Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 112(4): 55, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565721

RESUMEN

In August 2021, the Mar Menor, a saltwater lagoon located in the Region of Murcia (Spain), suffered a tragic environmental episode of dystrophic crisis and anoxia. The appearance of numerous dead fish in different areas of the lagoon over the course of days put all the authorities and the population of the area on alert. This paper shows a case study of what happened in the lagoon in terms of the presence of the most common inorganic pollutants. Measurements of the concentration of nitrogen species, phosphates and main heavy metals were carried out at different sampling sites in the Mar Menor from May 2021 to November 2022. Chemical analyses were carried out for each of the species under study. These analyses provide valuable information about the dystrophic crisis caused by a classic eutrophication process that began with the excessive nutrient input into the Mar Menor. Ion chromatography and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were used as instrumentation for the quantification of these samples. The species whose values were greatly increased after the tragic episode described above were nitrates. The concentration varied significantly at the different sampling sites throughout the study. On the last sampling date, decreased concentrations of all the species were measured at each of the sampling sites, coinciding with the apparent good state of the lagoon.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Nitratos/análisis , España
2.
Plants (Basel) ; 12(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37960131

RESUMEN

The aim of this study was to evaluate the most abundant native plants that could be used as a bio-monitor of metal(loid) concentration in dry riverbeds affected by mining activities. Three plants species and their respective rhizospheric soils were sampled from the El Beal (Piptatherum miliaceum, 15 samples), La Carrasquilla (Foeniculum vulgare, 10 samples), and Ponce (Dittrichia viscosa, 12 samples) dry riverbeds from the mining district of Cartegena-La Unión (SE Spain). There is scanty bibliography of the capacity of these species to be used as bio-monitors in the dry riverbeds. Plants categorized as a bio-monitor were established according to the bioaccumulation factor (BF), mobility ratio (MR), and linear correlations between metal(loid) concentrations in plants tissues (root or stem)-rhizospheric soils. The rhizospheric soils were highly contaminated for As, Cd, Pb, and Zn (Cf ≥ 6), and moderately contaminated for Mn (1 ≤ Cf < 3). Piptatherum miliaceum presented on Cd similar mean concentrations on rhizospheric soil and root, BF = 1.07, with a strong correlation soil-root (r = 0.61, p = 0.02). Therefore, of the three species with the capacity to grow in the area, Piptatherum miliaceum showed characteristics to be considered as a bio-monitor for Cd, with a BF > 1, and a positive-significant correlation between the rhizospheric soil and roots.

3.
Toxins (Basel) ; 15(9)2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37755952

RESUMEN

Marine biotoxins have posed a persistent problem along various coasts for many years. Coastal lagoons are ecosystems prone to phytoplankton blooms when altered by eutrophication. The Mar Menor is the largest hypersaline coastal lagoon in Europe. Sixteen marine toxins, including lipophilic toxins, yessotoxins, and domoic acid (DA), in seawater samples from the Mar Menor coastal lagoon were measured in one year. Only DA was detected in the range of 44.9-173.8 ng L-1. Environmental stressors and mechanisms controlling the presence of DA in the lagoon are discussed. As an enrichment and clean-up method, we employed solid phase extraction to filter and acidify 75 mL of the sample, followed by pre-concentration through a C18 SPE cartridge. The analytes were recovered in aqueous solutions and directly injected into the liquid chromatography system (LC-MS), which was equipped with a C18 column. The system operated in gradient mode, and we used tandem mass spectrometry (MS/MS) with a triple quadrupole (QqQ) in the multiple reaction monitoring mode (MRM) for analysis. The absence of matrix effects was checked and the limits of detection for most toxins were low, ranging from 0.05 to 91.2 ng L-1, depending on the compound. To validate the measurements, we performed recovery studies, falling in the range of 74-122%, with an intraday precision below 14.9% RSD.


Asunto(s)
Ecosistema , Toxinas Marinas , Espectrometría de Masas en Tándem , Cromatografía Liquida , Europa (Continente)
4.
Sci Total Environ ; 902: 166417, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611719

RESUMEN

The Mar Menor lagoon combined high biological production and environmental quality, making it an important economic engine. However, the pressure of human activities put its ecological integrity at risk, the oldest environmental impact being mining activity recorded since Roman times, about 3500 years ago, reaching its maximum intensity in the 20th century, contributing heavy metals to the lagoon sediments for almost 30 centuries. This work reviews the spatiotemporal evolution of the main heavy metals in this coastal lagoon using data from 272 surface sediment samples obtained during the last 40 years and two deep cores covering the total history of the lagoon (c. 6500 yrs BP), so as their incidence in the lagoon trophic web. The observed patterns in sedimentation, sediment characteristics and heavy metal content respond to the complex interaction, sometimes synergistic and sometimes opposing, between climatic conditions, biological production and human activities, with mining being mainly responsible for Pb, Zn and Cd inputs and port activities for Cu. High Fe/Al, Ti/Al and Zr/Al ratios identify periods of mining activity, while periods of arid climatic conditions and deforestation that increase erosion processes in the drainage basin and silt concentration in the lagoon sediments are determined by high Zr/Rb and, to a lesser extent, Zr/Al and Si/Al ratios. After the cessation of direct discharges into the lagoon in the 1950s, the recent evolution of heavy metals concentration and its spatial redistribution would be determined by hydrographic and biogeochemical processes, solubility of different elements, and coastal works in harbours and on beaches. The bioconcentration factor decreases along the trophic levels of the food web, suggesting that the lagoon ecosystem provides an important service by retaining heavy metals in the sediment, largely preventing their bioavailability, but actions involving resuspension or changes in sediment conditions would pose a risk to organisms.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Ecosistema , España , Sedimentos Geológicos/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Cadena Alimentaria
5.
Mar Pollut Bull ; 194(Pt B): 115286, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453170

RESUMEN

The uprising interest in gelatinous zooplankton populations must cope with a lack of robust time series of direct abundance observations in most of the ecosystems because of the difficulties in sampling small, fragile organisms, and of the dismissal of jellyfish as a nuisance. Most of the hypotheses about their dynamics are built on a few species and ecosystems and extended to the whole group, but the blooms are registered mainly for the members of the Class Scyphozoa that dwell in temperate, shallow waters. Within the scyphozoans, our knowledge about their phenology relies mainly on laboratory experiences. Here we present a long-term analysis of the phenology and life cycle of three scyphozoan species in an ecosystem affected by eutrophication in a climate change context. We have found that the phenology is directed by temperature, but not modified by different thermal and ecological regimes.


Asunto(s)
Ecosistema , Escifozoos , Animales , Cambio Climático , Gelatina , Eutrofización
6.
Sci Total Environ ; 896: 165264, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37400037

RESUMEN

Coastal lagoons are among the most productive and biodiverse systems in the world and are important sentinels of climate change. The Mar Menor is one of the largest coastal lagoons in the Mediterranean, providing a variety of ecosystem services and resources to the community. However, in recent decades this lagoon has suffered drastic changes and degradation caused by human activities. We analyzed the concentration of dissolved organic carbon (DOC) and the optical properties of dissolved organic matter (DOM) in the water column and sediment pore water during the summer and winter of 2018 and during eighteen months from 2016 to 2018. Overall, we found that the composition of DOM is mainly related to and enhanced by anthropogenic activities and microbial metabolism. DOM enters the lagoon via urban and agricultural runoff, drainage systems, and wastewater treatment plants. Additionally, strong microbial metabolism in sediments leads to differences in DOM composition between water and sediments. In the water column, humic-like components accounted for 71 % of the total DOM, while protein-like compounds were most abundant in sediment pore water. We observed a strong seasonal variability associated with precipitation and the system collapse in 2016 (phytoplankton bloom), which resulted in the death of 80 % of macrophytes. The sediments act as a source of DOM to the overlying water, likely due to relatively high organic matter content and intense microbial activity, primarily through anaerobic pathways. Benthic fluxes of DOC ranged from 5.24 to 33.30 mmol m-2 d-1, being higher in winter than summer 2018 and decreasing from north to south, likely related to lower residence time in the northern basin, groundwater discharge and accumulation of organic matter from the dead meadows. We estimate a net flux of DOC from the Mar Menor toward the Mediterranean Sea of 1.57 × 107 mol yr-1.

7.
Environ Sci Pollut Res Int ; 30(33): 80106-80122, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37289386

RESUMEN

The European eel (Anguilla anguilla) is a critically endangered species. The impact of environmental contamination on this species has been highlighted as contributing to the decline in recruitment. The Mar Menor hypersaline coastal lagoon (SE Spain) is one of the most productive fisheries of European eel in Europe, making it a critical habitat for species conservation. The present study aimed to provide an initial overview of the impact of organic chemical contaminants on the European eel and the potential sublethal effects of chemical pollution on pre-migrating eels in this hypersaline habitat. We investigated muscle bioaccumulation of main persistent and hazardous organic contaminants (including some current-use pesticides) and genotoxicity, neurotoxicity, and xenobiotic detoxification system responses. The findings show that lagoon eels were exposed to high levels of legacy organochlorine contaminants, recently banned pesticides (chlorpyrifos), and some emerging chemicals. Some individuals surpassed the maximum levels of CBs authorized by the European Commission for human consumption. In this species, residuals of chlorpyrifos, pendimethalin, and chlorthal dimethyl have been reported for the first time. This field study provides relevant data to stock management and human health consumption and provides the first biomarker responses in European eel under permanent hypersaline conditions. Furthermore, the high frequency of micronuclei in peripheral erythrocytes of lagoon eels indicates sublethal genotoxic effects on the organism. Overall, the European eels growing and maturing in the Mar Menor lagoon are exposed to toxic and carcinogenic chemicals. The lack of seafood safety regulations for human consumption for some legacy chemicals that were measured in high concentrations in our study requires special action. Further biomonitoring and research are recommended to protect the animal, public, and environmental health.


Asunto(s)
Anguilla , Cloropirifos , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Animales , Europa (Continente) , Alimentos Marinos , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
8.
Ambio ; 52(6): 1112-1124, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37027123

RESUMEN

This work explores the role of knowledge claims and uncertainty in the public dispute over the causes and solutions to nonpoint-driven overfertilization of the Mar Menor lagoon (Spain). Drawing on relational uncertainty theory, we combine the analysis of narratives and of uncertainty. Our results show two increasingly polarized narratives that deviate in the causes for nutrient enrichment and the type of solutions seen as effective, all of which relate to contested visions on agricultural sustainability. Several interconnected uncertainties are mobilized to dispute the centrality of agriculture as a driver for eutrophication and to confront strategies that may hamper productivity. Yet, both narratives rest on a logic of dissent that strongly relies on divergent knowledge to provide legitimacy, ultimately reinforcing contestation. Transforming the ongoing polarization dynamics may require different inter- and transdisciplinary approaches that focus on sharing rather than assigning responsibility and that unpack rather than disregard existing uncertainties.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Incertidumbre , Agricultura , España
9.
Environ Res ; 228: 115887, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37054836

RESUMEN

Coastal ecosystems are particularly vulnerable to terrestrial inputs from human-impacted areas. The prevalence of wastewater treatment plants, unable to remove contaminants such as pharmaceuticals (PhACs), leads to their continuous input into the marine environment. In this paper, the seasonal occurrence of PhACs in a semi-confined coastal lagoon (the Mar Menor, south-eastern Spain) was studied during 2018 and 2019 by evaluating their presence in seawater and sediments, and their bioaccumulation in aquatic organisms. Temporal variation in the contamination levels was evaluated by comparison to a previous study carried out between 2010 and 2011 before the cessation of permanent discharges of treated wastewater into the lagoon. The impact of a flash flood event (September 2019) on PhACs pollution was also assessed. A total of seven compounds (out of 69 PhACs analysed) were found in seawater during 2018-2019, with a limited detection frequency (<33%) and concentrations (up to 11 ng/L of clarithromycin). Only carbamazepine was found in sediments (ND-1.2 ng/g dw), suggesting an improved environmental quality in comparison to 2010-2011 (when 24 and 13 compounds were detected in seawater and sediments, respectively). However, the biomonitoring of fish and molluscs showed a still remarkable accumulation of analgesic/anti-inflammatory drugs, lipid regulators, psychiatric drugs and ß-blocking agents, albeit not higher than in 2010. The flash flood event from 2019 increased the prevalence of PhACs in the lagoon, compared to the 2018-2019 sampling campaigns, especially in the upper water layer. After the flash flood the antibiotics clarithromycin and sulfapyridine yielded the highest concentrations ever reported in the lagoon (297 and 145 ng/L, respectively), alongside azithromycin in 2011 (155 ng/L). Flash flood events associated with sewer overflows and soil mobilisation, which are expected to increase under climate change scenarios, should be considered when assessing the risks posed by pharmaceuticals to vulnerable aquatic ecosystems in the coastal areas.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Humanos , Animales , Monitoreo del Ambiente , Inundaciones , Bioacumulación , Claritromicina , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas
10.
Environ Geochem Health ; 45(12): 9157-9173, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36645626

RESUMEN

The objective of this study was to evaluate the level of pollution, sources and potential risk of heavy metals (Zn, Cu, Mn, Cd, Cr, Ni, Fe and Pb) and arsenic (As) in four dry riverbeds affected by mine tailing, which drain into one of the biggest coastal lagoon of Europe (Mar Menor). El Beal, La Carrasquilla, Las Matildes and Ponce dry riverbeds sediments were sampled along its course (20, 18, 13, 19 samples were collected, respectively), and total/soluble metal(loid)s, water soluble ions, nitrogen, and organic/inorganic carbon contents were analyzed. Spatial distribution, principal component analysis (PCA), hierarchical cluster analysis (HCA), contamination factor (Cf), pollution load index (PLI) and potential ecological risk index (RI) were used to identify the possible sources of metal(loid)s and to assess the sediment pollution status. The results showed that the mean total concentrations of As, Cu, Cd, Mn, Zn and Pb exceeded the natural background levels of the study area, with the highest values located close to the mining areas. Correlation and cluster analysis identified that Cd and Zn were associated mainly with anthropogenic activities for all riverbeds, while Cr and Ni come from parent. PLI graded the four riverbeds as contaminated by heavy metals, while RI manifested that 100% of samples located in El Beal, La Carrasquilla and Las Matildes had a significantly high ecological risk. Therefore, this study suggests that mine wastes are the main source of metal(loids) contamination in the dry riverbeds, which results can be used to design actions and measures to reduce the environmental impact of metal(loid)s in the Mar Menor coastal lagoon.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio/análisis , Plomo/análisis , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , China
11.
J Environ Manage ; 331: 117292, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657199

RESUMEN

Leachates from intensive agriculture containing high nitrate have been identified as a major cause of the severe eutrophication crisis that impacts Mar Menor (SE Spain), the largest hypersaline coastal lagoon in the Mediterranean basin. A best management practice for removing NO3--N is denitrifying bioreactors. This is the first study to assess the efficiency of citrus woodchips bioreactors in treating agricultural leachates that flow to the Mar Menor via surface discharges. Denitrification capacity, woodchip degradation (by weight loss), formation of potentially harmful compounds, and greenhouse gas (GHG) emissions were assessed. Three bioreactors (6 m × 0.98 m x 1.2 m) filled with citrus woodchips (3 m3 d-1 per bioreactor) through which the untreated ditch water over 1.5 years. Bioreactors were operated at 8 h, 16 h, and 24 h hydraulic residence time respectively, in each bioreactor. The main characteristics of the ditch water were: pH ≈ 7.5-8.0, electrical conductivity ≈ 5-8 dS m-1, dissolved organic carbon ≈6-10 mg L-1, and NO3--N ≈ 22-45 mg L-1. Bioreactors were highly efficient in reducing NO3--N. The average RNO3 in effluents was for the complete experimental period 8 g N m-3 d-1, 10.9 g N m-3 d-1, and 12.6 g N m-3 d-1 for 8, 16 and 24 h residence time, respectively. Nitrate reduction efficiency was modulated by seasonal changes in temperature, with an increasing efficiency in warmer periods (maximum ≈ 85-90% for all hydraulic residence time) and decreasing in colder ones (minimum ≈ 12%, 23% and 41% for hydraulic residence time 8, 16 and 24 h respectively). Woodchips degradation was greatest during the first six months (average ≈ 29% weight loss) in the material above the water level, attributable to aerobic mineralization of the organic carbon, while weight loss was ≈11% in woodchip media continuously below the water level. Dissolved organic carbon, sulfide, ammonium, and soluble phosphorus concentrations in the effluents were mostly low, although some peaks in concentrations occurred. Design consideration must be taken to avoid environmental impacts due to the occasional presence of harmful compounds in the effluents.


Asunto(s)
Desnitrificación , Nitratos , Materia Orgánica Disuelta , Agricultura , Reactores Biológicos
12.
Sci Total Environ ; 859(Pt 1): 160144, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36375550

RESUMEN

Coastal lagoons are ecosystems of high environmental importance but are quite vulnerable to human activities. The continuous inflow of pollutant loads can trigger negative impacts on the ecological status of these water bodies, which is contrary to the European Green Deal. One example is the Mar Menor coastal lagoon in Spain, which has experienced significant environmental degradation in recent years due to excessive external nutrient input, especially from non-point source (NPS) pollution. Mar Menor is one of the largest coastal lagoons of the Mediterranean region and a site of great ecological and socio-economic value. In this study, the highly anthropogenic and complex watershed of Mar Menor, known as Campo de Cartagena (1244 km2), was modelled with the Soil and Water Assessment Tool (SWAT) to analyse potential options for recovery of this unique system. The model was used to simulate several best management practices (BMP) proposed by recent Mar Menor regulations, such as vegetative filter strips, shoreline buffers, contour farming, removal of illegal agriculture, crop rotation management, waterway vegetation restoration, fertiliser management and greenhouse rainwater harvesting. Sixteen scenarios of individual and combined BMPs were analysed in this study. We found that, as individual measures, vegetative filter strips and contour farming were most effective in nutrient reduction: approximately 30 % for total nitrogen (TN) and 40 % for total phosphorus (TP). Moreover, waterway vegetation restoration showed the highest sediment (S) reduction at approximately 20 %. However, the combination of BMPs demonstrated clear synergistic effects, reducing S export by 38 %, TN by 67 %, and TP by 75 %. Selecting the most appropriate BMPs to be implemented at a watershed scale requires a holistic approach considering effectiveness in reducing NPS pollution loads and BMP implementation costs. Thus, we have demonstrated a way forward for enabling science-informed decision-making when choosing strategies to control NPS contamination at the watershed scale.


Asunto(s)
Contaminación Difusa , Contaminantes Químicos del Agua , Humanos , Ecosistema , Monitoreo del Ambiente , Contaminación Difusa/análisis , Fósforo/análisis , Nitrógeno/análisis , Agricultura , Agua , Contaminantes Químicos del Agua/análisis
13.
Mar Pollut Bull ; 185(Pt B): 114376, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36423566

RESUMEN

Pinna nobilis is undergoing one of the most dramatic events suffered by an endangered species. An emerging disease has relegated its populations to coastal lagoons or estuaries with salinities beyond the 36.5-39.7 psu range. The Mar Menor is one of two such locations on the Spanish coastline. Poor environmental conditions and eutrophication and anoxia events, that became critical in 2016, 2019 and 2021, have reduced its population in >99 %. In this work, the spatial distribution of the species within the lagoon and the factors determining its survival along the successive crises of eutrophication are studied using a two-stage (presence/absence estimation and density modelling) Species Distribution Model. A potential area of 200.97 ha and an average density of 1.05 ind.100 m2 is estimated for 2020. The viability of the Mar Menor population depends on management actions designed both for the species and to improve the lagoon environmental state.


Asunto(s)
Bivalvos , Animales , Incertidumbre , Eutrofización , Especies en Peligro de Extinción , Estuarios
14.
Front Microbiol ; 13: 937683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160249

RESUMEN

Coastal marine lagoons are environments highly vulnerable to anthropogenic pressures such as agriculture nutrient loading or runoff from metalliferous mining. Sediment microorganisms, which are key components in the biogeochemical cycles, can help attenuate these impacts by accumulating nutrients and pollutants. The Mar Menor, located in the southeast of Spain, is an example of a coastal lagoon strongly altered by anthropic pressures, but the microbial community inhabiting its sediments remains unknown. Here, we describe the sediment prokaryotic communities along a wide range of environmental conditions in the lagoon, revealing that microbial communities were highly heterogeneous among stations, although a core microbiome was detected. The microbiota was dominated by Delta- and Gammaproteobacteria and members of the Bacteroidia class. Additionally, several uncultured groups such as Asgardarchaeota were detected in relatively high proportions. Sediment texture, the presence of Caulerpa or Cymodocea, depth, and geographic location were among the most important factors structuring microbial assemblages. Furthermore, microbial communities in the stations with the highest concentrations of potentially toxic elements (Fe, Pb, As, Zn, and Cd) were less stable than those in the non-contaminated stations. This finding suggests that bacteria colonizing heavily contaminated stations are specialists sensitive to change.

15.
Sci Total Environ ; 846: 157388, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35850350

RESUMEN

The excess input of nutrients that triggers eutrophication processes is one of the main destabilizing factors of coastal ecosystems, being coastal lagoons prone to suffer these effects and present dystrophic crises. This process is aggravated by the current trend of rising temperatures and more frequent torrential rains due to climate change. We observed that the Mar Menor lagoon had a great capacity for self-regulation of its trophic web and resistance to the eutrophication process, but after 30 years of nutrient input due to the change in the agricultural regime in its drainage basin in the 1990s, the lagoon ecosystem has suffered several of these events. In this work, we characterize the seasonal dynamic of the pelagic system during the last dystrophic crises. Phosphorus and nitrogen alternate as the limiting nutrient for phytoplankton proliferation. The entrance of phosphorus is mainly related to vacation periods, while nitrogen inputs, both superficial and sub-superficial, are more related to chronic high nitrates concentration in the water table after the agricultural activities carried out in the area changed. Our analysis reveals that the summer season is prone to suffer periodical hypoxia events when the N/P ratio decreases, and the temperature rises. In the Mar Menor, the ecological balance has been maintained in recent decades thanks to, among other mechanisms, the spatial and temporal segregation of top-down control over phytoplankton exerted by three species of jellyfish. However, the deep reduction in the abundance of the summer jellyfish species and the excessive proliferation of phytoplankton has meant the loss of this control. Moreover, we have registered a decline in the abundance of all the other zooplanktonic groups during the dystrophic crises. We suggest that management actions should address the input sources of water and nutrients, and an integrated management of the activities carried out throughout the watershed.


Asunto(s)
Ecosistema , Eutrofización , Nitrógeno , Nutrientes , Fósforo , Fitoplancton/fisiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-34202236

RESUMEN

This paper presents the results on the presence and characterization of microplastics (MP) in the gastrointestinal tract of gilthead seabream (Sparus aurata L.), a species of commercial interest from the Mar Menor coastal lagoon in Southeast Spain. This is the first time that microplastic ingestion is recorded in any species from this semi-enclosed bay. Stomach and intestine from a total of 17 specimens captured by local fishermen were processed, and microplastic particles and fibers found in all of them were displayed. Overall, 40.32% (279/692) of total isolated microparticles proved to be microplastics; i.e., <5 mm, as identified by FTIR spectroscopy. The average value by fish was 20.11 ± 2.94 MP kg-1, corresponding to average concentrations of 3912.06 ± 791.24 and 1562.17 ± 402.04 MP by kg stomach and intestine, respectively. Four MP forms were isolated: fiber (71.68%), fragment (21.15%), film (6.81%), and microbead (0.36%), with sizes ranging from 91 µm to 5 mm, an average of 0.83 ± 0.04 mm, and no statistically significant differences between mean sizes in stomach and intestine samples (F-test = 0.004; p = 0.936). Nine polymer types were detected, although most of fibers remained unidentified because of their small size, the presence of polymer additives, or closely adhered pollutants despite the oxidizing digestion carried out to eliminate organic matter. No significant correlation was found between main biological parameters and ingested microplastics, and high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyethylene polypropylene (PEP), and polyvinyl (PV) were identified as the most abundant polymers. The average microplastic ingestion in this study area was higher than those reported in most studies within the Mediterranean Sea, and closely related to microplastic pollution in the surrounding area, although with a predominance of fiber form mainly due to fishery activities.


Asunto(s)
Dorada , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Tracto Gastrointestinal , Mar Mediterráneo , Microplásticos , Plásticos , España , Contaminantes Químicos del Agua/análisis
17.
Sci Total Environ ; 780: 146450, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34030294

RESUMEN

In this work two sensitive areas of the Spanish coast located in the Atlantic (Ria de Vigo) and Mediterranean (Mar Menor lagoon) have been studied regarding their contamination by phthalates, organotin compounds and per-polyfluoroalkyl substances (seawater and sediments) in two different campaigns (spring and autumn in 2015). PFAS and OTCs were detected in seawater and sediments at low concentrations (few ng L-1 or ng g-1), whereas PAEs were detected at levels two orders of magnitude higher, particularly in Mar Menor lagoon due to its semi-confined characteristics. However, PAEs and OTCs concentration in sediments were higher in Ría de Vigo than in Mar Menor lagoon as a consequence of the influence of the important urban nuclei and port in that area. The ecological risk assessment revealed that in both areas tributyltin, dibutyltin and diethylphthalate pose a significant risk in sediments, whereas in seawater tributyltin in both areas resulted in a high risk.

18.
Mar Pollut Bull ; 168: 112407, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33930643

RESUMEN

The seasonal bioaccumulation of trace metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorinated pesticides (OCPs) in sea snail (Hexaplex trunculus) and sea cucumber (Holothuria polii) from Mar Menor lagoon were characterised. The highest concentrations of p,p'-DDE were detected in the central and south part of Mar Menor lagoon. However, the highest concentrations of metals in sea snail and holothurians were detected in the influence area of El Beal wadi. Biomagnification factors (BMF) in sea snail from cockle (sea snail-cockle concentration ratio) were higher than 5 for metal and organochlorinated compounds. However, similar concentrations were observed in both species for PAHs due to gastropods capability of metabolising these pollutants. Consequently, sea snail is proposed as a sentinel for trace metals, PCBs and OCPs in the coastal lagoons, not only due to its bioaccumulation and biomagnification capacity but also the easy sampling and amply distribution in many coastal areas.


Asunto(s)
Contaminantes Ambientales , Holothuria , Plaguicidas , Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Pepinos de Mar , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Plaguicidas/análisis , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Especies Centinela , Caracoles , Contaminantes Químicos del Agua/análisis
19.
Mar Pollut Bull ; 158: 111368, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32573453

RESUMEN

Heavy metal pollution is related to the fall in European eel (Anguilla anguilla) populations. The Mar Menor lagoon (SE Spain) is home to an endangered population of this species, which is still caught for human consumption. The presence of Pb, Cd and Hg in the livers and muscles and the Se:Hg ratio in muscle of 150 eels from this lagoon were determined. Pb concentrations were higher than those reported from other populations in the world, while Cd and Hg concentrations in the tissues analysed were lower. In terms of food safety, Se concentrations play an important role in sequestering Hg in eels from this lagoon.


Asunto(s)
Anguilla , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Humanos , Alimentos Marinos , España
20.
Chemosphere ; 253: 126710, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32464757

RESUMEN

The occurrence of bioactive compounds and contaminant-associated effects was assessed by means of in vivo and in vitro assays using different extractable fractions of surface sediments from a contaminated coastal lagoon (Mar Menor, SE Spain). Sediment elutriates and clean seawater, previously exposed to whole sediment, were used for assessing the in vivo toxicity on embryo development of the sea urchin Paracentrotus lividus. Agonist and antagonist activities relating to estrogen and androgen receptors and agonist activities on aryl hydrocarbon receptor (expressed as ethoxyresorufin-O-deethylase (EROD) activities) were investigated in sediment extracts by using HER-Luc, AR-EcoScreenTM and fibroblast-like RTG-2 cell lines. Embryotoxicity effects were greater for sediment elutriates than those incubated in sediment-water interphase, implying that diffusion of bioactive chemicals can occur from sediments to sea water column, favoured by sediment disturbance events. In vitro results show the occurrence in extracts of compounds with estrogen antagonism, androgen antagonism and dioxin-like activities. Multidimensional scaling analysis classified the sampling sites into four sub-clusters according to their chemical-physical and biological similarities, relating in vitro bioactivity with the total organic carbon and known organic chemical load, with particular reference to total sum of PAHs, PCB 180, p,p-DDE and terbuthylazine. Overall, results pointed to the presence of unknown or unanalyzed biologically-active compounds in the sediments, mostly associated with the extracted polar fraction of the Mar Menor lagoon sediments. Our findings provide relevant information to be considered for the environmental management of contaminated coastal lagoons.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Agua de Mar/química , Contaminantes Químicos del Agua/toxicidad , Animales , Línea Celular , Citocromo P-450 CYP1A1/metabolismo , Dioxinas/análisis , Ratones , Paracentrotus/efectos de los fármacos , Paracentrotus/embriología , Bifenilos Policlorados/análisis , Dibenzodioxinas Policloradas/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Receptores de Hidrocarburo de Aril/metabolismo , Erizos de Mar , España , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA