Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123073, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37453382

RESUMEN

The main objective of the ongoing and future space exploration missions is the search for traces of extant or extinct life (biomarkers) on Mars. One of the main limiting factors on the survival of Earth-like life is the presence of harmful space radiation, that could damage or modify also biomolecules, therefore understanding the effects of radiation on terrestrial biomolecules stability and detectability is of utmost importance. Which terrestrial molecules could be preserved in a Martian radiation scenario? Here, we investigated the potential endurance of fungal biomolecules, by exposing de-hydrated colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus mixed with Antarctic sandstone and with two Martian regolith analogues to increasing doses (0, 250 and 1000 Gy) of accelerated ions, namely iron (Fe), argon (Ar) and helium (He) ions. We analyzed the feasibility to detect fungal compounds with Raman and Infrared spectroscopies after exposure to these space-relevant radiations.


Asunto(s)
Iones Pesados , Marte , Vuelo Espacial , Medio Ambiente Extraterrestre , Análisis Espectral , Regiones Antárticas , Exobiología
2.
Life Sci Space Res (Amst) ; 36: 86-89, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36682834

RESUMEN

The Moon and Mars Base Analog (MaMBA) is a concept for an extraterrestrial habitat developed at the Center of Applied Space Technology and Microgravity (ZARM) in Bremen, Germany. The long-term goal of the associated project is to create a technologically functioning prototype for a base on the Moon and on Mars. One key aspect of developing such a prototype base is the integration of a bioregenerative life support system (BLSS) and its testing under realistic conditions. A long-duration mission to Mars, in particular, will require BLSS with a reliability that can hardly be reached without extensive testing, starting well in advance of the mission. Standards exist for comparing the capabilities of various BLSS, which strongly focus on technological aspects. These, we argue, should be complemented with the use of facilities that enable investigations and optimization of BLSS prototypes with regard to their requirements on logistics, training, recovery from failure and contamination, and other constraints imposed when humans are in the loop. Such facilities, however, are lacking. The purpose of this paper is to present the MaMBA facility and its potential usages that may help close this gap. We describe how a BLSS (or parts of a BLSS) can be integrated into the current existing mock-up at the ZARM for relatively low-cost investigations of human factors affecting the BLSS. The MaMBA facility is available through collaborations as a test platform for characterizing, benchmarking, and testing BLSS under nominal and off-nominal conditions.


Asunto(s)
Dendroaspis , Sistemas Ecológicos Cerrados , Marte , Vuelo Espacial , Animales , Humanos , Luna , Sistemas de Manutención de la Vida , Reproducibilidad de los Resultados
3.
Life (Basel) ; 12(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36294957

RESUMEN

Human exploration of space and other celestial bodies bears a multitude of challenges. The Earth-bound supply of material and food is restricted, and in situ resource utilisation (ISRU) is a prerequisite. Excellent candidates for delivering several services are unicellular algae, such as the space-approved flagellate Euglena gracilis. This review summarizes the main characteristics of this unicellular organism. Euglena has been exposed on various platforms that alter the impact of gravity to analyse its corresponding gravity-dependent physiological and molecular genetic responses. The sensory transduction chain of gravitaxis in E. gracilis has been identified. The molecular gravi-(mechano-)receptors are mechanosensory calcium channels (TRP channels). The inward gated calcium binds specifically to one of several calmodulins (CaM.2), which, in turn, activates an adenylyl cyclase. This enzyme uses ATP to produce cAMP, which induces protein kinase A, followed by the phosphorylation of a motor protein in the flagellum, initiating a course correction, and, finally, resulting in gravitaxis. During long space missions, a considerable amount of food, oxygen, and water has to be carried, and the exhaled carbon dioxide has to be removed. In this context, E. gracilis is an excellent candidate for biological life support systems, since it produces oxygen by photosynthesis, takes up carbon dioxide, and is even edible. Various species and mutants of Euglena are utilized as a producer of commercial food items, as well as a source of medicines, as it produces a number of vitamins, contains numerous trace elements, and synthesizes dietary proteins, lipids, and the reserve molecule paramylon. Euglena has anti-inflammatory, -oxidant, and -obesity properties.

4.
Sensors (Basel) ; 22(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36236464

RESUMEN

Deep space exploration navigation requires high accuracy of the Doppler measurement, which is equivalent to a frequency estimation problem. Because of the fence effect and spectrum leakage, the frequency estimation performances, which is based on the FFT spectrum methods, are significantly affected by the signal frequency. In this paper, we propose a novel method that utilizes the mathematical relation of the three Chirp-Z Transform (CZT) coefficients around the peak spectral line. The realization, unbiased performance, and algorithm parameter setting rule of the proposed method are described and analyzed in detail. The Monte Carlo simulation results show that the proposed method has a better anti-noise and unbiased performance compared with some traditional estimator methods. Furthermore, the proposed method is utilized to process the raw data of MEX and Tianwen-1 satellites received by Chinese Deep Space Stations (CDSS). The results show that the Doppler estimation accuracy of MEX and Tianwen-1 are both about 3 millihertz (mHz) in 1-s integration, which is consistent with that of ESA/EVN/CDSN and a little better than that of the Chinese VLBI network (CVN). Generally, this proposed method can be effectively utilized to support Chinese future deep space navigation missions and radio science experiments.

5.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457139

RESUMEN

The biological effects of high linear energy transfer (LET) radiation show both a qualitative and quantitative difference when compared to low-LET radiation. However, models used to estimate risks ignore qualitative differences and involve extensive use of gamma-ray data, including low-LET radiation epidemiology, quality factors (QF), and dose and dose-rate effectiveness factors (DDREF). We consider a risk prediction that avoids gamma-ray data by formulating a track structure model of excess relative risk (ERR) with parameters estimated from animal studies using high-LET radiation. The ERR model is applied with U.S. population cancer data to predict lifetime risks to astronauts. Results for male liver and female breast cancer risk show that the ERR model agrees fairly well with estimates of a QF model on non-targeted effects (NTE) and is about 2-fold higher than the QF model that ignores NTE. For male or female lung cancer risk, the ERR model predicts about a 3-fold and more than 7-fold lower risk compared to the QF models with or without NTE, respectively. We suggest a relative risk approach coupled with improved models of tissue-specific cancers should be pursued to reduce uncertainties in space radiation risk projections. This approach would avoid low-LET uncertainties, while including qualitive effects specific to high-LET radiation.


Asunto(s)
Radiación Cósmica , Neoplasias Inducidas por Radiación , Vuelo Espacial , Animales , Astronautas , Radiación Cósmica/efectos adversos , Femenino , Humanos , Transferencia Lineal de Energía , Masculino , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Riesgo
6.
Astrobiology ; 22(6): 672-684, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35196144

RESUMEN

Cyanobacteria are good candidates for various martian applications as a potential source of food, fertilizer, oxygen, and biofuels. However, the increased levels of highly toxic perchlorates may be a significant obstacle to their growth on Mars. Therefore, in the present study, 17 cyanobacteria strains that belong to Chroococcales, Chroococcidiopsidales, Nostocales, Oscillatoriales, Pleurocapsales, and Synechococcales were exposed to 0.25-1.0% magnesium perchlorate concentrations (1.5-6.0 mM ClO4- ions) for 14 days. The exposure to perchlorate induced at least partial inhibition of growth in all tested strains, although five of them were able to grow at the highest perchlorate concentration: Chroococcidiopsis thermalis, Leptolyngbya foveolarum, Arthronema africanum, Geitlerinema cf. acuminatum, and Cephalothrix komarekiana. Chroococcidiopsis sp. Chroococcidiopsis cubana demonstrated growth up to 0.5%. Strains that maintained growth displayed significantly increased malondialdehyde content, indicating perchlorate-induced oxidative stress, whereas the chlorophyll a/carotenoids ratio tended to be decreased. The results show that selected cyanobacteria from different orders can tolerate perchlorate concentrations typical for the martian regolith, indicating that they may be useful in Mars exploration. Further studies are required to elucidate the biochemical and molecular basis for the perchlorate tolerance in selected cyanobacteria.


Asunto(s)
Cianobacterias , Marte , Clorofila A , Cianobacterias/fisiología , Medio Ambiente Extraterrestre , Percloratos/química
7.
J Fungi (Basel) ; 7(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34682280

RESUMEN

The discovery of life on other planets and moons in our solar system is one of the most important challenges of this era. The second ExoMars mission will look for traces of extant or extinct life on Mars. The instruments on board the rover will be able to reach samples with eventual biomarkers until 2 m of depth under the planet's surface. This exploration capacity offers the best chance to detect biomarkers which would be mainly preserved compared to samples on the surface which are directly exposed to harmful environmental conditions. Starting with the studies of the endolithic meristematic black fungus Cryomyces antarcticus, which has proved its high resistance under extreme conditions, we analyzed the stability and the resistance of fungal biomarkers after exposure to simulated space and Mars-like conditions, with Raman and Gas Chromatography-Mass Spectrometry, two of the scientific payload instruments on board the rover.

8.
Life Sci Space Res (Amst) ; 31: 59-70, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34689951

RESUMEN

Addressing the uncertainties in assessing health risks from cosmic ray heavy ions is a major scientific challenge recognized by many previous reports by the National Academy of Sciences (NAS) and the National Council on Radiation Protection and Measurements (NCRP) advising the National Aeronautics and Space Administration (NASA). These reports suggested a series of steps to pursue the scientific basis for space radiation protection, including the implementation of age and sex dependent risk assessments and exposure limits appropriate for a small population of radiation workers, the evaluation of uncertainties in risk projections, and developing a vigorous research program in heavy ion radiobiology to reduce uncertainties and discover effective countermeasures. The assessment of uncertainties in assessing risk provides protection against changing assessments of risk, reveals limitations in information used in space mission operations, and provides the impetus to reduce uncertainties and discover the true level of risk and possible effectiveness of countermeasures through research. However, recommendations of a recent NAS report, in an effort to minimize differences in age and sex on flight opportunities, suggest a 600 mSv career effective dose limit based on a median estimate to reach 3% cancer fatality for 35-year old females. The NAS report does not call out examples where females would be excluded from space missions planned in the current decade using the current radiation limits at NASA. In addition, there are minimal considerations of the level of risk to be encountered at this exposure level with respect to the uncertainties of heavy ion radiobiology, and risks of cancer, as well as cognitive detriments and circulatory diseases. Furthermore, their recommendation to limit Sieverts and not risk in conjunction with a waiver process is essentially a recommendation to remove radiation limits for astronauts. We discuss issues with several of the NAS recommendations with the conclusion that the recommendations could have negative impacts on crew health and safety, and violate the three principles of radiation protection (to prevent clinically significant deterministic effects, limit stochastic effects, and practice ALARA), which would be a giant leap backwards for radiation protection.


Asunto(s)
Radiación Cósmica , Protección Radiológica , Vuelo Espacial , Adulto , Astronautas , Radiación Cósmica/efectos adversos , Femenino , Humanos , Dosis de Radiación
9.
Life (Basel) ; 11(8)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34440577

RESUMEN

BACKGROUND: Space radiation is one of the principal environmental factors limiting the human tolerance for space travel, and therefore a primary risk in need of mitigation strategies to enable crewed exploration of the solar system. METHODS: We summarize the current state of knowledge regarding potential means to reduce the biological effects of space radiation. New countermeasure strategies for exploration-class missions are proposed, based on recent advances in nutrition, pharmacologic, and immune science. RESULTS: Radiation protection can be categorized into (1) exposure-limiting: shielding and mission duration; (2) countermeasures: radioprotectors, radiomodulators, radiomitigators, and immune-modulation, and; (3) treatment and supportive care for the effects of radiation. Vehicle and mission design can augment the overall exposure. Testing in terrestrial laboratories and earth-based exposure facilities, as well as on the International Space Station (ISS), has demonstrated that dietary and pharmacologic countermeasures can be safe and effective. Immune system modulators are less robustly tested but show promise. Therapies for radiation prodromal syndrome may include pharmacologic agents; and autologous marrow for acute radiation syndrome (ARS). CONCLUSIONS: Current radiation protection technology is not yet optimized, but nevertheless offers substantial protection to crews based on Lunar or Mars design reference missions. With additional research and human testing, the space radiation risk can be further mitigated to allow for long-duration exploration of the solar system.

10.
Front Psychol ; 12: 689932, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234725

RESUMEN

Although research on presence in virtual environments has increased in the last few decades due to the rise of immersive technologies, it has not examined how it is achieved in distributed cognitive systems. To this end, we examine the sense of presence on the Martian landscape experienced by scientific team members in the Mars Exploration Rover (MER) mission (2004-2018). How this was achieved is not obvious because the sensorimotor coupling that typically underlies presence in mundane situations was absent. Nonetheless, we argue that the Three-Level model can provide a framework for exploring how presence was achieved. This account distinguishes between proto-presence, core-presence, and extended-presence, each level dependent on being able to respond effectively to affordances at a particular level of abstraction, operating at different timescales. We maintain that scientists' sense of presence on Mars involved core-presence and extended-presence rather than proto-presence. Extended-presence involved successfully establishing distal intentions (D-intentions) during strategic planning, i.e., long term conceptual goals. Core-presence involved successfully enacting proximal intentions (P-intentions) during tactical planning by carrying out specific actions on a particular target, abstracting away from sensorimotor details. This was made possible by team members "becoming the rover," which enhanced their ability to identify relevant affordances revealed through images. We argue, however, that because Mars exploration is a collective activity involving shared agency by a distributed cognitive system, the experience of presence was a collective presence of the team through the rover.

11.
Acta Astronaut ; 180: 545-559, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35001985

RESUMEN

One way to improve our model of Mars is through aerial sampling and surveillance, which could provide information to augment the observations made by ground-based exploration and satellite imagery. Flight in the challenging ultra-low-density Martian environment can be achieved with properly scaled bioinspired flapping wing vehicle configurations that utilize the same high lift producing mechanisms that are employed by insects on Earth. Through dynamic scaling of wings and kinematics, we investigate the ability to generate solutions for a broad range of flapping wing flight vehicles masses ranging from insects O(10-3) kg to the Mars helicopter Ingenuity O(100) kg. A scaling method based on a neural-network trained on 3D Navier-Stokes solutions is proposed to determine approximate wing size and kinematic values that generate bioinspired hover solutions. We demonstrate that a family of solutions exists for designs that range from 1 to 1000 grams, which are verified and examined using a 3D Navier-Stokes solver. Our results reveal that unsteady lift enhancement mechanisms, such as delayed stall and rotational lift, are present in the bioinspired solutions for the scaled vehicles hovering in Martian conditions. These hovering vehicles exhibit payloads of up to 1 kg and flight times on the order of 100 minutes when considering the respective limiting cases of the vehicle mass being comprised entirely of payload or entirely of a battery and neglecting any transmission inefficiencies. This method can help to develop a range of Martian flying vehicle designs with mission viable payloads, range, and endurance.

12.
Astrobiology ; 20(11): 1321-1337, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33179969

RESUMEN

As a part of the AMADEE-18 analog Mars mission, designed to study challenges associated with human-based exploration of the Red Planet, we focused our team efforts on testing means to localize an unmanned aerial vehicle (UAV) on Mars. Robot helicopters, such as the one selected for a technology demonstration as a part of NASA's Mars 2020 mission, are small and their performance is computationally limited. An essential aspect of navigation and path planning of an autonomous helicopter is accurate localization of the robot. In the absence of a global positioning system, a computationally efficient localization technology that can be applied on Mars is visual-inertial odometry (VIO). The AMADEE-18 mission provided an opportunity to test the feasibility of a state-of-the-art VIO algorithm and the camera in a Mars-like analog environment. The flight datasets included different terrain structures that challenged the functionality of VIO algorithms. The experiment has yielded valuable insights into the desired surface structure, texture, and mission times for surface relative navigation of UAV on Mars.


Asunto(s)
Marte , Vuelo Espacial , Simulación del Espacio , Nave Espacial , Robótica
13.
Sensors (Basel) ; 20(20)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092016

RESUMEN

This paper analyzes the behavior of a miniature 3D wind sensor designed for Mars atmosphere. The sensor is a spherical structure of 10 mm diameter divided in four sectors. By setting all the sectors to constant temperature, above that of the air, the 3D wind velocity vector can be measured. Two sets of experiments have been performed. First, an experimental campaign made under typical Mars conditions at the Aarhus Wind Tunnel Simulator is presented. The results demonstrate that both wind speed and angle can be efficiently measured, using a simple inverse algorithm. The effect of sudden wind changes is also analyzed and fast response times in the range of 0.7 s are obtained. The second set of experiments is focused on analyzing the performance of the sensor under extreme Martian wind conditions, reaching and going beyond the Dust Devil scale. To this purpose, both high-fidelity numerical simulations of fluid dynamics and heat transfer and experiments with the sensor have been performed. The results of the experiments, made for winds in the Reynolds number 1000-2000 range, which represent 65-130 m/s of wind speed under typical Mars conditions, further confirm the simulation predictions and show that it will be possible to successfully measure wind speed and direction even under these extreme regimes.

14.
Life (Basel) ; 10(6)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521820

RESUMEN

Carotenoids are promising targets in our quest to search for life on Mars due to their biogenic origin and easy detection by Raman spectroscopy, especially with a 532 nm excitation thanks to resonance effects. Ionizing radiations reaching the surface and subsurface of Mars are however detrimental for the long-term preservation of biomolecules. We show here that desiccation can protect carotenoid Raman signatures in the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 even after high-dose gamma irradiation. Indeed, while the height of the carotenoids Raman peaks was considerably reduced in hydrated cells exposed to gamma irradiation, it remained stable in dried cells irradiated with the highest tested dose of 113 kGy of gamma rays, losing only 15-20% of its non-irradiated intensity. Interestingly, even though the carotenoid Raman signal of hydrated cells lost 90% of its non-irradiated intensity, it was still detectable after exposure to 113 kGy of gamma rays. These results add insights into the preservation potential and detectability limit of carotenoid-like molecules on Mars over a prolonged period of time and are crucial in supporting future missions carrying Raman spectrometers to Mars' surface.

15.
Astrobiology ; 20(3): 405-414, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31985262

RESUMEN

The aim of the European Space Agency's ExoMars rover mission is to search for potential traces of present or past life in the swallow subsurface (2 m depth) of Mars. The ExoMars rover mission relies on a suite of analytical instruments envisioned to identify organic compounds with biological value (biomarkers) associated with a mineralogical matrix in a highly oxidative environment. We investigated the feasibility of detecting basic organics (linear and branched lipid molecules) with Raman laser spectroscopy, an instrument onboard the ExoMars rover, when exposed to oxidant conditions. We compared the detectability of six lipid molecules (alkanes, alkanols, fatty acid, and isoprenoid) before and after an oxidation treatment (15 days with hydrogen peroxide), with and without mineral matrix support (amorphous silica rich vs. iron rich). Raman and infrared spectrometry was combined with gas chromatography-mass spectrometry to determine detection limits and technical constraints. We observed different spectral responses to degradation depending on the lipid molecule and mineral substrate, with the silica-rich material showing better preservation of organic signals. These findings will contribute to the interpretation of Raman laser spectroscopy results on cores from the ExoMars rover landing site, the hydrated silica-enriched delta fan on Cogoon Vallis (Oxia Planum).


Asunto(s)
Exobiología/instrumentación , Medio Ambiente Extraterrestre/química , Lípidos/análisis , Marte , Espectrometría Raman/instrumentación , Biomarcadores/análisis , Europa (Continente) , Exobiología/métodos , Vehículos a Motor Todoterreno , Oxidación-Reducción , Vuelo Espacial , Simulación del Espacio
16.
Heliyon ; 5(12): e02972, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31867459

RESUMEN

Manned Mars missions planned in the near future of very low solar activity period and hence higher than acceptable radiation doses due mainly to the Galactic Cosmic Rays (GCR), would require special techniques and technological development for maintaining the good health of the astronauts. The present study is an attempt to make an assessment and characterise the coming years in terms of solar activity and space radiation environment especially due to the abundance of highly energetic heavy ions (known as HZE charged particles). These HZE particle fluxes constitute a major hazard to the astronauts and also to the critical electronic components of the spacecraft. Recent data on the HZE species (from B to Ni) obtained from ACE spacecraft shows a clear enhancement of the particle fluxes between the solar cycle 23 and solar cycle 24 (~between SSN peaks 2002 and 2014) due to the persisting low sunspot numbers of the latter cycle. The peak values of these cosmic ray fluxes occur with a time lag of about a year of the corresponding minimum value of the sunspots of a particular 11-year cycle which is pseudo-periodic in nature. This is demonstrated by the Fourier and Wavelet transform analyses of the long duration (1700-2018) yearly mean sunspot number data. The same time series data is also used to train a Hybrid Regression Neural Network (HRNN) model to generate the predicted yearly mean sunspot numbers for the solar cycle 25 (~2019-2031). The wavelet analysis of this new series of annual sunspot numbers including the predictions up to the end of 2031 shows a clear trend of continuation of the low solar activity and hence continuation of very high HZE fluxes prevailing in Solar cycle 24 into the solar cycle 25 and perhaps beyond.

17.
PeerJ ; 7: e7762, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579622

RESUMEN

BACKGROUND: Changes in gut microbiome are closely related to dietary and environment variations, and diurnal circle interventions impact on human metabolism and the microbiome. Changes in human gut microbiome and serum biochemical parameters during long-term isolation in a controlled ecological life support system (CELSS) are of great significance for maintaining the health of crewmembers. The Green Star 180 project performed an integrated study involving a four-person, 180-day duration assessment in a CELSS, during which variations in gut microbiome and the concentration of serum 25-hydroxyvitamin D, α-tocopherol, retinol and folic acid from the crewmembers were determined. RESULTS: Energy intake and body mass index decreased during the experiment. A trade-off between Firmicutes and Bacteroidetes during the study period was observed. Dynamic variations in the two dominant genus Bacteroides and Prevotella indicated a variation of enterotypes. Both the evenness and richness of the fecal microbiome decreased during the isolation in the CELSS. Transition of diurnal circle from Earth to Mars increased the abundance of Fusobacteria phylum and decreased alpha diversity of the fecal microbiome. The levels of serum 25-hydroxyvitamin D in the CELSS were significantly lower than those outside the CELSS. CONCLUSIONS: The unique isolation process in the CELSS led to a loss of alpha diversity and a transition of enterotypes between Bacteroides and Prevotella. Attention should therefore be paid to the transition of the diurnal circle and its effects on the gut microbiome during manned Mars explorations. In particular, serum 25-hydroxyvitamin D levels require monitoring under artificial light environments and during long-term space flight. Large-scale studies are required to further consolidate our findings.

18.
Behav Brain Res ; 362: 311-318, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30658066

RESUMEN

Human spaceflight launch is the big challenge that the humanity work on. The astronauts' task performance vulnerability to ionizing radiations is one of the major factors limiting deep space missions. In this work, we study the effect of ionizing radiations (γ-quanta and 12C6+ in combination) on cognitive abilities and psycho-emotional status of Wistar rats. Irradiation led to the hyperlocomotion, increase of anxiety-like behavior, suppression of depressive-like behavior and enhancement of spatial learning. These data are consistent with the neurochemical/molecular analysis: enhanced monoaminergic innervation within the hypothalamus (HYP), inhibition of serotonin turnover in the prefrontal cortex and neurokenin 1 receptor overexpression in the amygdala (AMY). In addition, we observe decreased expression of certain biomolecules in the AMY (5-HT2c and 5-HT3) and in the HYP (5-HT2a, 5-HT4 and VMAT2) that can be explained as neuroadaptive changes. Thus, the ionizing radiation exposure significantly modulates the psycho-emotional status. With that, for the first time we received data that radiation effects in the doses and composition of interplanetary space (in terrestrial modeling) could be relatively safe for cognitive functions.


Asunto(s)
Astronautas/psicología , Conducta Animal/fisiología , Cognición/fisiología , Radiación Ionizante , Animales , Ansiedad/psicología , Emociones/fisiología , Masculino , Ratas Wistar , Vuelo Espacial
19.
J Appl Physiol (1985) ; 120(8): 915-21, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26662054

RESUMEN

Countermeasures are defined as solutions to prevent the undesirable physiologic outcomes associated with spaceflight. Spaceflight analogs provide a valuable opportunity for the evaluation of countermeasures because they allow for the evaluation of more subjects, more experimental control, and are considerably less expensive than actual spaceflight. The various human analogs have differing strengths and weaknesses with respect to the development and evaluation of countermeasures. The human analogs are briefly reviewed with a focus on their suitability for countermeasure evaluation. Bed rest is the most commonly used analog for evaluating countermeasures. While countermeasures are typically developed to target one or maybe two particular physiologic issues, it is increasingly important to evaluate all of the organ systems to discern whether they might be unintended consequences on nontargeted tissues. In preparation for Mars exploration it will be necessary to fully integrate countermeasures to protect all organ systems. The synergistic and antagonistic effects of multiple countermeasures needs to be the focus of future work.


Asunto(s)
Reposo en Cama , Vuelo Espacial , Simulación de Ingravidez , Ingravidez , Humanos
20.
Artículo en Inglés | MEDLINE | ID: mdl-24051298

RESUMEN

The large enhancement of signal observed in surface enhanced Raman spectroscopy (SERS) could be helpful for identifying amino acids on the surface of other planets, in particular for Mars, as well as in prebiotic chemistry experiments of interaction minerals/amino acids. This paper reports the effect of several substances (NaCl, MgCl2, KBr, CaSO4, K2SO4, MgSO4, KI, NH4Cl, SrCl2, CaCl2, Na2SO4, KOH, NaOH, H3BO3) on the SERS spectra of colloid of sodium citrate-CSC and colloid of sodium borohydride-CSB. The effect of four different artificial seawaters and these artificial seawaters plus amino acids (α-Ala-alanine, Gly-glycine, Cys-cysteine, AIB-2-aminoisobutiric acid) on SERS spectra using both CSC and CSB was also studied. For CSC, the effect of water, after dilution of the colloid, was the appearance of several absorption bands belonging to sodium citrate in the SERS spectrum. In general, artificial seawaters enhanced several bands in SERS spectra using CSC and CSB and CSC was more sensitive to those artificial seawaters than CSB. The identification of Gly, α-Ala and AIB using CSC or CSB was not possible because several bands belonging to artificial seawaters, sodium citrate or sodium borohydride were enhanced. On the other hand, artificial seawaters did not interfere in the SERS spectra of Cys using CSC or CSB, although the interaction of Cys with each colloid was different. For CSC the band at 2568 cm(-1) (S-H stretching) of Cys vanished and for CSB the intensity of this band decreased, indicating the -SH of Cys was bonded to Ag to form -S-Ag. Thus SERS spectroscopy could be used for Cys detection on Mars soils using Mars land rovers as well as to study the interaction between Cys and minerals in prebiotic chemistry experiments.


Asunto(s)
Aminoácidos/química , Prebióticos/análisis , Agua de Mar/química , Plata/química , Espectrometría Raman , Borohidruros/química , Bromuros/química , Cloruros/química , Citratos/química , Coloides/química , Hidróxidos/química , Yoduros/química , Citrato de Sodio , Espectrofotometría Ultravioleta , Sulfatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA