Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 370: 122476, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276657

RESUMEN

The intricate encapsulation structure and material composition of photovoltaic modules necessitate full materials recycling involving multiple stages and different technological configurations, thereby increasing environmental burden of recycling process. Consequently, environmental impact assessments are imperative. However, previous studies primarily focused on a single technology or compared different technologies within a specific recycling stage, overlooking various technological configurations and thus engendering incomprehensive assessment. Hence, we employ a comparative life-cycle assessment to evaluate the environmental performance of six recycling alternatives with different technological configurations for silicon photovoltaic waste in China, which encompasses five recycling stages and glass/silicon remanufacturing processes. Results shows thermal delamination reduces the normalized environmental impact by 8.73% and 4.62% compared with mechanical and chemical delamination, respectively; electrolysis for metals extraction carries 35.72%-36.35% higher environmental benefits than precipitation. Additionally, introducing silicon/glass remanufacturing provides an additional 6.27%-11.55% environmental benefits. Therefore, integrating disassembly, thermal delamination, leaching & etching, electrolysis, and remanufacturing exhibits the best environmental performance, with -4796 kg CO2-eq/tonne carbon emission and -46400 MJ/tonne energy demand. Environmental hotspots analysis identifies key contributors to environmental impact and benefits. Further sensitivity analysis highlights the importance of enhancing silver and copper recovery efficiency. Finally, targeted strategies are proposed for green recycling routes of photovoltaic waste.

2.
Sci Rep ; 14(1): 16880, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043793

RESUMEN

Lightweight aggregates are a material used in many industries. A huge amount of this material is used in construction and architecture. For the most part, lightweight construction aggregates are obtained from natural resources such as clay raw materials that have the ability to swell at high temperatures. Resources of these clays are limited and not available everywhere. Therefore, opportunities are being sought to produce lightweight artificial aggregates that have interesting performance characteristics due to their properties. For example, special preparation techniques can reduce or increase the water absorption of such an aggregate depending on the needs and application. The production of artificial lightweight aggregate using various types of waste materials is environmentally friendly as it reduces the depletion of natural resources. Therefore, this article proposes a method of obtaining artificial lightweight aggregate consolidated using two methods: drum and dynamic granulation. Hardening was achieved using combined methods: sintering and hydration, trying to maintain the highest possible porosity. Waste materials were used, such as dust from construction rubble and residues from the processing of PET bottles, as well as clay from the Belchatów mine as a raw material accompanying the lignite overburden. High open porosity of the aggregates was achieved, above 30%, low apparent density of 1.23 g/cm3, low leachability of approximately 250 µS. The produced lightweight aggregates could ultimately be used in green roofs.

3.
Addit Manuf ; 61: None, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37842178

RESUMEN

Producing lightweight structures with high weight-specific strength and stiffness, self-healing abilities, and recyclability, is highly attractive for engineering applications such as aerospace, biomedical devices, and smart robots. Most self-healing polymer systems used to date for mechanical components lack 3D printability and satisfactory load-bearing capacity. Here, we report a new self-healable polymer composite for Digital Light Processing 3D Printing, by combining two monomers with distinct mechanical characteristics. It shows a desirable and superior combination of properties among 3D printable self-healing polymers, with tensile strength and elastic modulus up to 49 MPa and 810 MPa, respectively. Benefiting from dual dynamic bonds between the linear chains, a healing efficiency of above 80% is achieved after heating at a mild temperature of 60 °C without additional solvents. Printed objects are also endowed with multi-materials assembly and recycling capabilities, allowing robotic components to be easily reassembled or recycled after failure. Mechanical properties and deformation behaviour of printed composites and lattices can be tuned significantly to suit various practical applications by altering formulation. Lattice structures with three different architectures were printed and tested in compression: honeycomb, re-entrant, and chiral. They can regain their structural integrity and stiffness after damage, which is of great value for robotic applications. This study extends the performance space of composites, providing a pathway to design printable architected materials with simultaneous mechanical robustness/healability, efficient recoverability, and recyclability.

4.
Sci Total Environ ; 881: 163488, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37068664

RESUMEN

The study aims to conduct a comprehensive life cycle assessment (LCA) of mixed glass waste (MGW) recycling processes to quantify the environmental impacts of crushed glass as a partial substitute for virgin aggregate. Upstream washing, crushing, and sorting conducted at material recycling facilities (MRF) are the prime activities to assess whether reprocessed MGW in pavement construction is an alternate feasible solution. None of the previous studies explicitly account for the relative uncertainties and optimization of waste glass upstream processes from an environmental perspective. The study calculates environmental impacts using the LCA tool SimaPro considering design factors attributed to transportation, electricity consumption, use of chemicals, and water for reprocessing glass waste. Relative uncertainties of design variables and the national transition policy (2021-2030) from non-renewable to renewable energy sources have been validated by performing detailed Monte Carlo simulations. The correlation coefficients (r = 0.64, 0.58, and 0.49) of successive variables explain how the higher environmental gains of the glass recycling process are outweighed by diesel, energy consumption, and transportation distances. Compared to natural quarry sand, the recycled glass aggregate produced through crushing and recycling of its by-products reduces CO2eq emissions by 16.2 % and 46.7 %, respectively. The need for a washing line at the plant, in addition to crushing, results in a higher environmental impact over natural sand by 90.1 % and emphasizes the benefits of collecting waste glass through a separate bin, hence avoiding contamination. The result indicates that the benefit of lowering emissions varies significantly when considering waste glass landfilling. Moreover, this study evaluates the potential impacts on asphalt and reinforced concrete pavements (RCP) with 5 %, 10 %, 15 %, and 20 % replacement of natural sand with recycled glass aggregate. The LCA emphasizes the limitations of energy-intensive waste glass reprocessing. The obtained results and uncertainty analysis based on primary MRF data and recycled product applications provide meaningful suggestions for a more fit-for-purpose waste management and natural resource conservation.

5.
Materials (Basel) ; 14(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34640174

RESUMEN

Massive waste rock wool was generated globally and it caused substantial environmental issues such as landfill and leaching. However, reviews on the recyclability of waste rock wool are scarce. Therefore, this study presents an in-depth review of the characterization and potential usability of waste rock wool. Waste rock wool can be characterized based on its physical properties, chemical composition, and types of contaminants. The review showed that waste rock wool from the manufacturing process is more workable to be recycled for further application than the post-consumer due to its high purity. It also revealed that the pre-treatment method-comminution is vital for achieving mixture homogeneity and enhancing the properties of recycled products. The potential application of waste rock wool is reviewed with key results emphasized to demonstrate the practicality and commercial viability of each option. With a high content of chemically inert compounds such as silicon dioxide (SiO2), calcium oxide (CaO), and aluminum oxide (Al2O3) that improve fire resistance properties, waste rock wool is mainly repurposed as fillers in composite material for construction and building materials. Furthermore, waste rock wool is potentially utilized as an oil, water pollutant, and gas absorbent. To sum up, waste rock wool could be feasibly recycled as a composite material enhancer and utilized as an absorbent for a greener environment.

6.
Waste Manag ; 58: 169-180, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27650630

RESUMEN

The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection.


Asunto(s)
Suelo , Administración de Residuos/métodos , Madera , Biomasa , Carbono/análisis , Carbono/metabolismo , Nitrógeno/análisis , Nitrógeno/metabolismo , Oxígeno , Fósforo/análisis , Fósforo/metabolismo , Estaciones del Año , Suelo/química , Madera/química
7.
Materials (Basel) ; 7(9): 6304-6316, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28788193

RESUMEN

The upgrade recycling of cast-iron scrap chips towards ß-FeSi2 thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate ß-FeSi2 is reduced and the industrial waste is recycled. In this study, ß-FeSi2 specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit (ZT) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to ß-FeSi2 prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce ß-FeSi2 shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA