Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 10(8): 4865-4877, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39007451

RESUMEN

The mechanical cue of fiber alignment plays a key role in the development of various tissues in the body. The ability to study the effect of these stimuli in vitro has been limited previously. Here, we present a microfluidic device capable of intrinsically generating aligned fibers using the microchannel geometry. The device also features tunable interstitial fluid flow and the ability to form a morphogen gradient. These aspects allow for the modeling of complex tissues and to differentiate cell response to different stimuli. To demonstrate the abilities of our device, we incorporated luminal epithelial cysts into our device and induced growth factor stimulation. We found the mechanical cue of fiber alignment to play a dominant role in cell elongation and the ability to form protrusions was dependent on cadherin-3. Together, this work serves as a springboard for future potential with these devices to answer questions in developmental biology and complex diseases such as cancers.


Asunto(s)
Morfogénesis , Animales , Quimiocinas/metabolismo , Microfluídica/métodos , Células Epiteliales/metabolismo , Células Epiteliales/citología , Cadherinas/metabolismo , Dispositivos Laboratorio en un Chip , Epitelio/metabolismo , Epitelio/crecimiento & desarrollo , Perros , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Células de Riñón Canino Madin Darby , Modelos Biológicos
2.
Stem Cell Rev Rep ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066936

RESUMEN

The influence of surface topography on stem cell behavior and differentiation has garnered significant attention in regenerative medicine and tissue engineering. The cell-imprinting method has been introduced as a promising approach to mimic the geometry and topography of cells. The cell-imprinted substrates are designed to replicate the topographies and dimensions of target cells, enabling tailored interactions that promote the differentiation of stem cells towards desired specialized cell types. In fact, by replicating the size and shape of cells, biomimetic substrates provide physical cues that profoundly impact stem cell differentiation. These cues play a pivotal role in directing cell morphology, cytoskeletal organization, and gene expression, ultimately influencing lineage commitment. The biomimetic substrates' ability to emulate the native cellular microenvironment supports the creation of platforms capable of steering stem cell fate with high precision. This review discusses the role of mechanical factors that impact stem cell fate. It also provides an overview of the design and fabrication principles of cell-imprinted substrates. Furthermore, the paper delves into the use of cell-imprinted polydimethylsiloxane (PDMS) substrates to direct adipose-derived stem cells (ADSCs) differentiation into a variety of specialized cells for tissue engineering and regenerative medicine applications. Additionally, the review discusses the limitations of cell-imprinted PDMS substrates and highlights the efforts made to overcome these limitations.

3.
Discov Nano ; 19(1): 106, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907808

RESUMEN

In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.

4.
Biomimetics (Basel) ; 9(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667239

RESUMEN

Bioinks play a fundamental role in skin bioprinting, dictating the printing fidelity, cell response, and function of bioprinted 3D constructs. However, the range of bioinks that support skin cells' function and aid in the bioprinting of 3D skin equivalents with tailorable properties and customized shapes is still limited. In this study, we describe a bioinspired design strategy for bioengineering double crosslinked pectin-based bioinks that recapitulate the mechanical properties and the presentation of cell-adhesive ligands and protease-sensitive domains of the dermal extracellular matrix, supporting the bioprinting of bilayer 3D skin models. Methacrylate-modified pectin was used as a base biomaterial enabling hydrogel formation via either chain-growth or step-growth photopolymerization and providing independent control over bioink rheology, as well as the mechanical and biochemical cues of cell environment. By tuning the concentrations of crosslinker and polymer in bioink formulation, dermal constructs were bioprinted with a physiologically relevant range of stiffnesses that resulted in strikingly site-specific differences in the morphology and spreading of dermal fibroblasts. We also demonstrated that the developed thiol-ene photo-clickable bioinks allow for the bioprinting of skin models of varying shapes that support dermis and epidermis reconstruction. Overall, the engineered bioinks expand the range of printable biomaterials for the extrusion bioprinting of 3D cell-laden hydrogels and provide a versatile platform to study the impact of material cues on cell fate, offering potential for in vitro skin modeling.

5.
Mil Med Res ; 11(1): 13, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369464

RESUMEN

Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.


Asunto(s)
Materiales Biocompatibles , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/fisiología , Materiales Biocompatibles/uso terapéutico , Materiales Biocompatibles/química , Piel/lesiones , Cicatriz/patología
6.
Brain Struct Funct ; 229(3): 759-773, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411929

RESUMEN

Malformation during cortical development can disrupt the balance of excitatory and inhibitory neural circuits, contributing to various psychiatric and developmental disorders. One of the critical factors of cortical neural networks is the fine regulation of neurogenesis through mechanical cues, such as shear stress and substrate stiffness. Piezo1, a mechanically-activated channel, serves as a transducer for these mechanical cues, regulating embryogenesis. However, specific cell-type expression patterns of this channel during cortical development have not yet been characterized. In the present study, we conducted an RNAscope experiment to visualize the location of Piezo1 transcripts with embryonic neuronal/glial lineage cell markers. Our analysis covered coronal sections of the mouse forebrain on embryonic day 12.5 (E12.5), E14.5, E16.5, and E18.5. In addition, applying Yoda1, a specific Piezo1 agonist, evoked distinct calcium elevation in piriform cortices of E16.5 and E18.5 embryonic slices. Furthermore, pharmacological activation or inhibition of this channel significantly modulated the migration of neurosphere-derived cells in vitro. These findings contribute valuable insights to the field of mechanobiology and provide an understanding of the intricate processes underlying embryonic brain development.


Asunto(s)
Canales Iónicos , Neurogénesis , Animales , Ratones , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Neurogénesis/genética , Prosencéfalo/metabolismo
7.
Methods Mol Biol ; 2767: 161-173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37199907

RESUMEN

Mammalian embryogenesis is characterized by complex interactions between embryonic and extra-embryonic tissues that coordinate morphogenesis, coupling bio-mechanical and bio-chemical cues, to regulate gene expression and influence cell fate. Deciphering such mechanisms is essential to understand early embryogenesis, as well as to harness differentiation disorders. Currently, several early developmental events remain unclear, mainly due to ethical and technical limitations related to the use of natural embryos.Here, we describe a three-step approach to generate 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. In the first step, adult dermal fibroblasts are converted into trophoblast-like cells, combining the use of 5-azacytidine, to erase the original cell phenotype, with an ad hoc induction protocol, to drive erased cells into the trophoblast lineage. In the second step, once again epigenetic erasing is applied, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like spheroids. More specifically, erased cells are encapsulated in micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, chemically induced trophoblast-like cells and ICM-like spheroids are co-cultured in the same micro-bioreactors. The newly generated embryoids are then transferred to microwells, to encourage further differentiation and favor epiBlastoid formation. The procedure here described is a novel strategy for in vitro generation of 3D spherical structures, phenotypically similar to natural embryos. The use of easily accessible dermal fibroblasts and the lack of retroviral gene transfection make this protocol a promising strategy to study early embryogenesis as well as embryo disorders.


Asunto(s)
Blastocisto , Señales (Psicología) , Animales , Trofoblastos , Embrión de Mamíferos , Diferenciación Celular , Epigénesis Genética , Fibroblastos/metabolismo , Mamíferos
8.
Mater Today Bio ; 22: 100783, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37701130

RESUMEN

Biomaterials, when implanted in the human body, can induce a series of cell- and cytokine-related reactions termed foreign body reactions (FBRs). In the progression of FBRs, macrophages regulate inflammation and healing by polarizing to either a pro-inflammatory or pro-healing phenotype and recruit fibroblasts by secreting cytokines. Stimulated by the biomaterials, fibrotic capsule is formed eventually. The implant, along with its newly formed capsule, introduces various mechanical cues that influence cellular functions. Mechanosensing proteins, such as integrins or ion channels, transduce extracellular mechanical signals into cytoplasm biochemical signals in response to mechanical stimuli. Consequently, the morphology, migration mode, function, and polarization state of the cells are affected. Modulated by different intracellular signaling pathways and their crosstalk, the expression of fibrotic genes increases with fibroblast activation and fibroblast to myofibroblast transition under stiff or force stimuli. However, summarized in most current studies, the outcomes of macrophage polarization in the effect of different mechanical cues are inconsistent. The underlying mechanisms should be investigated with more advanced technology and considering more interfering aspects. Further research is needed to determine how to modulate the progression of fibrotic capsule formation in FBR artificially.

9.
Carbohydr Polym ; 321: 121292, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739527

RESUMEN

Inspired by the similarity of anisotropic channels in wood to the canals of bone, the elastic wood-derived (EW) scaffolds with anisotropic channels were prepared via simple delignification treatment of natural wood (NW). We hypothesize that the degree of delignification will lead to differences in mechanical properties of scaffolds, which in turn directly affect the behaviors and fate of stem cells. The delignification process did not destroy the anisotropic channel structure of the scaffolds, but endowed the scaffolds with good elasticity and rapid stress relaxation. Interestingly, the micron-scale anisotropic channels of the scaffolds can highly promote the polarization of cells along the direction of channels. We also found that the alkaline phosphatase of EW scaffold can reach to about 13.1 U/gprot, which was about double that of NW scaffold. Moreover, the longer the delignification time, the better the osteogenic activity of the EW scaffolds. We further hypothesize that the osteogenic activity of scaffolds is related to the stress relaxation properties. The immunofluorescence staining showed that when the stress relaxation time of scaffold was shortened to about 10 s, the nuclear ratio of YAP of scaffold increased to 0.22, which well supports our hypothesis.


Asunto(s)
Señales (Psicología) , Osteogénesis , Fosfatasa Alcalina , Anisotropía , Diferenciación Celular
10.
ACS Appl Mater Interfaces ; 15(29): 34397-34406, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37458389

RESUMEN

The self-organization of embryonic stem cells (ESCs) into organized tissues with three distinct germ layers is critical to morphogenesis and early development. While the regulation of this self-organization by soluble signals is well established, the involvement of mechanical force gradients in this process remains unclear due to the lack of a suitable platform to study this process. In this study, we developed a 3D microenvironment to examine the influence of mechanical tension gradients on ESC-patterned differentiation during morphogenesis by controlling the geometrical signals (shape and size) of ESC colonies. We found that changes in colony geometry impacted the germ layer pattern, with Cdx2-positive cells being more abundant at edges and in areas with high curvatures. The differentiation patterns were determined by geometry-mediated cell tension gradients, with an extraembryonic mesoderm-like layer forming in high-tension regions and ectodermal-like lineages at low-tension regions in the center. Suppression of cytoskeletal tension hindered ESC self-organization. These results indicate that geometric confinement-mediated mechanical tension plays a crucial role in linking multicellular organization to cell differentiation and impacting tissue patterning.


Asunto(s)
Técnicas de Cultivo de Célula , Estratos Germinativos , Animales , Ratones , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Células Madre Embrionarias de Ratones , Células Madre Embrionarias
11.
Front Cardiovasc Med ; 10: 1169331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435057

RESUMEN

The generation of endothelial cells (ECs) from human pluripotent stem cells (PSCs) has been a promising approach for treating cardiovascular diseases for several years. Human PSCs, particularly induced pluripotent stem cells (iPSCs), are an attractive source of ECs for cell therapy. Although there is a diversity of methods for endothelial cell differentiation using biochemical factors, such as small molecules and cytokines, the efficiency of EC production varies depending on the type and dose of biochemical factors. Moreover, the protocols in which most EC differentiation studies have been performed were in very unphysiological conditions that do not reflect the microenvironment of native tissue. The microenvironment surrounding stem cells exerts variable biochemical and biomechanical stimuli that can affect stem cell differentiation and behavior. The stiffness and components of the extracellular microenvironment are critical inducers of stem cell behavior and fate specification by sensing the extracellular matrix (ECM) cues, adjusting the cytoskeleton tension, and delivering external signals to the nucleus. Differentiation of stem cells into ECs using a cocktail of biochemical factors has been performed for decades. However, the effects of mechanical stimuli on endothelial cell differentiation remain poorly understood. This review provides an overview of the methods used to differentiate ECs from stem cells by chemical and mechanical stimuli. We also propose the possibility of a novel EC differentiation strategy using a synthetic and natural extracellular matrix.

12.
Biomater Res ; 27(1): 55, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264479

RESUMEN

Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.

13.
Small Methods ; 7(7): e2201503, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029584

RESUMEN

It is essential to design a multifunctional well-controlled platform to transfer mechanical cues to the cells in different magnitudes. This study introduces a platform, a miniaturized bioreactor, which enables to study the effect of shear stress in microsized compartmentalized structures. In this system, the well-established cell encapsulation system of liquefied capsules (LCs) is used as microbioreactors in which the encapsulated cells are exposed to variable core viscosities to experience different mechanical forces under a 3D dynamic culture. The LC technology is joined with electrospraying to produce such microbioreactors at high rates, thus allowing the application of microcapsules for high-throughput screening. Using this platform for osteogenic differentiation as an example, shows that microbioreactors with higher core viscosity which produce higher shear stress lead to significantly higher osteogenic characteristics. Moreover, in this system the forces experienced by cells in each LC are simulated by computational modeling. The maximum wall shear stress applied to the cells inside the bioreactor with low, and high core viscosity environment is estimated to be 297 and 1367 mPa, respectively, for the experimental setup employed. This work outlines the potential of LC microbioreactors as a reliable in vitro customizable platform with a wide range of applications.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Cápsulas , Viscosidad , Diferenciación Celular
14.
Curr Opin Plant Biol ; 74: 102370, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37121154

RESUMEN

The development of lateral roots starts with a round of anticlinal, asymmetric cell divisions in lateral root founder cells in the pericycle, deep within the root. The reorientation of the cell division plane occurs in parallel with changes in cell shape and needs to be coordinated with its direct neighbor, the endodermis. This accommodation response requires the integration of biochemical and mechanical signals in both cell types. Recently, it was reported that dynamic changes in the cytoskeleton and possibly the cell wall are part of the molecular mechanism required to correctly orient and position the cell division plane. Here we discuss the latest progress made towards our understanding of the regulation of cell shape and division plane orientation underlying lateral root initiation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , División Celular , Raíces de Plantas/metabolismo , Forma de la Célula , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo
15.
Plant J ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37067011

RESUMEN

The nucleus is a central organelle of eukaryotic cells undergoing dynamic structural changes during cellular fundamental processes such as proliferation and differentiation. These changes rely on the integration of developmental and stress signals at the nuclear envelope (NE), orchestrating responses at the nucleo-cytoplasmic interface for efficient genomic functions such as DNA transcription, replication and repair. While in animals, correlation has already been established between NE dynamics and chromatin remodeling using last-generation tools and cutting-edge technologies, this topic is just emerging in plants, especially in response to mechanical cues. This review summarizes recent data obtained in this field with more emphasis on the mechanical stress response. It also highlights similarities/differences between animal and plant cells at multiples scales, from the structural organization of the nucleo-cytoplasmic continuum to the functional impacts of NE dynamics.

16.
Gels ; 9(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36826287

RESUMEN

Dendritic cells (DCs), the most potent antigen-presenting cells, are necessary for the effective activation of naïve T cells. DCs encounter numerous microenvironments with different biophysical properties, such as stiffness and viscoelasticity. Considering the emerging importance of mechanical cues for DC function, it is essential to understand the impacts of these cues on DC function in a physiological or pathological context. Engineered hydrogels have gained interest for the exploration of the impacts of biophysical matrix cues on DC functions, owing to their extracellular-matrix-mimetic properties, such as high water content, a sponge-like pore structure, and tunable mechanical properties. In this review, the introduction of gelation mechanisms of hydrogels is first summarized. Then, recent advances in the substantial effects of developing hydrogels on DC function are highlighted, and the potential molecular mechanisms are subsequently discussed. Finally, persisting questions and future perspectives are presented.

17.
Adv Healthc Mater ; 12(10): e2202581, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36571465

RESUMEN

Articular cartilage (AC) plays an unquestionable role in joint movements but unfortunately the healing capacity is restricted due to its avascular and acellular nature. While cartilage tissue engineering has been lifesaving, it is very challenging to remodel the complex cartilage composition and architecture with gradient physio-mechanical properties vital to proper tissue functions. To address these issues, a better understanding of the intrinsic AC properties and how cells respond to stimuli from the external microenvironment must be better understood. This is essential in order to take one step closer to producing functional cartilaginous constructs for clinical use. Recently, biopolymers have aroused much attention due to their versatility, processability, and flexibility because the properties can be tailored to match the requirements of AC. This review highlights polymeric scaffolds developed in the past decade for reconstruction of zonal AC layers including the superficial zone, middle zone, and deep zone by means of exogenous stimuli such as physical, mechanical, and biological/chemical signals. The mimicked properties are reviewed in terms of the biochemical composition and organization, cell fate (morphology, orientation, and differentiation), as well as mechanical properties and finally, the challenges and potential ways to tackle them are discussed.


Asunto(s)
Cartílago Articular , Materiales Biocompatibles/química , Señales (Psicología) , Ingeniería de Tejidos , Diferenciación Celular
18.
Oral Dis ; 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36519511

RESUMEN

OBJECTIVES: In vivo, the principal function of mechanosensitive odontoblasts is to synthesize and secrete the matrix which then calcifies and forms reactive dentin after exposure to appropriate stimuli. This study aims to develop the influence of mechanical factors on dentinogenesis based on odontoblasts, which contribute to reparative dentin formation. METHODS: We fabricated polydimethylsiloxane with different stiffnesses and seeded 17IIA11 odontoblast-like cells on the substrates in different stiffnesses. Cell morphology was detected by scanning electron microscope, and the mineralization phenotype was detected by alkaline phosphatase staining and alizarin red staining, while expression levels of dentinogenesis-related genes (including Runx2, Osx, and Alp) were assayed by qPCR. To explore mechanism, protein distribution and expression levels were detected by immunofluorescent staining, Western blotting, and immunoprecipitation. RESULTS: In our results, during dentinogenesis, 17IIA11 odontoblast-like cells appeared better extension on stiffer substrates. The binding between LAMB1 and FAK contributed to converting mechanical stimuli into biochemical signaling, thereby controlling mitogen-activated protein kinase kinase 1/2 activity in stiffness-driven dentinogenesis. CONCLUSION: The present study suggests odontoblast behaviors can be directly regulated by mechanical factors at cell-material interfaces, which offers fundamental mechanism in remodeling cell microenvironment, thereby contributing to physiological phenomena explanation and tissue engineering progress.

19.
Front Bioeng Biotechnol ; 10: 953590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263359

RESUMEN

The cornea is a transparent, dome-shaped structure on the front part of the eye that serves as a major optic element and a protector from the external environment. Recent evidence shows aberrant alterations of the corneal mechano-environment in development and progression of various corneal diseases. It is, thus, critical to understand how corneal cells sense and respond to mechanical signals in physiological and pathological conditions. In this review, we summarize the corneal mechano-environment and discuss the impact of these mechanical cues on cellular functions from the bench side (in a laboratory research setting). From a clinical perspective, we comprehensively review the mechanical changes of corneal tissue in several cornea-related diseases, including keratoconus, myopia, and keratectasia, following refractive surgery. The findings from the bench side and clinic underscore the involvement of mechanical cues in corneal disorders, which may open a new avenue for development of novel therapeutic strategies by targeting corneal mechanics.

20.
Front Cell Dev Biol ; 10: 886110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35652101

RESUMEN

Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA