Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Intervalo de año de publicación
2.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273577

RESUMEN

Tuberculosis is a worldwide plague caused by the pathogen Mycobacterium tuberculosis (M. tb). Toxin-antitoxin (TA) systems are genetic elements abundantly present in prokaryotic organisms and regulate important cellular processes. MazEF is a TA system implicated in the formation of "persisters cells" of M. tb, which contain more than 10 such members. However, the exact function and inhibition mode of each MazF are not fully understood. Here we report crystal structures of MazF-mt3 in its apo form and in complex with the C-terminal half of MazE-mt3. Structural analysis suggested that two long but disordered ß1-ß2 loops would interfere with the binding of the cognate MazE-mt3 antitoxin. Similar loops are also present in the MazF-mt1 and -mt9 but are sustainably shortened in other M. tb MazF members, and these TA pairs behave distinctly in terms of their binding modes and their RNase activities. Systematic crystallographic and biochemical studies further revealed that the biochemical activities of M. tb toxins were combined results between the interferences from the characteristic loops and the electrostatic interactions between the cognate TA pairs. This study provides structural insight into the binding mode and the inhibition mechanism of the MazE/F TA pairs, which facilitate the structure-based peptide designs.


Asunto(s)
Proteínas Bacterianas , Endorribonucleasas , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Sistemas Toxina-Antitoxina/genética , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Unión Proteica , Cristalografía por Rayos X , Modelos Moleculares , Antitoxinas/química , Antitoxinas/metabolismo , Antitoxinas/genética , Secuencia de Aminoácidos
3.
Antibiotics (Basel) ; 13(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38786127

RESUMEN

Klebsiella pneumoniae causes severe human diseases, but its resistance to current antibiotics is increasing. Therefore, new antibiotics to eradicate K. pneumoniae are urgently needed. Bacterial toxin-antitoxin (TA) systems are strongly correlated with physiological processes in pathogenic bacteria, such as growth arrest, survival, and apoptosis. By using structural information, we could design the peptides and small-molecule compounds that can disrupt the binding between K. pneumoniae MazE and MazF, which release free MazF toxin. Because the MazEF system is closely implicated in programmed cell death, artificial activation of MazF can promote cell death of K. pneumoniae. The effectiveness of a discovered small-molecule compound in bacterial cell killing was confirmed through flow cytometry analysis. Our findings can contribute to understanding the bacterial MazEF TA system and developing antimicrobial agents for treating drug-resistant K. pneumoniae.

4.
Cell Host Microbe ; 31(12): 2023-2037.e8, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38035880

RESUMEN

Arbitrium-coding phages use peptides to communicate and coordinate the decision between lysis and lysogeny. However, the mechanism by which these phages establish lysogeny remains unknown. Here, focusing on the SPbeta phage family's model phages phi3T and SPß, we report that a six-gene operon called the "SPbeta phages repressor operon" (sro) expresses not one but two master repressors, SroE and SroF, the latter of which folds like a classical phage integrase. To promote lysogeny, these repressors bind to multiple sites in the phage genome. SroD serves as an auxiliary repressor that, with SroEF, forms the repression module necessary for lysogeny establishment and maintenance. Additionally, the proteins SroABC within the operon are proposed to constitute the transducer module, connecting the arbitrium communication system to the activity of the repression module. Overall, this research sheds light on the intricate and specialized repression system employed by arbitrium SPß-like phages in making lysis-lysogeny decisions.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Lisogenia , Péptidos/metabolismo
5.
J Biomol Struct Dyn ; : 1-17, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37965715

RESUMEN

MazEF Toxin-antitoxin (TA) systems are associated with the persistent phenotype of the pathogen, Mycobacterium tuberculosis (Mtb), aiding their survival. Though extensively studied, the mode of action between the antitoxin-toxin and DNA of this family remains largely unclear. Here, the important interactions between MazF7 toxin and MazE7 antitoxin, and how MazE7 binds its promoter/operator region have been studied. To elucidate this, molecular dynamics (MD) simulation has been performed on MazE7, MazF7, MazEF7, MazEF7-DNA, and MazE7-DNA complexes to investigate how MazF7 and DNA affect the conformational change and dynamics of MazE7 antitoxin. This study demonstrated that the MazE7 dimer is disordered and one monomer (Chain C) attains stability after binding to the MazF7 toxin. Both the monomers (Chain C and Chain D) however are stabilized when MazE7 binds to DNA. MazE7 is also observed to sterically inhibit tRNA from binding to MazF7, thus suppressing its toxic activity. Comparative structural analysis performed on all the available antitoxins/antitoxin-toxin-DNA structures revealed MazEF7-DNA mechanism was similar to another TA system, AtaRT_E.coli. Simulation performed on the crystal structures of AtaR, AtaT, AtaRT, AtaRT-DNA, and AtaR-DNA showed that the disordered AtaR antitoxin attains stability by AtaT and DNA binding similar to MazE7. Based on these analyses it can thus be hypothesized that the disordered antitoxins enable tighter toxin and DNA binding thus preventing accidental toxin activation. Overall, this study provides crucial structural and dynamic insights into the MazEF7 toxin-antitoxin system and should provide a basis for targeting this TA system in combating Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.

6.
Helicobacter ; 28(5): e13014, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37559199

RESUMEN

BACKGROUND: Toxin-antitoxin systems are highly variable, even among strains of the same bacterial species. The MazEF toxin-antitoxin system is found in many bacteria and plays important roles in various biological processes such as antibiotic tolerance and phage defense. However, no interplay of MazEF systems between different species was reported. MATERIALS AND METHODS: MazEF toxin-antitoxin system of Helicobacter macacae was examined in three Escherichia coli strains with and without endogenous MazEF knockout. In vivo toxicity, antibiotic tolerance, and live/dead staining followed by flowcytometry analysis were performed to evaluate the functionality and interplay of the toxin-antitoxin system between the two species. RESULTS: Controlled ectopic expression of MazF of H. macacae (MazFhm) in E. coli did not affect its growth. However, in endogenous MazEF knockout E. coli strains, MazFhm expression caused a sharp growth arrest. The toxicity of MazFhm could be neutralized by both the antitoxin of MazE homolog of H.macacae and the antitoxin of MazE of E. coli, indicating interplay of MazEF toxin-antitoxin systems between the two species. Induced expression of MazFhm enhanced tolerance to a lethal dose of levofloxacin, suggesting enhanced persister formation, which was further confirmed by live/dead cell staining. CONCLUSIONS: The MazEF toxin-antitoxin system of H. macace enhances persister formation and thus antibiotic tolerance in E. coli. Our findings reveal an interplay between the MazEF systems of H. macacae and E. coli, emphasizing the need to consider this interaction while evaluating the toxicity and functionality of MazF homologs from different species in future studies.


Asunto(s)
Antitoxinas , Proteínas de Escherichia coli , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Escherichia coli/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo , Helicobacter pylori/metabolismo , Antitoxinas/metabolismo , Endorribonucleasas/metabolismo
7.
Water Res ; 227: 119319, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368087

RESUMEN

Functionalized antibiofouling membranes have attracted increasing attention in water and wastewater treatment. Among them, contact-killing antibiofouling membranes deliver a long-lasting effect with no leaching or release, thus providing distinctive advantages. However, the antibiofouling mechanism especially in the vicinity of the membrane surface remains unclear. Herein, we demonstrate that mazEF-mediated programmed cell death (PCD) is critical for the antibiofouling behaviors of quaternary ammonium compounds modified membranes (QM). The viability of wild type Escherichia coli (WT E. coli) upon exposure to QM for 1 h was decreased dramatically (31.5 ± 1.4% of the control). In contrast, the bacterial activity of E. coli with the knockout of mazEF gene (KO E. coli) largely remained (85.8 ± 5.2%). Through addition of quorum sensing factor, i.e., extracellular death factor (EDF), the antibacterial activity was significantly enhanced in a dilute culture, indicating that the density-dependent bacterial communication played an important role in the mazEF-mediated PCD system in biofouling control. Long-term study further showed that QM exhibited a better antibiofouling performance to treat feedwater containing WT E. coli, especially when EDF was dosed. Results of this study suggested that the bacteria on the membrane surface subject to contact killing could modulate the population growth in the vicinity via quorum-sensing mazEF-mediated PCD, paving a way to develop efficient antibiofouling materials based on contact-killing scenarios.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Compuestos de Amonio Cuaternario/farmacología , Proteínas de Escherichia coli/genética , Percepción de Quorum , Apoptosis , Membranas Artificiales
8.
BMC Res Notes ; 15(1): 173, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562780

RESUMEN

OBJECTIVE: MazF is a sequence-specific endoribonuclease-toxin of the MazEF toxin-antitoxin system. MazF cleaves single-stranded ribonucleic acid (RNA) regions at adenine-cytosine-adenine (ACA) sequences in the bacterium Escherichia coli. The MazEF system has been used in various biotechnology and synthetic biology applications. In this study, we infer how ectopic mazF overexpression affects production of heterologous proteins. To this end, we quantified the levels of fluorescent proteins expressed in E. coli from reporters translated from the ACA-containing or ACA-less messenger RNAs (mRNAs). Additionally, we addressed the impact of the 5'-untranslated region of these reporter mRNAs under the same conditions by comparing expression from mRNAs that comprise (canonical mRNA) or lack this region (leaderless mRNA). RESULTS: Flow cytometry analysis indicates that during mazF overexpression, fluorescent proteins are translated from the canonical as well as leaderless mRNAs. Our analysis further indicates that longer mazF overexpression generally increases the concentration of fluorescent proteins translated from ACA-less mRNAs, however it also substantially increases bacterial population heterogeneity. Finally, our results suggest that the strength and duration of mazF overexpression should be optimized for each experimental setup, to maximize the heterologous protein production and minimize the amount of phenotypic heterogeneity in bacterial populations, which is unfavorable in biotechnological processes.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Regiones no Traducidas 5' , Adenina , Proteínas de Unión al ADN/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
mBio ; 13(1): e0344321, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012340

RESUMEN

Despite their ubiquitous nature, few antisense RNAs have been functionally characterized, and this class of RNAs is considered by some to be transcriptional noise. Here, we report that an antisense RNA (asRNA), aMEF (antisense mazEF), functions as a dual regulator for the type II toxin-antitoxin (TA) system mazEF. Unlike type I TA systems and many other regulatory asRNAs, aMEF stimulates the synthesis and translation of mazEF rather than inhibition and degradation. Our data indicate that a double-stranded RNA intermediate and RNase III are not necessary for aMEF-dependent regulation of mazEF expression. The lack of conservation of asRNA promoters has been used to support the hypothesis that asRNAs are spurious transcriptional noise and nonfunctional. We demonstrate that the aMEF promoter is active and functional in Escherichia coli despite poor sequence conservation, indicating that the lack of promoter sequence conservation should not be correlated with functionality. IMPORTANCE Next-generation RNA sequencing of numerous organisms has revealed that transcription is widespread across the genome, termed pervasive transcription, and does not adhere to annotated gene boundaries. The function of pervasive transcription is enigmatic and has generated considerable controversy as to whether it is transcriptional noise or biologically relevant. Antisense transcription is one class of pervasive transcription that occurs from the DNA strand opposite an annotated gene. Relatively few pervasively transcribed asRNAs have been functionally characterized, and their regulatory roles or lack thereof remains unknown. It is important to study examples of these asRNAs and determine if they are functional regulators. In this study, we elucidate the function of an asRNA (aMEF) demonstrating that pervasive transcripts can be functional.


Asunto(s)
ARN sin Sentido , Sistemas Toxina-Antitoxina , ARN sin Sentido/genética , Escherichia coli/genética , Regiones Promotoras Genéticas , Expresión Génica , Regulación Bacteriana de la Expresión Génica
10.
Microorganisms ; 9(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34835399

RESUMEN

Methicillin resistance in Staphylococcus aureus has become prevalent globally. Moreover, biofilm-formation makes it more difficult to eradicate bacteria by antibiotics. The mazEF toxin-antitoxin system encodes for mazF, which acts as an endoribonuclease that cleaves cellular mRNAs at specific sequence motifs (ACA), and mazE, which opposes the mazF action. Our goal was to detect mazEF expression in methicillin-resistant S. aureus (MRSA) isolates compared with methicillin-sensitive S. aureus (MSSA) isolates and determine its relation to methicillin susceptibility as well as biofilm-formation. According to their susceptibility to cefoxitin disks, 100 S. aureus isolates obtained from patients admitted to Cairo University Hospitals were categorized into 50 MSSA and 50 MRSA according to their susceptibility to cefoxitin disks (30 µg). Antimicrobial susceptibility and biofilm-formation were investigated using the disk diffusion method and tissue culture plate method, respectively. Finally, using real-time PCR, mazEF expression was estimated and correlated to methicillin susceptibility and biofilm formation. Both MRSA and MSSA isolates showed the best sensitivity results with linezolid and gentamicin, where about 88% of MRSA isolates and 96% of MSSA isolates were sensitive to linezolid while 76% of MRSA isolates and 84% of MSSA isolates were sensitive to gentamicin. MRSA isolates were significantly more able to form biofilm than MSSA isolates (p-value = 0.037). The mazEF expression was significantly correlated to methicillin resistance in S. aureus (p-value < 0.001), but not to biofilm-formation.

11.
IUCrJ ; 8(Pt 3): 362-371, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33953923

RESUMEN

Bacterial toxin-antitoxin (TA) systems correlate strongly with physiological processes in bacteria, such as growth arrest, survival and apoptosis. Here, the first crystal structure of a type II TA complex structure of Klebsiella pneumoniae at 2.3 Šresolution is presented. The K. pneumoniae MazEF complex consists of two MazEs and four MazFs in a heterohexameric assembly. It was estimated that MazEF forms a dodecamer with two heterohexameric MazEF complexes in solution, and a truncated complex exists in heterohexameric form. The MazE antitoxin interacts with the MazF toxin via two binding modes, namely, hydro-phobic and hydro-philic interactions. Compared with structural homologs, K. pneumoniae MazF shows distinct features in loops ß1-ß2, ß3-ß4 and ß4-ß5. It can be inferred that these three loops have the potential to represent the unique characteristics of MazF, especially various substrate recognition sites. In addition, K. pneumoniae MazF shows ribonuclease activity and the catalytic core of MazF lies in an RNA-binding pocket. Mutation experiments and cell-growth assays confirm Arg28 and Thr51 as critical residues for MazF ribonuclease activity. The findings shown here may contribute to the understanding of the bacterial MazEF TA system and the exploration of antimicrobial candidates to treat drug-resistant K. pneumoniae.

12.
Adv Respir Med ; 89(2): 110-114, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33966258

RESUMEN

INTRODUCTION: Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), is a significant global public health threat. Besides extensive multidrug resistance, MTB possesses several properties for long-term viability in the host as well as stress adaptation and resistance in harsh conditions. The role of toxin-antitoxin (TA) systems in disseminating and maintaining antimicrobial resistance in bacterial populations has also been demonstrated. This study aimed to evaluate differences in expression of MazEF (a well-known TA system) related genes (mazE3, mazF3, mazE6, and mazF6) amongst drug-susceptible and resistant MTB isolates in Iran. MATERIAL AND METHODS: A total of 20 confirmed clinical isolates of MTB including 10 drug-susceptible and 10 drug-resistant (nine MDR, and one XDR) species were included in this study. M. tuberculosis H37Rv was used as the standard strain. RNA extraction, cDNA synthesis, and relative quantitative real-time PCR were performed according to the standard procedures. RESULTS: Our analysis indicated significant enhanced expression of the mazE6 antitoxin gene in drug-susceptible isolates compared to drug-resistant isolates and the standard strain. The expression of the mazF6 toxin gene was also increased in drug-susceptible isolates compared with the standard strain. In drug-resistant isolates, the expression levels of mazF3 and mazF6 genes were significantly higher than that in the susceptible isolates and the standard strain. CONCLUSIONS: In this study, there was significant overexpression of mazE6 in drug-susceptible isolates. As well, mazF3 and F6 were overexpressed in drug-resistant isolates when compared with the standard strain. The changes in expression levels of MazEF6 associated genes were greater than that of MazEF3 in both groups of isolates.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Endorribonucleasas/aislamiento & purificación , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Pulmonar/microbiología , Regulación Bacteriana de la Expresión Génica , Humanos , Irán , Mycobacterium tuberculosis/aislamiento & purificación
13.
Toxins (Basel) ; 13(5)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925254

RESUMEN

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (M. tb). It is regarded as a major health threat all over the world, mainly because of its high mortality and drug-resistant nature. Toxin-antitoxin (TA) systems are modules ubiquitously found in prokaryotic organisms, and the well-studied MazEF systems (MazE means "what is it?" in Hebrew) are implicated in the formation of "persister cells" in the M. tb pathogen. Here, we report cocrystal structures of M. tb MazF-mt1 and -mt9, two important MazF members responsible for specific mRNA and tRNA cleavages, respectively, in complexes with truncated forms of their cognate antitoxin peptides. These peptides bind to the toxins with comparable affinities to their full-length antitoxins, which would reduce the RNA-cleavage capacities of the toxins in vitro. After structural analysis of the binding modes, we systemically tested the influence of the substitutions of individual residues in the truncated MazE-mt9 peptide on its affinity. This study provides structural insight into the binding modes and the inhibition mechanisms between the MazE/F-mt TA pairs. More importantly, it contributes to the future design of peptide-based antimicrobial agents against TB and potentially relieves the drug-resistance problems by targeting novel M. tb proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Sitios de Unión , Endorribonucleasas/química , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo
14.
Microorganisms ; 9(3)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33800997

RESUMEN

The analysis of bacterial genomes is a potent tool to investigate the distribution of specific traits related to the ability of surviving in particular environments. Among the traits associated with the adaptation to hostile conditions, toxin-antitoxin (TA) systems have recently gained attention in lactic acid bacteria. In this work, genome sequences of Lacticaseibacillus strains of dairy origin were compared, focusing on the distribution of type I TA systems homologous to Lpt/RNAII and of the most common type II TA systems. A high number of TA systems have been identified spread in all the analyzed strains, with type I TA systems mainly located on plasmid DNA. The type II TA systems identified in these strains highlight the diversity of encoded toxins and antitoxins and their organization. This study opens future perspectives on the use of genomic data as a resource for the study of TA systems distribution and prevalence in microorganisms of industrial relevance.

15.
BMC Mol Cell Biol ; 21(1): 73, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109090

RESUMEN

BACKGROUND: Persistence is a natural phenomenon whereby a subset of a population of isogenic bacteria either grow slow or become dormant conferring them with the ability to withstand various stresses including antibiotics. In a clinical setting bacterial persistence often leads to the recalcitrance of various infections increasing the treatment time and cost. Additionally, some studies also indicate that persistence can also pave way for the emergence of resistant strains. In a laboratory setting this persistent phenotype is enriched in nutritionally deprived environments. Consequently, in a batch culture the late stationary phase is enriched with persistent bacteria. The mechanism of persister cell formation and its regulation is not well understood. Toxin-antitoxin (TA) systems have been implicated to be responsible for bacterial persistence and rifampicin is used to treat highly persistent bacterial strains. The current study tries to explore a possible interaction between rifampicin and the MazEF TA system that furthers the former's success rate in treating persistent bacteria. RESULTS: In the current study we found that the population of bacteria in the death phase of a batch culture consists of metabolically inactive live cells resembling persisters, which showed higher membrane depolarization as compared to the log phase bacteria. We also observed an increase in the expression of the MazEF TA modules in this phase. Since rifampicin is used to kill the persisters, we assessed the interaction of rifampicin with MazEF complex. We showed that rifampicin moderately interacts with MazEF complex with 1:1 stoichiometry. CONCLUSION: Our study suggests that the interaction of rifampicin with MazEF complex might play an important role in inhibition of persisters.


Asunto(s)
Bacterias/efectos de los fármacos , Rifampin/farmacología , Sistemas Toxina-Antitoxina/efectos de los fármacos , Antibacterianos/farmacología
16.
ACS Infect Dis ; 6(7): 1783-1795, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32485099

RESUMEN

Toxin-antitoxin (TA) systems, which regulate many important cellular processes, are abundantly present in prokaryotic organisms. MazEF is a common type of TA system implicated in the formation of "persisters cells" of the pathogen Mycobacterium tuberculosis, which contains 10 such systems. However, the exact function and inhibition mode of each MazF protein are not quite understood. Here, we report four high-resolution crystal structures of MazF-mt1 in various forms, including one in complex with MazE-mt1. The toxin displayed two unique interlocked loops that allow the formation of a tight dimer. These loops would open upon interacting with the MazE-mt1 antitoxin mediated by the last two helices of MazE-mt1. With our structure-based design, a mutant that could bind to the antitoxin with an enhanced affinity was produced. Combined crystallographic and biochemical studies further revealed that the binding affinity of MazE-mt1 to MazF-mt1 was mainly attributed to its α3 helical region, while the terminal helix η1 contributes very little or even negatively to the association of the pair, in stark contrast to the MazEF-mt9 system. This study provides structural insight into the binding mode and the inhibition mechanism of the MazE/F-mt1 TA pair, which may reflect the functional differences between different TA systems.


Asunto(s)
Antitoxinas , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Proteínas Bacterianas/genética , Mycobacterium tuberculosis/genética
17.
Front Microbiol ; 11: 113, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117138

RESUMEN

Bacterial cells respond to environmental stresses by modulating their gene expression and adjusting their proteome. In Staphylococcus aureus, selective degradation by ClpP protease eliminates damaged proteins and regulates the abundance of functional proteins such as many important stress-induced transcriptional regulators. Degradation by ClpP requires the unfolding activity of partner Clp ATPases, such as ClpX and ClpC, and assistance of substrate-specific adaptor proteins such as YjbH and TrfA. Herein, we demonstrated that YjbH is aggregated in response to growth stress stimuli, such as oxidative and antibiotic stresses. In consequence, its function as an adaptor protein is compromised. YjbH controls the degradation of the stress-induced transcriptional regulator, Spx. Aggregated YjbH cannot assist Spx degradation, which results in Spx accumulation. We discovered that depending on the stress stimulus, Spx can be soluble or insoluble, and, consequently, transcriptionally active or inactive. Therefore, Spx accumulation and solubility are key components governing activation of Spx-dependent genes. Spx positively regulates expression of a ClpCP adaptor protein TrfA. TrfA in turn is required for degradation of MazE antitoxin, the unstable component of the MazEF toxin-antitoxin system, that neutralizes the endoribonuclease activity of MazF toxin. Bacterial toxin-antitoxin systems are associated with dormancy and tolerance to antibiotics that are related to chronic and relapsing infections, and it is at present a key unresolved problem in medicine. MazF activity was linked to growth stasis, yet the precise environmental signals that trigger MazE degradation and MazF activation are poorly understood. Here we propose a model where YjbH serves as a sensor of environmental stresses for downstream regulation of MazEF activity. YjbH aggregation, soluble Spx, and TrfA, coordinately control MazE antitoxin levels and consequently MazF toxin activity. This model implies that certain stress conditions culminate in modulation of MazF activity resulting in growth stasis during in vivo infections.

18.
Microorganisms ; 8(2)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093378

RESUMEN

This study evaluates the hazards posed by foodborne bacteria of the Listeria genus by analyzing the occurrence, diversity and virulence of Listeria spp.in food and food-manufacturing plants. Seventy-five isolates obtained from the routine analysis of 653 samples taken by three diagnostic laboratories in Northern Italy were genotypically differentiated by Repetitive Extragenic Palindrome (rep) PCR, with the GTG5 primer identified by sequencing the 16S rRNA gene and examined by specific PCR tests for the presence of L. monocytogenes virulence determinants occasionally found to occur in other species of the genus. Within this sample, 76% (n = 57) isolates were identified as L. innocua, 16% (n = 12) as L. monocytogenes, 6.6 % (n = 5) as L. welshimeri and 1.3% (n = 1) as L. seeligeri. All L. monocytogenes isolates belonged to the serotype 1/2a and were predicted to be virulent for the presence of the inlJ internalin gene. Potentially virulent strains of L. innocua, L. seeligeri and L. welshimeri, carrying the L. monocytogenesinlA gene and/or hly gene, were identified, and most isolates were found to possess the toxin-antitoxin system mazEF for efficient adaptation to heat shock. Results indicated the need to reinforce food-contamination-prevention measures against all Listeria species by defining efficiently their environmental distribution.

19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-845144

RESUMEN

Objective: To explore the molecular mechanism of mazG gene involved in regulating mazEF toxin-antitoxin system(TAs)mediated bacterial growth inhibition and programmed death, and to clarify the true physiological function of MazG protein. Methods: The Escherichia coli (E.coli)strain MC4100 was used as a prototype and the relA gene was recovered to obtain the relA wildtype strain MC4200. E. coli mazG, mazEF, mazEFG and other series of gene knockout strains were constructed to test the effects of mazG gene overexpression in different genetic background strains on the survival rate of bacteria. Rifampicin, H2O2 and nalidixic acid and other stress conditions were used to treat the bacteria and study growth curve and survival rate of mazG gene and mazEFG operondeleted strains. The E.coli mazG gene and mutant were cloned into an inducible overexpression to construct pET28a-mazG and pET28amazG E38A. Then the protein was overexpressed in BL21 strain and purified using Ni-NTA resin. The dephosphatase activity of MazG protein was verified by enzyme experiments and the effect of mutant overexpression on bacterial survival was tested. Results: The overexpression of mazG had no significant effect on the growth of E.coli MC4200, but had a significant inhibitory effect on the mazEFG gene knockout strain. The cytotoxicity of MazG depended on its NTP-PPase enzyme activity. The presence of mazEF significantly inhibited the phenotype of mazG;Knockout of the mazEF/mazG/mazEFG genes did not affect the growth curve of E.coli under normal envi- ronment. Under stress conditions, the survival rate of the mazG knockout strain was basically the same as that of the mazEFG knockout strain, which was significantly higher than that of the wild type. Conclusion: The mazG gene is involved in the regulation of bacterial programmed cell death induced by mazEF and has an important role in bacterial growth inhibition. This study provides a new perspective for the study of TAs and further understanding of its role in the regulation of bacterial growth and death.

20.
ACS Infect Dis ; 5(8): 1306-1316, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31267737

RESUMEN

Toxin-antitoxin (TA) modules widely exist in bacteria, and their activities are associated with the persister phenotype of the pathogen Mycobacterium tuberculosis (M. tb). M. tb causes tuberculosis, a contagious and severe airborne disease. There are 10 MazEF TA systems in M. tb that play important roles in stress adaptation. How the antitoxins antagonize toxins in M. tb or how the 10 TA systems crosstalk to each other are of interest, but the detailed molecular mechanisms are largely unclear. MazEF-mt9 is a unique member among the MazEF family due to its tRNase activity, which is usually carried out by the VapC toxins. Here, we present the cocrystal structure of the MazEF-mt9 complex at 2.7 Å. By characterizing the association mode between the TA pairs through various techniques, we found that MazF-mt9 bound not only its cognate antitoxin but also the noncognate antitoxin MazE-mt1, a phenomenon that could be also observed in vivo. Based on our structural and biochemical work, we propose that the cognate and heterologous interactions among different TA systems work together in vivo to relieve the toxicity of MazF-mt9 toward M. tb cells.


Asunto(s)
Proteínas Bacterianas/química , Endorribonucleasas/química , Mycobacterium tuberculosis/química , Estrés Fisiológico , Sistemas Toxina-Antitoxina , Adaptación Fisiológica , Proteínas Bacterianas/genética , Cristalización , Endorribonucleasas/genética , Mycobacterium tuberculosis/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA