Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282726

RESUMEN

Perovskite-based flexible electroluminescent (EL) devices are emerging as promising candidates in the display field due to their exceptional optoelectronic properties and potential for cost-effective production. However, simultaneously achieving high EL performance, excellent flexibility and stretchability, robust mechanical strength, and diverse applications remains a significant challenge. In this review, we provide a comprehensive overview of the latest developments in perovskite-based flexible EL devices, covering both direct-current (DC) and alternating-current (AC) electroluminescent formats. Our discussion encompasses the materials, working principles, device architectures, failure mechanisms, optimization strategies, and practical applications. Through this review, we aim to deepen our understanding of the current challenges and future directions of perovskite-based flexible light-emitting technologies, hoping to facilitate their potential commercial applications.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39262374

RESUMEN

Conductive hydrogels have been increasingly employed to construct wearable mechanosensors due to their excellent mechanical flexibility close to that of soft tissues. In this work, piezoelectric hydrogels are prepared through free radical copolymerization of acrylamide (AM) and acrylonitrile (AN) and further utilized in assembling flexible wearable mechanosensors. Introduction of the polyacrylonitrile (PAN) component in the copolymers endows the hydrogels with excellent piezoelectric properties. Meanwhile, significant enhancement of mechanical properties has been accessed by forming dipole-dipole interactions, which results in a tensile strength of 0.51 MPa. Flexible wearable mechanosensors are fabricated by utilizing piezoelectric hydrogels as key signal converting materials. Self-powered piezoelectric pressure sensors are assembled with a sensitivity (S) of 0.2 V kPa-1. Additionally, resistive strain sensors (gauge factor (GF): 0.84, strain range: 0-250%) and capacitive pressure sensors (S: 0.23 kPa-1, pressure range: 0-8 kPa) are fabricated by utilizing such hydrogels. These flexible wearable mechanosensors can monitor diverse body movements such as joint bending, walking, running, and stair climbing. This work is anticipated to offer promising soft materials for efficient mechanical-to-electrical signal conversion and provides new insights into the development of various wearable mechanosensors.

3.
ACS Appl Mater Interfaces ; 16(36): 48667-48675, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39215689

RESUMEN

Superhydrophobic nanostructures with dense hotspots and high concentration efficiency are of paramount importance for highly sensitive surface-enhanced Raman scattering (SERS) detection. However, their low mechanical strength makes them susceptible to damage from external interferences, leading to hotspot loss and superhydrophobicity failure. In this study, robust SERS detection is achieved using an armored superhydrophobic silicon nanowires array. A micro/nanocross-scale oxide mask is created through high-repetition-rate femtosecond laser oxidation to fabricate the armored nanowires array. The underlying mechanisms of the nanoparticle layer serving as a mask in deep reactive ion etching (DRIE) are analyzed to elucidate the formation of the silicon nanowires. The armored nanowires array SERS substrate exhibits a high contact angle of 158°, demonstrating exceptional analyte enrichment capability. Combined with the dense hotspots provided by the high aspect ratio nanostructures, the detection limit for Rhodamine 6G is 10-13 M, and the enhancement factor (EF) is 4.35 × 109. After undergoing various mechanical tests, the substrate maintains its superhydrophobicity along with a stable Raman signal enhancement, demonstrating its resistance to potential external interference in SERS detection. The sensitive detection of various analytes highlights the promising applications of the armored nanowires substrate in diverse SERS scenarios.

4.
Adv Sci (Weinh) ; : e2405301, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031981

RESUMEN

Designing and making sustainable plastics is especially urgent to reduce their ecological and environmental impacts. However, it remains challenging to construct plastics with simultaneous high sustainability and outstanding comprehensive performance. Here, a composite strategy of in situ polymerizing a petroleum-based monomer with the presence of an industrialized bio-derived polymer in a quasi-solvent-free system is introduced, affording the plastic with excellent mechanical robustness, impressive thermal and solvent stability, as well as low energy, consumes during production, processing, and recycling. Particularly, the plastic can be easily processed into diverse shapes through 3D printing, injection molding, etc. during polymerization and further reprocessed into other complex structures via eco-friendly hydrosetting. In addition, the plastic is mechanically robust with Young's modulus of up to 3.7 GPa and tensile breaking strength of up to 150.2 MPa, superior to many commercially available plastics and other sustainable plastics. It is revealed that hierarchical hydrogen bonds in plastic predominate the well-balanced sustainability and performance. This work provides a new path for fabricating high-performance sustainable plastic toward practical applications, contributing to the circular economy.

5.
ACS Appl Mater Interfaces ; 16(29): 38690-38701, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38988275

RESUMEN

Antireflective coatings with superhydrophobicity have many outdoor applications, such as solar photovoltaic panels and windshields. In this study, we fabricated an omnidirectional antireflective and superhydrophobic coating with good mechanical robustness and environmental durability via the spin coating technique. The coating consisted of a layer of phytic acid (PA)/polyacrylamide (PAM)/calcium ions (Ca2+) (referred to as Binder), an antireflective layer composed of chitin nanofibers (ChNFs), and a hydrophobic layer composed of methylsilanized silica (referred to as Mosil). The transmittance of a glass slide with the Binder/ChNFs/Mosil coating had a 5.2% gain at a wavelength of 550 nm, and the antireflective coating showed a water contact angle as high as 160° and a water sliding angle of 8°. The mechanical robustness and environmental durability of the coating, including resistance to peeling, dynamic impact, chemical erosion, ultraviolet (UV) irradiation, and high temperature, were evaluated. The coating retained excellent antireflective capacity and self-cleaning performance in the harsh conditions. The increase in voltage per unit area of a solar panel with a Binder/ChNFs/Mosil coating reached 0.4 mV/cm2 compared to the solar panel exposed to sunlight with an intensity of 54.3 × 103 lx. This work not only demonstrates that ChNFs can be used as raw materials to fabricate antireflective superhydrophobic coatings for outdoor applications but also provides a feasible and efficient approach to do so.

6.
Small ; : e2402423, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845523

RESUMEN

Electromagnetic protection in extreme environments requires materials with excellent thermal insulation capability and mechanical property to withstand severe temperature fluctuations and complex external stresses. Achieving strong electromagnetic wave absorption (EMA) while sustaining these exceptional properties remains a significant challenge. Herein, a facile approach is demonstrated to fabricate a biomimetic leaf-vein MXene/CNTs/PI (MCP) aerogel with parallel venations through bidirectional freeze-casting method. Due to its multi-arch lamellar structure and parallel venations within the aerogel layers, the ultralight MCP aerogel (16.9 mg·cm-3) achieves a minimum reflection loss (RLmin) of -75.8 dB and a maximum effective absorption bandwidth (EABmax) of 7.14 GHz with an absorber content of only 2.4 wt%, which also exhibits superelasticity and structural stability over a wide temperature range from -196 to 400 °C. Moreover, this unique structure facilitates rapid heat dissipation within the layers, while significantly impeding heat transfer between adjacent layers, achieving an ultralow thermal conductivity of 15.3 mW·m-1·K-1 for thermal superinsulation. The combination of excellent EMA performance, robust structural stability, and thermal superinsulation provides a potential design scheme under extreme conditions, especially in aerospace applications.

7.
ACS Appl Mater Interfaces ; 16(25): 32693-32701, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38873805

RESUMEN

Anti-icing gels inhibit ice formation and accretion; however, current iterations face prevalent drawbacks such as poor strength, weak substrate adhesion, and limited anti-icing properties. Herein, we propose a novel approach to address these challenges by developing a thermomechanical robust polyionic elastomer (PIE) with enhanced anti-icing properties. The PIE surface exhibits an icing delay time up to 5400 s and remains frost-free after exposure to -10 °C for 3.5 h, attributed to the inhibitory effect on ice formation by ions from ILs and the polyelectrolyte network. Moreover, the PIE exhibits remarkable anti-icing durability, with ice adhesion strengths below 35 kPa after undergoing 30 icing/deicing cycle tests at -20 °C. Following sandpaper abrasion (300 cycles), scratching, and heat treatment (100 °C, 16 h), the adhesion strength remains ca. 20 kPa, highlighting its resilience under various thermal and mechanical conditions. This exceptional durability is attributed to the low volatility of the IL and the robust ionic interactions within the PIE network. Furthermore, the PIE demonstrates favorable self-healing properties and strong substrate adhesion in both low-temperature and ambient environments, facilitated by the abundance of hydrogen bonds and electrostatic forces within PIE. This work presents an innovative approach to developing high-performance, durable, and robust anti-icing materials with potential implications across various fields.

8.
Small ; : e2401387, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773909

RESUMEN

Bulk hexagonal boron nitride (h-BN) ceramics with structural integrity, high-temperature resistance and low expansion rate are expected for multifunctional applications in extreme conditions. However, due to its sluggish self-diffusion and intrinsic inertness, it remains a great challenge to overcome high-energy barrier for h-BN powder sintering. Herein, a cross-linking and pressureless-welding strategy is reported to produce bulk boron nitride nanosheets (BNNSs) ceramics with well-crystalized and dense B-N covalent-welding frameworks. The essence of this synthesis strategy lies in the construction of >B─O─H2C─H2C─H2N:→B< bond bridge connection structure among hydroxyl functionalized BNNSs (BNNSs-OH) using bifunctional monoethanolamine (MEA) as cross-linker through esterification and intermolecular-coordination reactions. The prepared BNNSs-interlaced ceramics have densities not less than 1.2 g cm-3, and exhibit exceptional mechanical robustness and resiliency, excellent thermomechanical stability, ultra-low linear thermal expansion coefficient of 0.06 ppm °C-1, and high thermal diffusion coefficient of 4.76 mm2 s-1 at 25 °C and 3.72 mm2 s-1 at 450 °C. This research not only reduces the free energy barrier from h-BN particles to bulk ceramics through facile multi-step physicochemical reaction, but also stimulates further exploration of multifunctional applications for bulk h-BN ceramics over a wide temperature range.

9.
Adv Mater ; 36(27): e2401178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38648568

RESUMEN

Shape memory polymers (SMPs) have attracted significant attention and hold vast potential for diverse applications. Nevertheless, conventional SMPs suffer from notable shortcomings in terms of mechanical properties, environmental stability, and energy density, significantly constraining their practical utility. Here, inspired by the structure of muscle fibers, an innovative approach that involves the precise incorporation of subtle, permanent cross-linking within a hierarchical hydrogen bonding supramolecular network is reported. This novel strategy has culminated in the development of covalent and supramolecular shape memory polyurea, which exhibits exceptional mechanical properties, including high stiffness (1347 MPa), strength (82.4 MPa), and toughness (312.7 MJ m-3), ensuring its suitability for a wide range of applications. Furthermore, it boasts remarkable recyclability and repairability, along with excellent resistance to moisture, heat, and solvents. Moreover, the polymer demonstrates outstanding shape memory effects characterized by a high energy density (24.5 MJ m-3), facilitated by the formation of strain-induced oriented nanostructures that can store substantial amounts of entropic energy. Simultaneously, it maintains a remarkable 96% shape fixity and 99% shape recovery. This delicate interplay of covalent and supramolecular bonds opens up a promising pathway to the creation of high-performance SMPs, expanding their applicability across various domains.

10.
Angew Chem Int Ed Engl ; 63(22): e202403139, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38530206

RESUMEN

Designing new acceptors is critical for intrinsically stretchable organic solar cells (IS-OSCs) with high efficiency and mechanical robustness. However, nearly all stretchable polymer acceptors exhibit limited efficiency and high-performance small molecular acceptors are very brittle. In this regard, we select thienylene-alkane-thienylene (TAT) as the conjugate-break linker and synthesize four dimerized acceptors by the regulation of connecting sites and halogen substitutions. It is found that the connecting sites and halogen substitutions considerably impact the overall electronic structures, aggregation behaviors, and charge transport properties. Benefiting from the optimization of the molecular structure, the dimerized acceptor exhibits rational phase separation within the blend films, which significantly facilitates exciton dissociation while effectively suppressing charge recombination processes. Consequently, FDY-m-TAT-based rigid OSCs render the highest power conversion efficiency (PCE) of 18.07 % among reported acceptors containing conjugate-break linker. Most importantly, FDY-m-TAT-based IS-OSCs achieve high PCE (14.29 %) and remarkable stretchability (crack-onset strain [COS]=18.23 %), significantly surpassing Y6-based counterpart (PCE=12.80 % and COS=8.50 %). To sum up, these findings demonstrate that dimerized acceptors containing conjugate-break linkers have immense potential in developing highly efficient and mechanically robust OSCs.

11.
Small ; 20(6): e2306104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37775948

RESUMEN

Microwave absorbers with high efficiency and mechanical robustness are urgently desired to cope with more complex and harsh application scenarios. However, manipulating the trade-off between microwave absorption performance and mechanical properties is seldom realized in microwave absorbers. Here, a chemistry-tailored charge dynamic engineering strategy is proposed for sparking hetero-interfacial polarization and thus coordinating microwave attenuation ability with the interfacial bonding, endowing polymer-based composites with microwave absorption efficiency and mechanical toughness. The absorber designed by this new conceptual approach exhibits remarkable Ku-band microwave absorption efficiency (-55.3 dB at a thickness of 1.5 mm) and satisfactory effective absorption bandwidth (5.0 GHz) as well as desirable interfacial shear strength (97.5 MPa). The calculated differential charge density depicts the uneven distribution of space charge and the intense hetero-interfacial polarization, clarifying the structure-performance relationship from a theoretical perspective. This work breaks through traditional single performance-oriented design methods and ushers a new direction for next-generation microwave absorbers.

12.
Polymers (Basel) ; 15(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37836069

RESUMEN

The fabrication of mechanically robust and self-healing polymeric materials remains a formidable challenge. To address the drawbacks, a core strategy is proposed based on the dynamic hard domains formed by hierarchical hydrogen bonds and disulfide bonds. The dynamic hard domains dissipate considerable stress energy during stretching. Meanwhile, the synergistic effect of hierarchical hydrogen bonds and disulfide bonds greatly enhances the relaxation dynamics of the PU network chains, thus accelerating network reorganization. Therefore, this designed strategy effectively solves the inherent drawback between cohesive energy and relaxation dynamics of the PU network. As a result, the PU elastomer has excellent mechanical properties (9.9 MPa and 44.87 MJ/m3) and high self-healing efficiency (96.2%). This approach provides a universal but valid strategy to fabricate high-performance self-healing polymeric materials. Meanwhile, such materials can be extended to emerging fields such as flexible robotics and wearable electronics.

13.
ACS Appl Mater Interfaces ; 15(37): 44205-44211, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672356

RESUMEN

Liquid crystal elastomers (LCEs) have been optimized by combining cross-linkers and dynamic bonds to achieve a reversible actuation behavior comparable to living skeletal muscles. In this study, one unique type of segment with 2-fold dynamic properties was introduced into LCEs, which offered not only dynamic diselenide covalent bonds for thermo-/photoplasticity but also H-bond arrays for dynamic cross-linking and mechanical robustness. Besides self-healing, self-welding, and recyclability, the LCEs were reprogrammable with elevated temperature or intensive visible light irradiation. The resultant LCEs gave an actuation blocking stress of 1.96 MPa and an elastic modulus of 14.4 MPa at 80 °C. The actuation work capacity reached 135.2 kJ m-3. When incorporating the Joule electrode or photothermal materials, the LCEs could be programmed as the electricity-driven and photothermal artificial muscles and thereby promised the application both as a biomimetic artificial hand and as an energy collector from sunlight. Thus, the 2-fold dynamic LCEs offered the pathway of enabling the reversible actuation behavior comparable to living skeletal muscles and promising applications in sustainable actuators, artificial muscles, and soft robots.


Asunto(s)
Cristales Líquidos , Músculo Esquelético , Biomimética , Módulo de Elasticidad , Elastómeros
14.
Int J Biol Macromol ; 250: 126202, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37573916

RESUMEN

The formation of three dimensional network structure is critical in determining mechanical properties of natural rubber (NR). Consequently, it is vital to regulate crosslinking network of NR by controlling vulcanization process. Inspired by our previous studies on contribution of non-rubber components (NRCs) to the excellent properties of NR, we find octylamine in NRCs decreases the activation energy (Ea) of vulcanization from 82.73 kJ/mol to 44.34 kJ/mol, thereby reducing vulcanization time from 18.67 min to 2.71 min. From microscopic perspective, octylamine tends to coordinate with zinc ions to improve dispersion of ZnO in NR. And octylamine promotes ring-opening reaction of S8 to favor formation of polysulfide intermediates. Therefore, the incorporation of octylamine remarkably improves vulcanization efficiency, which contributes to the formation of a more homogeneous network with higher crosslinking density, enhancing remarkably the strength and toughness of NR. As a result, the tensile strength and fracture energy of samples are as high as 31.15 MPa and 68.88 kJ/m2, respectively. In addition, even with a 60 % reduction in ZnO content, the NR samples still maintain high vulcanization efficiency and excellent mechanical properties after the addition of octylamine, which provides a green and feasible way to alleviate the environmental pollution caused by ZnO.

15.
Angew Chem Int Ed Engl ; 62(41): e202310034, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37612732

RESUMEN

The wearable application of flexible organic solar cells (f-OSCs) necessitates high power conversion efficiency (PCE) and mechanical robustness. However, photoactive films based on efficient non-fullerene small molecule acceptors (NF-SMAs) are typically brittle, leading to poor mechanical stability in devices. In this study, we achieved a remarkable PCE of 18.06 % in f-OSCs while maintaining ultrahigh mechanical robustness (with a crack-onset strain (COS) of higher than 11 %) by incorporating a linker dimerized acceptor (DOY-TVT). Compared to binary blends, ternary systems exhibit reduced non-radiative recombination, suppressed crystallization and diffusion of NF-SMAs, and improved load distribution across the chain networks, enabling the dissipation of the load energy. Thus, the ternary f-OSCs developed in this study achieved, high PCE and stability, surpassing binary OSCs. Moreover, the developed f-OSCs retained 97 % of the initial PCE even after 3000 bending cycles, indicating excellent mechanical stability (9.1 % higher than binary systems). Furthermore, the rigid device with inverted structure based on the optimal active layer exhibited a substantial increase in efficiency retention, with 89.6 % after 865 h at 85 °C and 93 % after more than 1300 h of shelf storage at 25 °C. These findings highlight the potential of the linker oligomer acceptor for realizing high-performing f-OSCs with ultrahigh mechanical robustness.

16.
Adv Mater ; 35(44): e2305562, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37606278

RESUMEN

High power conversion efficiency (PCE) and mechanical robustness are key requirements for wearable applications of organic solar cells (OSCs). However, almost all highly efficient photoactive films comprising polymer donors (PD ) and small molecule acceptors (SMAs) are mechanically brittle. In this study, highly efficient (PCE = 17.91%) and mechanically robust (crack-onset strain [COS] = 11.7%) flexible OSCs are fabricated by incorporating a ductile oligomeric acceptor (DOA) into the PD :SMA system, representing the most flexible OSCs to date. The photophysical, mechanical, and photovoltaic properties of D18:N3 with different DOAs are characterized. By introducing DOA DOY-C4 with a longer flexible alkyl linker and lower polymerization, the D18:N3:DOY-C4-based flexible OSCs exhibit a significantly higher PCE (17.91%) and 50% higher COS (11.7%) than the D18:N3-based device (PCE = 17.06%, COS = 7.8%). The flexible OSCs based on D18:N3:DOY-C4 retain 98% of the initial PCE after 2000 consecutive bending cycles, showing greater mechanical stability than the reference device (maintaining 89% of initial PCE). After careful investigation, it is hypothesized that the enhancement in mechanical properties is mainly due to the formation of tie chains or entanglement in the ternary blend films. These results demonstrate that DOAs have great potential for achieving high-performance flexible OSCs.

17.
ACS Appl Mater Interfaces ; 15(31): 38132-38142, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37506049

RESUMEN

Silica glass devices are widely used due to their exceptional physical and chemical properties. However, prolonged usage may result in abrasion and contamination of silica glass devices, adversely affecting the service life. One of the most effective solutions to this issue is surface modification, in which superhydrophobicity with high transmittance and mechanical robustness is highly desired. Inspired by the concept of protective armor, we proposed a novel approach for the direct integration of robust and transparent superhydrophobic structures on silica glass. In this method, microstereolithography synergistic heat treatment processes are used to create a micrometer-scale biomimetic frame on the surface of silica glass and then filled with in situ deposited nanoparticles. The superhydrophobicity of the surface can be obtained through the nanoparticles, and the biomimetic frame can protect the surface from direct contact with external objects to achieve durability. This process allows the preparation of superhydrophobic silica structures on the silica device surface at temperatures below its melting point, which prevents any damage to the devices during the heat treatment. Moreover, up to 90% transmittance does not affect the performance of silica devices. The composite structure maintains a contact angle of over 150° after multiple abrasion tests, verifying the mechanical robustness. This innovative process paves the way for forming a high mechanical robustness and excellent transmittance protective layer on silica glass devices, which expands the application field.

18.
ACS Nano ; 17(14): 13724-13733, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37403892

RESUMEN

Ice accumulation on surfaces significantly jeopardizes the operational security and economic effectiveness of equipment. As one of the efficient anti-icing strategies, fracture-induced ice detachment strategy can realize low ice adhesion strength and is feasible for large-area anti-icing, but its application in harsh environment is restrained by mechanical robustness deterioration due to ultralow elastic moduli. It is still a challenge for fracture-promoted interfaces to reach ultralow ice adhesion and maintain strong mechanical robustness. Drawing inspiration from subcutaneous tissue, we propose a multiscale interpenetrating reinforcing method to develop a fracture-promoted ultraslippery ice detachment interface. Our approach minimizes elastic deformation and the stress threshold of fracture initiation during ice detachment, ensuring fast and noninjurious ice detachment on the interface. At the same time, this method reinforces the mechanical robustness of the fracture-promoted ultraslippery interface, making it possible to ensure long-term operation under harsh conditions. The superiority is revealed by ultralow ice adhesion strength below 20 kPa at -30 °C even after 200 continuous abrasion cycles, as well as efficient ice shedding during dynamic anti-icing tests, which is clarified by theoretical prediction and experimental verification. This work is expected to enlighten the design of next-generation durable anti-icing interface.

19.
Small ; 19(41): e2303226, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37312403

RESUMEN

A cross-linking strategy can result in a three-dimensional network of interconnected chains for the copolymers, thereby improving their mechanical performance. In this work, a series of cross-linked conjugated copolymers, named PC2, PC5, and PC8, constructed with different ratios of monomers are designed and synthesized. For comparison, a random linear copolymer, PR2 is also synthesized based on the similar monomers. When blended with Y6 acceptor, the cross-linked polymers PC2, PC5, and PC8-based polymer solar cells (PSCs) achieve superior power conversion efficiencies (PCEs) of 17.58%, 17.02%, and 16.12%, respectively, which are higher than that (15.84%) of the random copolymer PR2-based devices. Moreover, the PCE of PC2:Y6-based flexible PSC retains ≈88% of the initial efficiency value after 2000 bending cycles, overwhelming the PR2:Y6-based device with the remaining 12.8% of the initial PCE. These results demonstrate that the cross-linking strategy is a feasible and facile approach to developing high-performance polymer donors for the fabrication of flexible PSCs.

20.
Adv Mater ; 35(20): e2211342, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36878193

RESUMEN

Photonic ionic elastomers (PIEs) capable of multiple signal outputs are intriguing in flexible interactive electronics. However, fabricating PIEs with simultaneous mechanical robustness, good ionic conductivity, and brilliant structure color still remains challenging. Here, the limitations are broken through introducing the synergistic effect of lithium and hydrogen bonds into an elastomer. In virtue of lithium bonding between lithium ions and carbonyl groups in the polymer matrix as well as hydrogen bonding between silanol on the surface of silica nanoparticles (SiNPs) and ether groups along polymer chains, the PIEs demonstrate mechanical strength up to 4.3 MPa and toughness up to 8.6 MJ m-3 . Meanwhile, the synchronous electrical and optical output under mechanical strains can be achieved in the PIEs with the presence of dissociated ions contributed by lithium bond and non-close-packed SiNPs stabilized by the hydrogen bond. Moreover, due to their liquid-free nature, the PIEs exhibit extraordinary stability and durability, which can withstand extreme conditions including both high and low temperatures as well as high humidity. This work provides a promising molecular engineering route to construct high-performance photonic ionic conductors toward advanced ionotronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA