Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 61(10): 7319-7334, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38381297

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) leads to malignant brain edema, blood-brain barrier destruction, and neuronal apoptosis. N6-methyladenosine (m6A) RNA modification in CIRI was still limited explored. In this study, MeRIP- and RNA-sequencing were performed of middle cerebral artery occlusion and reperfusion (MCAO/R) rats to find novel potential molecular targets. Transcription factor TFAP2B stood out of which its m6A abundance decreased associated with a marked reduction of its mRNA based on cojoint interactive bioinformatics analysis of the MeRIP- and RNA-sequencing data. It was suggested TFAP2B could have a role in CIRI. Functionally, overexpression of TFAP2B in cultured primary neurons could effectively improve the cell survival and pro-survival autophagy in parallel with reduced cell apoptosis during OGD/R in vitro. Through the RNA-sequencing of TFAP2B overexpressed primary neurons and subsequent validation experiments, it was found that mitophagy receptor BNIP3 was one of the important targets of TFAP2B in OGD/R neurons through which TFAP2B could bind to its promoter region for transcriptional activation of BNIP3, thereby enhancing BNIP3-mediated mitophagy to protect against OGD/R injury of neurons. Lastly, TFAP2B was demonstrated to alleviate the MCAO/R damage to a certain extent in vivo. Although it failed to confirm TFAP2B dysregulation was m6A dependent in current research, this is the first research of TFAP2B in CIRI field with important guiding significance.


Asunto(s)
Proteínas de la Membrana , Mitofagia , Neuronas , Ratas Sprague-Dawley , Daño por Reperfusión , Factor de Transcripción AP-2 , Animales , Mitofagia/fisiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Masculino , Neuronas/metabolismo , Neuronas/patología , Proteínas de la Membrana/metabolismo , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Ratas , Apoptosis , Proteínas Mitocondriales/metabolismo , Fármacos Neuroprotectores/farmacología , Neuroprotección , Supervivencia Celular , Células Cultivadas , Adenosina/análogos & derivados
2.
Int J Chron Obstruct Pulmon Dis ; 18: 1007-1017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275442

RESUMEN

Purpose: Persistent inflammation and epithelial-mesenchymal transition are essential pathophysiological processes in chronic obstructive pulmonary disease (COPD) and involve airway remodeling. m6A methylation modification was discovered to play an important role in various diseases. Nevertheless, the regulatory role of m6A methylation has not yet been investigated in cigarette smoking-induced COPD. The study aims to explore the regulatory role of m6A methylation in cigarette smoking-induced COPD. Patients and Methods: In this study, two Gene Expression Omnibus (GEO) datasets were first utilized to analyze the expression profiles of m6A RNA methylation regulators in COPD. We then established a cell model of COPD by exposing human bronchial epithelial cells (HBECs) to cigarette smoke extract (CSE) in vitro and detected the expression of m6A writer Mettl3 and EMT phenotype markers. RNA interference, cycloleucine, RT-qPCR, western blot, MeRIP-sequencing, and cell migration assay were performed to investigate the potential effect of Mettl3 on the EMT process in CSE-induced HBECs. Results: Our results showed that Mettl3 expression was significantly elevated in cigarette smoking-induced COPD patients and in a cellular model of COPD. Furthermore, Mettl3 silence and cycloleucine treatment inhibited the EMT process of HBECs caused by CSE. Mechanically, Mettl3 silence weakens the m6A methylation of SOCS3 mRNA to enhance the protein expression of SOCS3, inhibiting CSE-induced SOCS3/STAT3/SNAI1 signaling and EMT processes in HBECs. Conclusion: Our study inferred that Mettl3-mediated m6A RNA methylation modification modulates CSE-induced EMT by targeting SOCS3 mRNA and ultimately serves as a crucial regulator in the emergence of COPD. This conclusion reinforces the regulatory role of m6A methylation in COPD.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fumar Cigarrillos/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Bronquios/patología , Células Cultivadas , Técnicas de Silenciamiento del Gen , Cicloleucina/farmacología
3.
Regen Ther ; 22: 148-159, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36793308

RESUMEN

Objective: Synovium-derived mesenchymal stem cells (SMSCs) are multipotential non-hematopoietic progenitor cells that can differentiate into various mesenchymal lineages in adipose and bone tissue, especially in chondrogenesis. Post-transcriptional methylation modifications are relative to the various biological development procedures. N6-methyladenosine (m6A) methylation has been identified as one of the abundant widespread post-transcriptional modifications. However, the connection between the SMSCs differentiation and m6A methylation remains unknown and needs further exploration. Methods: SMSCs were derived from synovial tissues of the knee joint of male Sprague-Dawley (SD) rats. In the chondrogenesis of SMSCs, m6A regulators were detected by quantitative real-time PCR (RT-PCR) and Western blot (WB). We observed the situation that the knockdown of m6A "writer" protein methyltransferase-like (METTL)3 in the chondrogenesis of SMSCs. We also mapped the transcript-wide m6A landscape in chondrogenic differentiation of SMSCs and combined RNA-seq and MeRIP-seq in SMSCs by the interference of METTL3. Results: The expression of m6A regulators were regulated in the chondrogenesis of SMSCs, only METTL3 is the most significant factor. In addition, after the knockdown of METTL3, MeRIP-seq and RNA-seq technology were applied to analyze the transcriptome level in SMSCs. 832 DEGs displayed significant changes, consisting of 438 upregulated genes and 394 downregulated genes. DEGs were enriched in signaling pathways regulating the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate and ECM-receptor interaction via Kyoto Encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The findings of this study indicate a difference in transcripts of MMP3, MMP13, and GATA3 containing consensus m6A motifs required for methylation by METTL3. Further, the reduction of METTL3 decreased the expression of MMP3, MMP13, and GATA3. Conclusion: These findings confirm the molecular mechanisms of METTL3-mediated m6A post-transcriptional change in the modulation of SMSCs differentiating into chondrocytes, thus highlighting the potential therapeutic effect of SMSCs for cartilage regeneration.

4.
J Orthop Res ; 41(6): 1320-1334, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36205185

RESUMEN

Chronic spinal cord injury (CSCI) is a catastrophic disease of the central nervous system (CNS), resulting in partial or complete loss of neurological function. N6-methyladenosine (m6A) is the most common form of reversible posttranslational modification at the RNA level. However, the role of m6A modification in CSCI remains unknown. In this study, we established a CSCI model using a water-absorbable polyurethane polymer, with behavioral assessment, electrophysiological analysis, and histochemical staining for validation. Methylated RNA immunoprecipitation sequencing (meRIP-seq) and messenger RNA sequencing (mRNA-seq) were jointly explored to compare the differences between CSCI spinal tissue and normal spinal tissue. Furthermore, real-time quantitative reverse transcription pcr (qRT-PCR), western blot analysis, and immunofluorescence staining were used to analyze m6A modification-related proteins. We found that water-absorbable polyurethane polymer simulated well chronic spinal cord compression. Basso mouse scale scores and electrophysiological analysis showed continuous neurological function decline after chronic compression of the spinal cord. meRIP-seq identified 642 differentially modified m6A genes, among which 263 genes were downregulated and 379 genes were upregulated. mRNA-seq showed that 1544 genes were upregulated and 290 genes were downregulated after CSCI. Gene Ontology terms and enriched Kyoto Encyclopedia of Genes and Genomes pathways were also identified. qRT-PCR, western blotting, and immunofluorescence staining showed that Mettl14, Ythdf1, and Ythdf3 were significantly upregulated after CSCI. Our study revealed a comprehensive profile of m6A modifications in CSCI which may act as a valuable key for future research on CSCI.


Asunto(s)
Poliuretanos , Traumatismos de la Médula Espinal , Animales , Ratones , Metilación , ARN , ARN Mensajero
5.
Front Oncol ; 12: 939449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249071

RESUMEN

As the most common post-transcriptional RNA modification, m6A methylation extensively regulates the structure and function of RNA. The dynamic and reversible modification of m6A is coordinated by m6A writers and erasers. m6A reader proteins recognize m6A modification on RNA, mediating different downstream biological functions. mRNA m6A modification and its corresponding regulators play an important role in cancers, but its characteristics in the precancerous stage are still unclear. In this study, we used oral precancerous DOK cells as a model to explore the characteristics of transcriptome-wide m6A modification and major m6A regulator expression in the precancerous stage compared with normal oral epithelial cell HOEC and oral cancer cell SCC-9 through MeRIP-seq and RT-PCR. Compared with HOEC cells, we found 1180 hyper-methylated and 1606 hypo-methylated m6A peaks and 354 differentially expressed mRNAs with differential m6A peaks in DOK cells. Although the change of m6A modification in DOK cells was less than that in SCC-9 cells, mRNAs with differential m6A in both cell lines were enriched into many identical GO terms and KEGG pathways. Among the 20 known m6A regulatory genes, FTO, ALKBH5, METTL3 and VIRMA were upregulated or downregulated in DOK cells, and the expression levels of 10 genes such as METTL14/16, FTO and IGF2BP2/3 were significantly changed in SCC-9 cells. Our data suggest that precancerous cells showed, to some extent, changes of m6A modification. Identifying some key m6A targets and corresponding regulators in precancerous stage may provide potential intervention targets for the prevention of cancer development through epigenetic modification in the future.

6.
Front Genet ; 13: 969985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046238

RESUMEN

[This corrects the article DOI: 10.3389/fgene.2022.832677.].

7.
Front Oncol ; 12: 927810, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059637

RESUMEN

Purpose: To characterize the entire profile of m6A modifications and differential expression patterns for circRNAs in colorectal cancer (CRC). Methods: First, High-throughput MeRIP-sequencing and RNA-sequencing was used to determine the difference in m6A methylome and expression of circRNA between CRC tissues and tumor-adjacent normal control (NC) tissues. Then, GO and KEGG analysis detected pathways involved in differentially methylated and differentially expressed circRNAs (DEGs). The correlations between m6A status and expression level were calculated using a Pearson correlation analysis. Next, the networks of circRNA-miRNA-mRNA were visualized using the Target Scan and miRanda software. Finally, We describe the relationship of distance between the m6A peak and internal ribosome entry site (IRES) and protein coding potential of circRNAs. Results: A total of 4340 m6A peaks of circRNAs in CRC tissue and 3216 m6A peaks of circRNAs in NC tissues were detected. A total of 2561 m6A circRNAs in CRC tissues and 2129 m6A circRNAs in NC tissues were detected. Pathway analysis detected that differentially methylated and expressed circRNAs were closely related to cancer. The conjoint analysis of MeRIP-seq and RNA-seq data discovered 30 circRNAs with differentially m6A methylated and synchronously differential expression. RT-qPCR showned circRNAs (has_circ_0032821, has_circ_0019079, has_circ_0093688) were upregulated and circRNAs (hsa_circ_0026782, hsa_circ_0108457) were downregulated in CRC. In the ceRNA network, the 10 hyper-up circRNAs were shown to be associated with 19 miRNAs and regulate 16 mRNAs, 14 hypo-down circRNAs were associated with 30 miRNAs and regulated 27 mRNAs. There was no significant correlation between the level of m6A and the expression of circRNAs. The distance between the m6A peak and IRES was not significantly related to the protein coding potential of circRNAs. Conclusion: Our study found that there were significant differences in the m6A methylation patterns of circRNAs between CRC and NC tissues. M6A methylation may affect circRNA-miRNA-mRNA co-expression in CRC and further affect the regulation of cancer-related target genes.

8.
Front Genet ; 13: 832677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368708

RESUMEN

Spermatogenesis, an efficient and complex system in male germline development, requires a series of elaborately regulated genetic events in which diploid spermatogonia differentiate into haploid spermatozoa. N6-methyladenosine (m6A) is an important epigenetic RNA modification that occurs during spermatogenesis. ALKBH5 is an m6A eraser and knocking out Alkbh5 increases the level of total m6A methylation and causes male infertility. In this study, comprehensive analyses of MeRIP-seq and RNA-seq data revealed differences between wild-type (WT) and Alkbh5 knockout (KO) mice. In pachytene spermatocytes (PA), 8,151 m6A peaks associated with 9,959 genes were tested from WT and 10,856 m6A peaks associated with 10,016 genes were tested from KO mice. In the round spermatids (RO), 10,271 m6A peaks associated with 10,109 genes were tested from WT mice and 9,559 m6A peaks associated with 10,138 genes were tested from KO mice. The peaks were mainly concentrated in the coding region and the stop codon of the GGAC motif. In addition, enrichment analysis showed significant m6A methylation genes in related pathways in spermatogenesis. Furthermore, we conducted joint analyses of the m6A methylome and RNA transcription, suggesting an m6A regulatory mechanism of gene expression. Finally, seven differentially expressed mRNAs from RNA-seq data in both PA and RO were verified using qPCR. Overall, our study provides new information on m6A modification changes between WT and KO in PA and RO, and may provide new insights into the molecular mechanisms of m6A modification in germ cell development and spermatogenesis.

9.
Front Cell Dev Biol ; 9: 670528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249924

RESUMEN

AIM: Pterygium is a common ocular surface disease, which is affected by a variety of factors. Invasion of the cornea can cause severe vision loss. N6-methyladenosine (m6A) is a common post-transcriptional modification of eukaryotic mRNA, which can regulate mRNA splicing, stability, nuclear transport, and translation. To our best knowledge, there is no current research on the mechanism of m6A in pterygium. METHODS: We obtained 24 pterygium tissues and 24 conjunctival tissues from each of 24 pterygium patients recruited from Shanghai Yangpu Hospital, and the level of m6A modification was detected using an m6A RNA Methylation Quantification Kit. Expression and location of METTL3, a key m6A methyltransferase, were identified by immunostaining. Then we used m6A-modified RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq), and bioinformatics analyses to compare the differential expression of m6A methylation in pterygium and normal conjunctival tissue. RESULTS: We identified 2,949 dysregulated m6A peaks in pterygium tissue, of which 2,145 were significantly upregulated and 804 were significantly downregulated. The altered m6A peak of genes were found to play a key role in the Hippo signaling pathway and endocytosis. Joint analyses of MeRIP-seq and RNA-seq data identified 72 hypermethylated m6A peaks and 15 hypomethylated m6A peaks in mRNA. After analyzing the differentially methylated m6A peaks and synchronously differentially expressed genes, we searched the Gene Expression Omnibus database and identified five genes related to the development of pterygium (DSP, MXRA5, ARHGAP35, TMEM43, and OLFML2A). CONCLUSION: Our research shows that m6A modification plays an important role in the development of pterygium and can be used as a potential new target for the treatment of pterygium in the future.

10.
Front Cell Dev Biol ; 9: 760912, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087827

RESUMEN

Aim: To comprehensively profile the landscape of the mRNA N6-methyladenosine (m6A) modification in human colorectal cancer (CRC). Methods: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) was explored to compare the difference in mRNA N6-methyladenosine (m6A) methylation between CRC tissues and adjacent normal control (NC) tissue. RNA-sequencing (RNA-seq) was performed to transcribe differentially expressed mRNAs. Conjoint analysis of MeRIP-seq and RNA-seq data was conducted to predict RNA-binding proteins (RBPs). Results: MeRIP-seq identified 1110 differentially m6A methylated sites (DMMSs) and 980 differentially m6A methylated genes (DMMGs) in CRC, with 50.13% of all modified genes showing unique m6A-modified peaks in CRC. RNA-seq showed 915 upregulated genes and 1463 downregulated genes in CRC. QRT-PCR verified the RNA-seq results by detecting the expression of some mRNAs. Conjoint analysis of MeRIP-seq and RNA-seq identified 400 differentially m6A methylated and expressed genes (DEGs), and pathway analysis detected that DMMGs and DEGs were closely related to cancer. After analyzing these DMMGs and DEGs through the GEPIA database, we found that the expression of B3GNT6, DKC1, SRPK1, and RIMKLB were associated with prognosis, and the expression of B3GNT6 and RIMKLB were associated with clinical stage. 17 RBPs were identified based on the DMMGs and DEGs, among which FXR1, FXR2, FMR1, IGF2BP2, IGF2BP3, and SRSF1 were obviously highly expressed in CRC, and FMR1, IGF2BP2, and IGF2BP3 were closely related to methylation, and might be involved in the development of CRC. Conclusion: This study comprehensively profiled m6A modification of mRNAs in CRC, which revealed possible mechanisms of m6A-mediated gene expression regulation.

11.
Epigenetics ; 16(4): 425-435, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32749190

RESUMEN

Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various cancers, making it essential to profile m6A modifications at a transcriptome-wide scale in colorectal cancer (CRC). In the present study, we performed high-throughput sequencing to determine the m6A methylome in CRC. We obtained six pairs of CRC samples and tumour-adjacent normal tissues from Peking University People's Hospital. We used MeRIP-seq to determine that compared to the tumour-adjacent normal tissues, the CRC samples had 1343 dysregulated m6A peaks, and 625 m6A peaks were significantly upregulated and 718 m6A peaks were significantly downregulated. Genes with altered m6A peaks play critical roles in regulating glucose metabolism, RNA metabolism, and cancer stem cells. Furthermore, we identified 297 hypermethylated m6A peaks and 328 hypomethylated m6A peaks in mRNAs through conjoint analyses of MeRIP-seq and RNA-seq data. After analysing these genes with differentially methylated m6A peaks and synchronously differential expression, we identified four genes (WDR72, SPTBN2, MORC2, and PARM1) that were associated with prognosis of colorectal cancer patients by searching The Cancer Genome Atlas (TCGA). Our study suggests that m6A modifications play important roles in tumour progression and survival of CRC patients. The results also indicate that modulating m6A modifications may represent an alternative strategy to predict the survival of cancer patients and interfere with tumour progression in the future.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Epigenoma , Adenosina/metabolismo , Proteína de Unión a Andrógenos , Neoplasias Colorrectales/genética , Humanos , Proteínas , Espectrina , Factores de Transcripción , Transcriptoma
12.
Am J Transl Res ; 13(12): 13625-13639, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35035702

RESUMEN

Methylcytosine (m5C) is an important posttranscriptional RNA methylation modification. Studies have reported that aberrant RNA methylation can regulate tumorigenesis and development, indicating the importance of exploring the distribution and biological functions of m5C modification in human high-grade serous ovarian cancer (HGSOC) lncRNAs. In the current study, we identified 2,050 dysregulated m5C peaks, 1,767 of which were significantly upregulated, while 283 were significantly downregulated by performing methylated RNA immunoprecipitation sequencing on 3 pairs of human HGSOC tissues and paired normal tissues. GO enrichment analysis showed that genes altered by the m5C peak played a key role in phylogeny, protein metabolism, and gene mismatch repair. KEGG pathway analysis revealed that these genes were enriched in some important pathways in cancer regulation, such as the PI3K-Akt signalling pathway, transcriptional dysregulation in cancer, and mismatch repair pathways. In addition, through joint analysis of MeRIP-seq and RNA-seq data, we identified 1671 differentially methylated m5C peaks and synchronous differentially expressed genes. These genes play a key role in cell growth or maintenance, RNA metabolism and material transport. We analyzed expression of the m5C modification regulatory gene collagen type IV alpha 3 chain (COL4A3) in 80 HGSOC tissue samples by immunohistochemistry and found that high expression of COL4A3 was significantly correlated with CA125 level (P=0.016), lymph node metastasis (P<0.001), degree of interstitial invasion (P<0.001) and FIGO staging (P<0.001) and indicated a poorer prognosis. Our results revealed the critical role of m5C methylation of lncRNAs in HGSOC, and provided a reference for the prognostic stratification and treatment strategy of HGSOC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA