense response gene networks were activated in both resistant and susceptible genotypes and enriched for many of the same defense response genes, yet the hub genes of these common response modules showed greater mean expression among the resistant plants. Further, eight and six eQTL hotspots were identified at 42 and 66 HPI, respectively. The combined results of three analyses highlight 124 candidate genes in the host for further analysis while analysis of pathogen RNA showed differential expression of 22 genes, two of which are candidate pathogen effectors. CONCLUSIONS: We identified two differentially expressed M. americana transcripts and 124 S. purpurea genes that are good candidates for future studies to confirm their role in conferring resistance.


Asunto(s)
Basidiomycota , Salix , Basidiomycota/genética , Mapeo Cromosómico , Enfermedades de las Plantas/genética , Salix/genética , Transcriptoma
16.
Phytopathology ; 112(4): 907-916, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34579556

RESUMEN

Shrub willows (Salix spp.) are emerging as a viable lignocellulosic, second-generation bioenergy crop with many growth characteristics favorable for marginal lands in New York State and surrounding areas. Willow rust, caused by members of the genus Melampsora, is the most limiting disease of shrub willow in this region and remains extremely understudied. In this study, genetic diversity, genetic structure, and pathogen clonality were examined in Melampsora americana over two growing seasons via genotyping-by-sequencing to identify single-nucleotide polymorphism markers. In conjunction with this project, a reference genome of rust isolate R15-033-03 was generated to aid in variant discovery. Sampling between years allowed regional and site-specific investigation into population dynamics, in the context of both wild and cultivated hosts within high-density plantings. This work revealed that this pathogen is largely panmictic over the sampled areas, with few sites showing moderate genetic differentiation. These data support the hypothesis of sexual recombination between growing seasons because no genotype persisted across the two years of sampling. Additionally, clonality was determined as a driver of pathogen populations within cultivated fields and single shrubs; however, there is also evidence of high genetic diversity of rust isolates in all settings. This work provides a framework for M. americana population structure in the Great Lakes region, providing crucial information that can aid in future resistance breeding efforts.


Asunto(s)
Basidiomycota , Salix , Basidiomycota/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Salix/genética
17.
Am J Bot ; 108(8): 1374-1387, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406658

RESUMEN

PREMISE: The evolution of sex chromosomes is driven by sexual dimorphism, yet it can be challenging to document sexually dimorphic traits in dioecious plant species. At the genetic level, sexual dimorphism can be identified through sequence variation between females and males associated with sexually antagonistic traits and different fitness optima. This study aims to examine sexual dimorphism for 26 traits in three populations of Salix purpurea (a diversity panel and F1 and F2 populations) and determine the effect of the traits on biomass yield, a key trait in Salix bioenergy crops across multiple years, locations, and under manipulated growth conditions. METHODS: Sexual dimorphism was evaluated for morphological, phenological, physiological, and wood composition traits in a diversity panel of unrelated S. purpurea accessions and in full-sib F1 and F2 families produced through controlled cross pollinations and grown in replicated field trials. RESULTS: We observed sexual dimorphism in the timing of development for several traits that were highly predictive of biomass yield across three populations of S. purpurea. Across all populations and years surveyed, males had significantly shallower branching angle. Male plants highly predictive of biomass yield across three populations of S. purpurea also accumulated more nitrogen under fertilizer amendment as measured by SPAD in the diversity panel and had greater susceptibility to the rust fungus Melampsora americana in the F2 family. Allometric modelling of biomass yield showed an effect of sex and of location on the interaction between yield and stem height. CONCLUSIONS: These results provide evidence of sexual dimorphism for certain traits in S. purpurea that may be involved in sex chromosome evolution.


Asunto(s)
Basidiomycota , Salix , Basidiomycota/genética , Salix/genética , Caracteres Sexuales , Cromosomas Sexuales
18.
Microorganisms ; 9(6)2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204123

RESUMEN

Melampsora larici-populina (Mlp) is a devastating pathogen of poplar trees, causing the defoliating poplar leaf rust disease. Genomic studies have revealed that Mlp possesses a repertoire of 1184 small secreted proteins (SSPs), some of them being characterized as candidate effectors. However, how they promote virulence is still unclear. This study investigates the candidate effector Mlp37347's role during infection. We developed a stable Arabidopsis transgenic line expressing Mlp37347 tagged with the green fluorescent protein (GFP). We found that the effector accumulated exclusively at plasmodesmata (PD). Moreover, the presence of the effector at plasmodesmata favors enhanced plasmodesmatal flux and reduced callose deposition. Transcriptome profiling and a gene ontology (GO) analysis of transgenic Arabidopsis plants expressing the effector revealed that the genes involved in glucan catabolic processes are up-regulated. This effector has previously been shown to interact with glutamate decarboxylase 1 (GAD1), and in silico docking analysis supported the strong binding between Mlp37347 and GAD1 in this study. In infection assays, the effector promoted Hyalonoperospora arabidopsidis growth but not bacterial growth. Our investigation suggests that the effector Mlp37347 targets PD in host cells and promotes parasitic growth.

19.
Front Microbiol ; 12: 650902, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248868

RESUMEN

Melampsora larici-populina is a macrocyclic rust, and the haploid stage with two nuclei and the diploid of mononuclear sequentially occur annually. During the preservation of dry urediniospores at -80°C, we found that one isolate, ΔTs06, was different from the usual wild-type isolate Ts06 at -20°C because it has mixed polykaryotic urediniospores. However, the other spores, including the 0, I, III, and IV stages of a life cycle, were the same as Ts06. After five generations of successive inoculation and harvest of urediniospores from the compatible host Populus purdomii, the isolate ΔTs06 steadily maintained more than 20% multiple nucleus spores. To test the pathogenesis variation of ΔTs06, an assay of host poplars was applied to evaluate the differences between ΔTs06 and Ts06. After ΔTs06 and Ts06 inoculation, leaves of P. purdomii were used to detect the expression of small secreted proteins (SSPs) and fungal biomasses using quantitative real-time PCR (qRT-PCR) and trypan blue staining. ΔTs06 displayed stronger expression of five SSPs and had a shorter latent period, a higher density of uredinia, and higher DNA mass. A transcriptomic comparison between ΔTs06 and Ts06 revealed that 3,224 were differentially expressed genes (DEGs), 55 of which were related to reactive oxygen species metabolism, the Mitogen-activated protein kinase (MAPK) signaling pathway, and the meiosis pathway. Ten genes in the mitotic and meiotic pathways and another two genes associated with the "response to DNA damage stimulus" all had an upward expression, which were detected by qRT-PCR in ΔTs06 during cryopreservation. Gas chromatography-mass spectrometry (GC-MS) confirmed that the amounts of hexadecanoic acid and octadecadienoic acid were much more in ΔTs06 than in Ts06. In addition, using spectrophotometry, hydrogen peroxide (H2O2) was also present in greater quantities in ΔTs06 compared with those found in Ts06. Increased fatty acids metabolism could prevent damage to urediniospores in super-low temperatures, but oxidant species that involved H2O2 may destroy tube proteins of mitosis and meiosis, which could cause abnormal nuclear division and lead to multinucleation, which has a different genotype. Therefore, the multinuclear isolate is different from the wild-type isolate in terms of phenotype and genotype; this multinucleation phenomenon in urediniospores improves the pathogenesis and environmental fitness of M. larici-populina.

20.
Plant Dis ; 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34232054

RESUMEN

Corydalis acuminata Franch., C. edulis Maxim. and C. racemosa (Thunb.) Pers. of family Papaveraceae are rich in multiple alkaloids and widely used as Chinese medicinal herbs, for treating cough, pruritus, sores tinea and snake venom (Zhang et al. 2008, Iranshahy et al. 2014). In April 2021, orange rust pustules were observed on C. acuminata, C. edulis and C. racemosa in Shaanxi Province (34°4'56'' N, 108°2'9'' E, alt. 770 m), China. Samples were collected and voucher specimens were preserved in the Herbarium Mycologicum Academiae Sinicae (nos. HMAS249947-HMAS249949), China. Consequent geospatial investigations revealed that diseased plants can be observed at an altitude of 400-1000 m, and show an incidence from 40% to 80% varied by altitude. Spermogonia epiphyllous, subcuticular, densely grouped, oval or round, 0.14-0.36 × 0.09-0.30 mm, pale orange-yellow, and type 3 of Cummins and Hiratsuka (1963). Aecia mostly hypophyllous, subepidermal without peridia, Caeoma-type, erumpent, densely grouped, oval or round, 0.27-0.85 × 0.15-0.43 mm, and orange-yellow; hyaline peridial cells produced in a periphery of the sorus under the ruptured epidermis of host plants. Aeciospores globoid or broadly ellipsoid, catenulate with intercalary cells, 15.7-20.1 × 10.8-15.7 µm, yellow to pale orange; walls hyaline, verrucose, 1.7-3.1 µm thick. This fungus was morphologically identified as Melampsora (Melampsoraceae). The rDNA-28S and the internal transcribed spacer (ITS) regions were amplified using primers NL1/NL4 and ITS1/ITS4 (Ji et al. 2020; Wang et al. 2020). Bi-directional sequences were assembled and deposited in GenBank (accession nos. MW990091-MW990093 and MW996576-MW996578). Phylogenetic trees were constructed with the ITS+rDNA-28S dataset based on maximum-likelihood (ML), maximum-parsimony (MP) and Bayesian Inference (BI). ML and MP bootstrap values were calculated by bootstrap analyses of 1,000 replicates using MEGA-X (Kumar et al. 2018), while BI posterior probabilities (Bpps) were calculated using MrBayes ver. 3.1.2 (Ji et al. 2020; Wang et al. 2020). Phylogenetic analyses grouped our specimens and Melampsora ferrinii Toome & Aime into one clade, highly supported by bootstrap values of ML, MP, and Bpps of 100%/100%/1. Inoculations were conducted with 1-year-old plants of original host, Salix babylonica L. (Toome & Aime 2015). Aeciospores suspension with a concentration of 106 spores/ml were sprayed on 20 healthy leaves, with another 20 healthy leaves sprayed with sterile water as the control. The inoculated plants were kept in darkness at 20-25 °C for 2 days and then transferred into greenhouse at 23°C with 16 h light per day. After 8-10 days of inoculation, yellow pustules of uredinia appeared on abaxial surfaces of the inoculated leaves, which were identical to Toome & Aime (2015) reported, while the control leaves remained healthy. Inoculations with the same method were conducted by spraying urediniospores, and the same rust symptoms developed after 8 days. Genus Corydalis was verified as the alternate host of M. chelidonii-pierotii Tak. Matsumoto, M. coleosporioides Dietel, M. idesiae Miyabe and M. yezoensis Miyabe & T. Matsumoto (Shinyama & Yamaoka 2012; Okane et al. 2014; Yamaoka & Okane 2019), and C. incisa (Thunb.) Pers. was speculated as the potential alternate host of M. ferrinii (Toome & Aime 2015). Based on morphology, phylogeny and pathogenicity, we firstly report M. ferrinii in mainland China and verify C. acuminata, C. edulis and C. racemosa instead of C. incisa as its alternate hosts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA