Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Med Inform Decis Mak ; 24(Suppl 4): 203, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044277

RESUMEN

BACKGROUND: The frequency of hip and knee arthroplasty surgeries has been rising steadily in recent decades. This trend is attributed to an aging population, leading to increased demands on healthcare systems. Fast Track (FT) surgical protocols, perioperative procedures designed to expedite patient recovery and early mobilization, have demonstrated efficacy in reducing hospital stays, convalescence periods, and associated costs. However, the criteria for selecting patients for FT procedures have not fully capitalized on the available patient data, including patient-reported outcome measures (PROMs). METHODS: Our study focused on developing machine learning (ML) models to support decision making in assigning patients to FT procedures, utilizing data from patients' self-reported health status. These models are specifically designed to predict the potential health status improvement in patients initially selected for FT. Our approach focused on techniques inspired by the concept of controllable AI. This includes eXplainable AI (XAI), which aims to make the model's recommendations comprehensible to clinicians, and cautious prediction, a method used to alert clinicians about potential control losses, thereby enhancing the models' trustworthiness and reliability. RESULTS: Our models were trained and tested using a dataset comprising 899 records from individual patients admitted to the FT program at IRCCS Ospedale Galeazzi-Sant'Ambrogio. After training and selecting hyper-parameters, the models were assessed using a separate internal test set. The interpretable models demonstrated performance on par or even better than the most effective 'black-box' model (Random Forest). These models achieved sensitivity, specificity, and positive predictive value (PPV) exceeding 70%, with an area under the curve (AUC) greater than 80%. The cautious prediction models exhibited enhanced performance while maintaining satisfactory coverage (over 50%). Further, when externally validated on a separate cohort from the same hospital-comprising patients from a subsequent time period-the models showed no pragmatically notable decline in performance. CONCLUSIONS: Our results demonstrate the effectiveness of utilizing PROMs as basis to develop ML models for planning assignments to FT procedures. Notably, the application of controllable AI techniques, particularly those based on XAI and cautious prediction, emerges as a promising approach. These techniques provide reliable and interpretable support, essential for informed decision-making in clinical processes.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Aprendizaje Automático , Medición de Resultados Informados por el Paciente , Humanos , Femenino , Anciano , Masculino , Persona de Mediana Edad , Vías Clínicas
2.
J Med Internet Res ; 26: e50890, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289657

RESUMEN

Machine learning (ML) has seen impressive growth in health science research due to its capacity for handling complex data to perform a range of tasks, including unsupervised learning, supervised learning, and reinforcement learning. To aid health science researchers in understanding the strengths and limitations of ML and to facilitate its integration into their studies, we present here a guideline for integrating ML into an analysis through a structured framework, covering steps from framing a research question to study design and analysis techniques for specialized data types.


Asunto(s)
Aprendizaje Automático , Refuerzo en Psicología , Humanos , Proyectos de Investigación , Investigadores
3.
Int J Med Inform ; 178: 105190, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37603940

RESUMEN

PURPOSE: replicability and generalizability of medical AI are the recognized challenges that hinder a broad AI deployment in clinical practice. Pulmonary nodes detection and characterization based on chest CT images is one of the demanded use cases for automatization by means of AI, and multiple AI solutions addressing this task are becoming available. Here, we evaluated and compared the performance of several commercially available radiological AI with the same clinical task on the same external datasets acquired before and during the pandemic of COVID-19. APPROACH: 5 commercially available AI models for pulmonary nodule detection were tested on two external datasets labelled by experts according to the intended clinical task. Dataset1 was acquired before the pandemic and did not contain radiological signs of COVID-19; dataset2 was collected during the pandemic and did contain radiological signs of COVID-19. ROC-analysis was applied separately for the dataset1 and dataset2 to select probability thresholds for each dataset separately. AUROC, sensitivity and specificity metrics were used to assess and compare the results of AI performance. RESULTS: Statistically significant differences in AUROC values were observed between the AI models for the dataset1. Whereas for the dataset2 the differences of AUROC values became statistically insignificant. Sensitivity and specificity differed statistically significantly between the AI models for the dataset1. This difference was insignificant for the dataset2 when we applied the probability threshold initially selected for the dataset1. An update of the probability threshold based on the dataset2 created statistically significant differences of sensitivity and specificity between AI models for the dataset2. For 3 out of 5 AI models, the update of the probability threshold was valuable to compensate for the degradation of AI model performances with the population shift caused by the pandemic. CONCLUSIONS: Population shift in the data is able to deteriorate differences of AI models performance. Update of the probability threshold together with the population shift seems to be valuable to preserve AI models performance without retraining them.


Asunto(s)
COVID-19 , Radiología , Humanos , Pandemias , COVID-19/diagnóstico por imagen , COVID-19/epidemiología , Radiografía , Tomografía Computarizada por Rayos X
4.
Bioengineering (Basel) ; 10(4)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37106646

RESUMEN

The physical and mental health of people can be enhanced through yoga, an excellent form of exercise. As part of the breathing procedure, yoga involves stretching the body organs. The guidance and monitoring of yoga are crucial to ripe the full benefits of it, as wrong postures possess multiple antagonistic effects, including physical hazards and stroke. The detection and monitoring of the yoga postures are possible with the Intelligent Internet of Things (IIoT), which is the integration of intelligent approaches (machine learning) and the Internet of Things (IoT). Considering the increment in yoga practitioners in recent years, the integration of IIoT and yoga has led to the successful implementation of IIoT-based yoga training systems. This paper provides a comprehensive survey on integrating yoga with IIoT. The paper also discusses the multiple types of yoga and the procedure for the detection of yoga using IIoT. Additionally, this paper highlights various applications of yoga, safety measures, various challenges, and future directions. This survey provides the latest developments and findings on yoga and its integration with IIoT.

5.
JMIR Med Inform ; 10(8): e38440, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35984701

RESUMEN

BACKGROUND: A backdoor attack controls the output of a machine learning model in 2 stages. First, the attacker poisons the training data set, introducing a back door into the victim's trained model. Second, during test time, the attacker adds an imperceptible pattern called a trigger to the input values, which forces the victim's model to output the attacker's intended values instead of true predictions or decisions. While backdoor attacks pose a serious threat to the reliability of machine learning-based medical diagnostics, existing backdoor attacks that directly change the input values are detectable relatively easily. OBJECTIVE: The goal of this study was to propose and study a robust backdoor attack on mortality-prediction machine learning models that use electronic health records. We showed that our backdoor attack grants attackers full control over classification outcomes for safety-critical tasks such as mortality prediction, highlighting the importance of undertaking safe artificial intelligence research in the medical field. METHODS: We present a trigger generation method based on missing patterns in electronic health record data. Compared to existing approaches, which introduce noise into the medical record, the proposed backdoor attack makes it simple to construct backdoor triggers without prior knowledge. To effectively avoid detection by manual inspectors, we employ variational autoencoders to learn the missing patterns in normal electronic health record data and produce trigger data that appears similar to this data. RESULTS: We experimented with the proposed backdoor attack on 4 machine learning models (linear regression, multilayer perceptron, long short-term memory, and gated recurrent units) that predict in-hospital mortality using a public electronic health record data set. The results showed that the proposed technique achieved a significant drop in the victim's discrimination performance (reducing the area under the precision-recall curve by at most 0.45), with a low poisoning rate (2%) in the training data set. In addition, the impact of the attack on general classification performance was negligible (it reduced the area under the precision-recall curve by an average of 0.01025), which makes it difficult to detect the presence of poison. CONCLUSIONS: To the best of our knowledge, this is the first study to propose a backdoor attack that uses missing information from tabular data as a trigger. Through extensive experiments, we demonstrated that our backdoor attack can inflict severe damage on medical machine learning classifiers in practice.

6.
Sensors (Basel) ; 22(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36015915

RESUMEN

Prediabetes and diabetes are becoming alarmingly prevalent among adolescents over the past decade. However, an effective screening tool that can assess diabetes risks smoothly is still in its infancy. In order to contribute to such significant gaps, this research proposes a machine learning-based predictive model to detect adolescent diabetes. The model applies supervised machine learning and a novel feature selection method to the National Health and Nutritional Examination Survey datasets after an exhaustive search to select reliable and accurate data. The best model achieved an area under the curve (AUC) score of 71%. This research proves that a screening tool based on supervised machine learning models can assist in the automated detection of youth diabetes. It also identifies some critical predictors to such detection using Lasso Regression, Random Forest Importance and Gradient Boosted Tree Importance feature selection methods. The most contributing features to Youth diabetes detection are physical characteristics (e.g., waist, leg length, gender), dietary information (e.g., water, protein, sodium) and demographics. These predictors can be further utilised in other areas of medical research, such as electronic medical history.


Asunto(s)
Diabetes Mellitus , Aprendizaje Automático , Adolescente , Área Bajo la Curva , Estudios de Factibilidad , Humanos , Encuestas Nutricionales
7.
JMIR Med Inform ; 10(5): e36388, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35639450

RESUMEN

BACKGROUND: Racial bias is a key concern regarding the development, validation, and implementation of machine learning (ML) models in clinical settings. Despite the potential of bias to propagate health disparities, racial bias in clinical ML has yet to be thoroughly examined and best practices for bias mitigation remain unclear. OBJECTIVE: Our objective was to perform a scoping review to characterize the methods by which the racial bias of ML has been assessed and describe strategies that may be used to enhance algorithmic fairness in clinical ML. METHODS: A scoping review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Extension for Scoping Reviews. A literature search using PubMed, Scopus, and Embase databases, as well as Google Scholar, identified 635 records, of which 12 studies were included. RESULTS: Applications of ML were varied and involved diagnosis, outcome prediction, and clinical score prediction performed on data sets including images, diagnostic studies, clinical text, and clinical variables. Of the 12 studies, 1 (8%) described a model in routine clinical use, 2 (17%) examined prospectively validated clinical models, and the remaining 9 (75%) described internally validated models. In addition, 8 (67%) studies concluded that racial bias was present, 2 (17%) concluded that it was not, and 2 (17%) assessed the implementation of bias mitigation strategies without comparison to a baseline model. Fairness metrics used to assess algorithmic racial bias were inconsistent. The most commonly observed metrics were equal opportunity difference (5/12, 42%), accuracy (4/12, 25%), and disparate impact (2/12, 17%). All 8 (67%) studies that implemented methods for mitigation of racial bias successfully increased fairness, as measured by the authors' chosen metrics. Preprocessing methods of bias mitigation were most commonly used across all studies that implemented them. CONCLUSIONS: The broad scope of medical ML applications and potential patient harms demand an increased emphasis on evaluation and mitigation of racial bias in clinical ML. However, the adoption of algorithmic fairness principles in medicine remains inconsistent and is limited by poor data availability and ML model reporting. We recommend that researchers and journal editors emphasize standardized reporting and data availability in medical ML studies to improve transparency and facilitate evaluation for racial bias.

8.
Comput Methods Programs Biomed ; 208: 106288, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34352688

RESUMEN

Background and Objective Medical machine learning (ML) models tend to perform better on data from the same cohort than on new data, often due to overfitting, or co-variate shifts. For these reasons, external validation (EV) is a necessary practice in the evaluation of medical ML. However, there is still a gap in the literature on how to interpret EV results and hence assess the robustness of ML models. METHODS: We fill this gap by proposing a meta-validation method, to assess the soundness of EV procedures. In doing so, we complement the usual way to assess EV by considering both dataset cardinality, and the similarity of the EV dataset with respect to the training set. We then investigate how the notions of cardinality and similarity can be used to inform on the reliability of a validation procedure, by integrating them into two summative data visualizations. RESULTS: We illustrate our methodology by applying it to the validation of a state-of-the-art COVID-19 diagnostic model on 8 EV sets, collected across 3 different continents. The model performance was moderately impacted by data similarity (Pearson ρ = 0.38, p< 0.001). In the EV, the validated model reported good AUC (average: 0.84), acceptable calibration (average: 0.17) and utility (average: 0.50). The validation datasets were adequate in terms of dataset cardinality and similarity, thus suggesting the soundness of the results. We also provide a qualitative guideline to evaluate the reliability of validation procedures, and we discuss the importance of proper external validation in light of the obtained results. CONCLUSIONS: In this paper, we propose a novel, lean methodology to: 1) study how the similarity between training and validation sets impacts the generalizability of a ML model; 2) assess the soundness of EV evaluations along three complementary performance dimensions: discrimination, utility and calibration; 3) draw conclusions on the robustness of the model under validation. We applied this methodology to a state-of-the-art model for the diagnosis of COVID-19 from routine blood tests, and showed how to interpret the results in light of the presented framework.


Asunto(s)
COVID-19 , Estudios de Cohortes , Humanos , Aprendizaje Automático , Reproducibilidad de los Resultados , SARS-CoV-2
9.
J Law Biosci ; 7(1): lsaa002, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34221415

RESUMEN

Companies and healthcare providers are developing and implementing new applications of medical artificial intelligence, including the artificial intelligence sub-type of medical machine learning (MML). MML is based on the application of machine learning (ML) algorithms to automatically identify patterns and act on medical data to guide clinical decisions. MML poses challenges and raises important questions, including (1) How will regulators evaluate MML-based medical devices to ensure their safety and effectiveness? and (2) What additional MML considerations should be taken into account in the international context? To address these questions, we analyze the current regulatory approaches to MML in the USA and Europe. We then examine international perspectives and broader implications, discussing considerations such as data privacy, exportation, explanation, training set bias, contextual bias, and trade secrecy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA