Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.922
Filtrar
1.
Int Immunopharmacol ; 142(Pt B): 113176, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303539

RESUMEN

OBJECTIVE: Postoperative scar formation is the primary cause of uncontrolled intraocular pressure following trabeculectomy failure. This study aimed to evaluate the efficacy of zotarolimus as an adjuvant anti-scarring agent in the experimental trabeculectomy. METHODS: We performed differential gene and Gene Ontology enrichment analysis on rabbit follicular transcriptome sequencing data (GSE156781). New Zealand white Rabbits were randomly assigned into three groups: Surgery only, Surgery with mitomycin-C treatment, Surgery with zotarolimus treatment. Rabbits were euthanized 3 days or 28 days post-trabeculectomy. Pathological sections were analyzed using immunohistochemistry, immunofluorescence, and Masson staining. In vitro, primary human tenon's capsule fibroblasts (HTFs) were stimulated by transforming growth factor-ß1 (TGF-ß1) and treated with either mitomycin-C or zotarolimus. Cell proliferation and migration were evaluated using cell counting kit-8, cell cycle, and scratch assays. Mitochondrial membrane potential was detected with the JC-1 probe, and reactive oxygen species were detected using the DCFH-DA probe. RNA and protein expressions were quantified using RT-qPCR and immunofluorescence. RESULTS: Transcriptome sequencing analysis revealed the involvement of complex immune factors and metabolic disorders in trabeculectomy outcomes. Zotarolimus effectively inhibited fibrosis, reduced proinflammatory factor release and immune cell infiltration, and improved the surgical outcomes of trabeculectomy. In TGF-ß1-induced HTFs, zotarolimus reduced fibrosis, proliferation, and migration without cytotoxicity via the dual regulation of the TGF-ß1/Smad2/3 and AMPK/AKT/mTOR pathways. CONCLUSION: Our study demonstrates that zotarolimus mitigates fibrosis by reducing immune infiltration and correcting metabolic imbalances, offering a potential treatment for improving trabeculectomy surgical outcomes.

2.
World J Transplant ; 14(3): 94914, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295976

RESUMEN

BACKGROUND: Liver transplantation (LT) is a potentially curative therapy for patients with hepatocellular carcinoma (HCC). HCC-recurrence following LT is associated with reduced survival. There is increasing interest in chemoprophylaxis to improve HCC-related outcomes post-LT. AIM: To investigate whether there is any benefit for the use of drugs with proposed chemoprophylactic properties against HCC, and patient outcomes following LT. METHODS: This was a retrospective study of adult patients who received Deceased Donor LT for HCC from 2005-2022, from a single Australian centre. Drug use was defined as statin, aspirin or metformin therapy for ≥ 29 days, within 24 months post-LT. A cox proportional-hazards model with time-dependent covariates was used for survival analysis. Outcome measures were the composite-endpoint of HCC-recurrence and all-cause mortality, HCC-recurrence and HCC-related mortality. Sensitivity analysis was performed to account for immortality time bias and statin dosing. RESULTS: Three hundred and five patients were included in this study, with 253 (82.95%) males with a median age of 58.90 years. Aetiologies of liver disease were 150 (49.18%) hepatitis C, 73 (23.93%) hepatitis B (HBV) and 33 (10.82%) non-alcoholic fatty liver disease (NAFLD). 56 (18.36%) took statins, 51 (16.72%) aspirin and 50 (16.39%) metformin. During a median follow-up time of 59.90 months, 34 (11.15%) developed HCC-recurrence, 48 (15.74%) died, 17 (5.57%) from HCC-related mortality. Statin, aspirin or metformin use was not associated with statistically significant differences in the composite endpoint of HCC-recurrence or all-cause mortality [hazard ratio (HR): 1.16, 95%CI: 0.58-2.30; HR: 1.21, 95%CI: 0.28-5.27; HR: 0.61, 95%CI: 0.27-1.36], HCC-recurrence (HR: 0.52, 95%CI: 0.20-1.35; HR: 0.51, 95%CI: 0.14-1.93; HR 1.00, 95%CI: 0.37-2.72), or HCC-related mortality (HR: 0.32, 95%CI: 0.033-3.09; HR: 0.71, 95%CI: 0.14-3.73; HR: 1.57, 95%CI: 0.61-4.04) respectively. Statin dosing was not associated with statistically significant differences in HCC-related outcomes. CONCLUSION: Statin, metformin or aspirin use was not associated with improved HCC-related outcomes post-LT, in a largely historical cohort of Australian patients with a low proportion of NAFLD. Further prospective, multicentre studies are required to clarify any potential benefit of these drugs to improve HCC-related outcomes.

3.
Adv Exp Med Biol ; 1460: 27-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287848

RESUMEN

The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.


Asunto(s)
Ritmo Circadiano , Conducta Alimentaria , Obesidad , Obesidad/fisiopatología , Obesidad/metabolismo , Obesidad/etiología , Ritmo Circadiano/fisiología , Humanos , Animales , Conducta Alimentaria/fisiología , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/fisiopatología , Dieta Cetogénica/efectos adversos , Relojes Circadianos/fisiología , Relojes Circadianos/genética
4.
Adv Exp Med Biol ; 1460: 167-198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287852

RESUMEN

Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKß/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.


Asunto(s)
Hiperfagia , Obesidad , Humanos , Hiperfagia/fisiopatología , Hiperfagia/psicología , Obesidad/metabolismo , Obesidad/fisiopatología , Trastorno por Atracón/terapia , Trastorno por Atracón/psicología , Trastorno por Atracón/fisiopatología , Animales , Conducta Alimentaria/fisiología
5.
Adv Exp Med Biol ; 1460: 199-229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287853

RESUMEN

The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases and play an important role in obesity. Impairment of insulin signaling in obesity is largely mediated by the activation of the inhibitor of kappa B-kinase beta and the c-Jun N-terminal kinase (JNK). Oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular levels. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. To alleviate lipotoxicity and insulin resistance, promising targets are pharmacologically inhibited. Nifedipine, calcium channel blocker, stimulates lipogenesis and adipogenesis by downregulating AMPK and upregulating mTOR, which thereby enhances lipid storage. Contrary to the nifedipine, metformin activates AMPK, increases fatty acid oxidation, suppresses fatty acid synthesis and deposition, and thus alleviates lipotoxicity. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2 alpha kinase (PERK), and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. An increase in intracellular oxidative stress can promote PKC-ß activation. Activated PKC-ß induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhance triglyceride accumulation and lipotoxicity. Liraglutide attenuates mitochondrial dysfunction and reactive oxygen species generation. Co-treatment of antiobesity and antidiabetic herbal compound, berberine with antipsychotic drug olanzapine decreases the accumulation of triglyceride. While low-dose rapamycin, metformin, amlexanox, thiazolidinediones, and saroglitazar protect against insulin resistance, glucagon-like peptide-1 analog liraglutide inhibits palmitate-induced inflammation by suppressing mTOR complex 1 (mTORC1) activity and protects against lipotoxicity.


Asunto(s)
Obesidad , Humanos , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Animales , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Terapia Molecular Dirigida , Resistencia a la Insulina , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
6.
Adv Exp Med Biol ; 1460: 539-574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287864

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.


Asunto(s)
Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Resistencia a la Insulina , Hígado/patología , Hígado/metabolismo , Progresión de la Enfermedad , Estrés Oxidativo , Índice de Severidad de la Enfermedad , Animales
7.
Adv Exp Med Biol ; 1460: 767-819, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287872

RESUMEN

Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.


Asunto(s)
Neoplasias de la Mama , Obesidad , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/terapia , Neoplasias de la Mama/metabolismo , Femenino , Obesidad/complicaciones , Factores de Riesgo , Índice de Masa Corporal , Pronóstico
8.
Int J Biol Sci ; 20(11): 4178-4189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247820

RESUMEN

Currently, chronic hepatitis B virus infection is still one of the most serious public health problems in the world. Though current strategies are effective in controlling infection and slowing down the disease process, it remains a big challenge to achieve a functional cure for chronic hepatitis B in a majority of patients due to the inability to clear the cccDNA pool. The mammalian target of rapamycin (mTOR) integrates nutrition, energy, growth factors, and other extracellular signals, participating in gene transcription, protein translation, ribosome synthesis, and other biological processes. Additionally, mTOR plays an extremely important role in cell growth, apoptosis, autophagy, and metabolism. More and more evidence show that HBV infection can activate the mTOR pathway, suggesting that HBV uses or hijacks the mTOR pathway to facilitate its own replication. Therefore, mTOR signaling pathway may be a key target for controlling HBV infection. However, the role of the central cytokine mTOR in the pathogenesis of HBV infection has not yet been systematically addressed. Notably, mTOR is commonly activated in hepatocellular carcinoma, which can progress from chronic hepatitis B. This review systematically summarizes the role of mTOR in the life cycle of HBV and its impact on the clinical progression of HBV infection.


Asunto(s)
Carcinoma Hepatocelular , Virus de la Hepatitis B , Neoplasias Hepáticas , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Virus de la Hepatitis B/fisiología , Hepatitis B/metabolismo , Animales , Hepatitis B Crónica/metabolismo
9.
J Investig Med ; : 10815589241270489, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39091053

RESUMEN

Hepatocellular carcinoma (HCC) is a prevalent form of primary liver cancer with a 5-year survival rate of just 18%. Ferulic acid, a natural compound found in fruits and vegetables such as sweet corn, rice bran, and dong quai, is an encouraging drug known for its diverse positive effects on the body, including anti-inflammatory, anti-apoptotic, and neuroprotective properties. Our study aimed to investigate the potential antitumor effects of ferulic acid to inhibit tumor growth and inflammation of HCC in rats. HCC was induced in rats by administering thioacetamide. Additionally, some rats were given 50 mg/kg of ferulic acid three times a week for 16 weeks. Liver function was assessed by measuring serum alpha-fetoprotein (AFP) and examining hepatic tissue sections stained with hematoxylin/eosin or anti-hypoxia induced factor-1α (HIF-1α). The hepatic mRNA and protein levels of HIF-1α, nuclear factor κB (NFκB), tumor necrosis factor-α (TNF-α), mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), cMyc, and cyclin D1 were examined. The results showed that ferulic acid increased the rats' survival rate by reducing serum AFP levels and suppressing hepatic nodules. Furthermore, ferulic acid ameliorated the appearance of vacuolated cytoplasm induced by HCC, reduced apoptotic nuclei, and necrotic nodules. Finally, ferulic acid decreased the expression of HIF-1α, NFκB, TNF-α, mTOR, STAT3, cMyc, and cyclin D1. In conclusion, ferulic acid is believed to possess antitumor properties by inhibiting HCC-induced hypoxia through the suppression of HIF-1α expression. Additionally, it helps in reducing the expression of mTOR, STAT3, cMyc, and cyclin D1, thereby slowing down tumor growth. Lastly, ferulic acid reduced hepatic tissue inflammation by downregulating NFκB and TNF-α.

10.
J Clin Med ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124572

RESUMEN

Background: The use of mammalian target of rapamycin inhibitors (mTORis) in kidney transplantation increases the risk of donor-specific human leukocyte antigen (HLA) antibody formation and rejection. Here, we investigated the long-term consequences of early mTORi treatment compared to calcineurin inhibitor (CNI) treatment. Methods: In this retrospective single-center analysis, key outcome parameters were compared between patients participating in randomized controlled immunosuppression trials between 1998 and 2011, with complete follow-up until 2018. The outcomes of eligible patients on a CNI-based regimen (n = 384) were compared with those of patients randomized to a CNI-free mTORi-based regimen (n = 81) and 76 patients randomized to a combination of CNI and mTORi treatments. All data were analyzed according to the intention-to-treat (ITT) principle. Results: Deviation from randomized immunosuppression for clinical reasons occurred significantly more often and much earlier in both mTORi-containing regimens than in the CNI treatment. Overall patient survival, graft survival, and death-censored graft survival did not differ between the treatment groups. Donor-specific HLA antibody formation and BPARs were significantly more common in both mTORi regimens than in the CNI-based immunosuppression. Conclusions: The tolerability and efficacy of the mTORi treatment in kidney graft recipients are inferior to those of CNI-based immunosuppression, while the long-term patient and graft survival rates were similar.

11.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241273556, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39208247

RESUMEN

OBJECTIVE: Activation of gap junction channels can induce neuropathic pain. Octanol can limit the conductance of gap junctions containing connexin 43 proteins. Thus, this study focused on the roles of octanol in chronic constriction injury (CCI)-induced peripheral neuropathy in mice and its mechanisms of action. METHODS: Male mice were assigned into control, sham, CCI, CCI + Octanol-20 mg/kg, CCI + Octanol-40 mg/kg and CCI + Octanol-80 mg/kg groups. CCI was performed by applying three loose ligations to mouse sciatic nerve, and the mice with CCI was administered with 20 mg/kg, 40 mg/kg, or 80 mg/kg octanol. The neuropathic pain development was examined by assessing thermal withdrawal latency, paw withdrawal mechanical threshold, and sciatic functional index. Histopathological changes were evaluated by hematoxylin and eosin staining. The phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) was examined by western blotting. The expression of Akt and mTOR was also evaluated by immunofluorescence staining. RESULTS: Octanol alleviated the CCI-induced mechanical and thermal hyperalgesia and sciatic functional loss. Additionally, octanol relieved the CCI-induced abnormal histopathological changes. Mechanistically, octanol inactivated the Akt/mTOR pathway in the mice with CCI. CONCLUSION: In conclusion, octanol can alleviate CCI-induced peripheral neuropathic by regulating the Akt/mTOR pathway and might be a novel pharmacological intervention for neuropathic pain.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Neuropatía Ciática , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Masculino , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/metabolismo , Nervio Ciático/lesiones , Octanoles/farmacología , Modelos Animales de Enfermedad , Neuralgia/etiología , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ratones Endogámicos C57BL
12.
Alzheimers Dement ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171353

RESUMEN

INTRODUCTION: Reduced brain energy metabolism, mammalian target of rapamycin (mTOR) dysregulation, and extracellular amyloid beta (Aß) oligomer (xcAßO) buildup are some well-known Alzheimer's disease (AD) features; how they promote neurodegeneration is poorly understood. We previously reported that xcAßOs inhibit nutrient-induced mitochondrial activity (NiMA) in cultured neurons. We now report NiMA disruption in vivo. METHODS: Brain energy metabolism and oxygen consumption were recorded in heterozygous amyloid precursor protein knock-in (APPSAA) mice using two-photon fluorescence lifetime imaging and multiparametric photoacoustic microscopy. RESULTS: NiMA is inhibited in APPSAA mice before other defects are detected in these Aß-producing animals that do not overexpress APP or contain foreign DNA inserts into genomic DNA. Glycogen synthase kinase 3 (GSK3ß) signals through mTORC1 to regulate NiMA independently of mitochondrial biogenesis. Inhibition of GSK3ß with TWS119 stimulates NiMA in cultured human neurons, and mitochondrial activity and oxygen consumption in APPSAA mice. DISCUSSION: NiMA disruption in vivo occurs before plaques, neuroinflammation, and cognitive decline in APPSAA mice, and may represent an early stage in human AD. HIGHLIGHTS: Amyloid beta blocks communication between lysosomes and mitochondria in vivo. Nutrient-induced mitochondrial activity (NiMA) is disrupted long before the appearance of Alzheimer's disease (AD) histopathology in heterozygous amyloid precursor protein knock-in (APPSAA/+) mice. NiMA is disrupted long before learning and memory deficits in APPSAA/+ mice. Pharmacological interventions can rescue AD-related NiMA disruption in vivo.

13.
Anim Biosci ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39210799

RESUMEN

Cell growth and metabolism necessitate the involvement of amino acids, which are sensed and integrated by the mammalian target of rapamycin complex 1 (mTORC1). However, the molecular mechanisms underlying amino acid sensing remain poorly understood. Research indicates that amino acids are detected by specific sensors, with the signals being relayed to mTORC1 indirectly. This paper reviews the structures and biological functions of the amino acid sensors identified thus far. Additionally, it evaluates the potential role these sensors play in the developmental changes of the livestock production.

14.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125671

RESUMEN

Late endosomal/lysosomal adaptor, MAPK and mTOR, or LAMTOR, is a scaffold protein complex that senses nutrients and integrates growth factor signaling. The role of LAMTOR4 in tumorigenesis is still unknown. However, there is a considerable possibility that LAMTOR4 is directly involved in tumor cell proliferation and metastasis. In the current study, we investigated the protein expression of LAMTOR4 in a cohort of 314 men who were undergoing transurethral resection of prostate (TURP) consisting of incidental, advanced and castration-resistant cases. We also correlated the data with ERG and PTEN genomic status and clinicopathological features including Gleason score and patients' outcome. Additionally, we performed in vitro experiments utilizing knockdown of LAMTOR4 in prostate cell lines, and we performed mRNA expression assessment using TCGA prostate adenocarcinoma (TCGA-PRAD) to explore the potential differentially expressed genes and pathways associated with LAMTOR4 overexpression in PCa patients. Our data indicate that high LAMTOR4 protein expression was significantly associated with poor overall survival (OS) (HR: 1.44, CI: 1.01-2.05, p = 0.047) and unfavorable cause-specific survival (CSS) (HR: 1.71, CI: 1.06-2.77, p = 0.028). Additionally, when high LAMTOR4 expression was combined with PTEN-negative cases (score 0), we found significantly poorer OS (HR: 2.22, CI: 1.37-3.59, p = 0.001) and CSS (HR: 3.46, CI: 1.86-6.46, p < 0.0001). Furthermore, ERG-positive cases with high LAMTOR4 exhibited lower OS (HR: 1.98, CI: 1.18-3.31, p = 0.01) and CSS (HR: 2.54, CI: 1.32-4.87, p = 0.005). In vitro assessment showed that knockdown of LAMTOR4 decreases PCa cell proliferation, migration, and invasion. Our data further showed that knockdown of LAMTOR4 in the LNCaP cell line significantly dysregulated the ß catenin/mTOR pathway and tumorigenesis associated pathways. Inhibiting components of the mTOR pathway, including LAMTOR4, might offer a strategy to inhibit tumor progression and metastasis in prostate cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata , Anciano , Humanos , Masculino , Persona de Mediana Edad , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Invasividad Neoplásica , Pronóstico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
15.
Int J Mol Med ; 54(4)2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39092569

RESUMEN

Non­SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single­cell sequencing data, gene­set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M­phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3­kinase (PI3K)­Akt­mammalian target of rapamycin (mTOR)/c­Myc signaling pathway and epithelial­mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease­specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M­phase transition, activation of the PI3K­Akt­mTOR/c­Myc signaling pathway and EMT progression in human liver cancer cells.


Asunto(s)
Proliferación Celular , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Transducción de Señal/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Femenino , Proliferación Celular/genética , Carcinogénesis/genética , Carcinogénesis/patología , Carcinogénesis/metabolismo , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Línea Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transición Epitelial-Mesenquimal/genética , Apoptosis/genética , Movimiento Celular/genética , Pronóstico
16.
Artículo en Inglés | MEDLINE | ID: mdl-38973300

RESUMEN

This study aimed to report our experience with the use of sirolimus in pediatric liver transplant patients with chronic rejection or steroid-resistant rejection with hepatic fibrosis, focusing on their histological evolution. All pediatric liver transplant recipients who received off-label treatment with sirolimus for chronic ductopenic rejection or cortico-resistant rejection between July 2003 and July 2022 were included in the study. All nine patients included in the study showed improvement in liver enzymes and cholestasis parameters as soon as 1-month after postsirolimus introduction. A decrease in fibrosis stage was observed in 7/9 (77.7%) patients at 36 months. All but one patient experienced an improvement in the Rejection Activity Index and ductopenia at 12 months. A single patient had to discontinue sirolimus treatment owing to nephrotic proteinuria. In conclusion, sirolimus may be a safe and effective treatment for chronic and steroid-resistant rejection and may improve allograft rejection-related fibrosis and ductal damage.

17.
J Med Life ; 17(3): 261-272, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39044934

RESUMEN

Obesity is a global health concern owing to its association with numerous degenerative diseases and the fact that it may lead to early aging. Various markers of aging, including telomere attrition, epigenetic alterations, altered protein homeostasis, mitochondrial dysfunction, cellular senescence, stem cell disorders, and intercellular communication, are influenced by obesity. Consequently, there is a critical need for safe and effective approaches to prevent obesity and mitigate the onset of premature aging. In recent years, intermittent fasting (IF), a dietary strategy that alternates between periods of fasting and feeding, has emerged as a promising dietary strategy that holds potential in counteracting the aging process associated with obesity. This article explores the molecular and cellular mechanisms through which IF affects obesity-related early aging. IF regulates various physiological processes and organ systems, including the liver, brain, muscles, intestines, blood, adipose tissues, endocrine system, and cardiovascular system. Moreover, IF modulates key signaling pathways such as AMP-activated protein kinase (AMPK), sirtuins, phosphatidylinositol 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR), and fork head box O (FOXO). By targeting these pathways, IF has the potential to attenuate aging phenotypes associated with obesity-related early aging. Overall, IF offers promising avenues for promoting healthier lifestyles and mitigating the premature aging process in individuals affected by obesity.


Asunto(s)
Envejecimiento Prematuro , Ayuno Intermitente , Obesidad , Animales , Humanos , Envejecimiento , Envejecimiento Prematuro/prevención & control , Senescencia Celular , Obesidad/prevención & control , Transducción de Señal
18.
Cureus ; 16(7): e65132, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39040610

RESUMEN

Subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC) occurs in 5-20% of TSC patients, with a subset developing hydrocephalus. We present a case of a 14-year-old male diagnosed with TSC in the neonatal period who developed SEGA and subsequent hydrocephalus. Despite reducing the tumor size with the mammalian target of rapamycin (mTOR) inhibitors, ventricular enlargement persisted, indicating that obstructive hydrocephalus due to the foramen of Monro blockage was not the sole mechanism. Elevated cerebrospinal fluid (CSF) protein levels suggested additional factors like impaired CSF outflow. This case underscores the need for comprehensive treatment strategies and further research to better understand and manage hydrocephalus in TSC patients with SEGA.

19.
World J Gastrointest Oncol ; 16(7): 2894-2901, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39072156

RESUMEN

Macroautophagy (hereafter referred to as autophagy) is a prosurvival mechanism for the clearance of damaged cellular components, specifically related to exposure to various stressors such as starvation, excessive ethanol intake, and chemotherapy. This editorial reviews and comments on an article by Zhao et al, to be published in World J Gastrointestinal Oncology in 2024. Based on various molecular biology methodologies, they found that human ß-defensin-1 reduced the proliferation of colon cancer cells, which was associated with the inhibition of the mammalian target of rapamycin, resulting in autophagy activation. The activation of autophagy is evidenced by increased levels of Beclin1 and LC3II/I proteins and mediated by the upregulation of long non-coding RNA TCONS_00014506. Our study discusses the impact of autophagy activation and mechanisms of autophagy, including autophagic flux, on cancer cells. Additionally, we emphasize the importance of describing the detailed methods for isolating long noncoding RNAs TCONS_00014506. Our review will benefit the scientific community and improve the overall clarity of the paper.

20.
Eur J Haematol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853593

RESUMEN

OBJECTIVES: Galectin-9 (Gal-9) is an immune checkpoint ligand for T-cell immunoglobulin and mucin domain 3. Although the roles of Gal-9 in regulating immune responses have been well investigated, their biological roles have yet to be fully documented. This study aimed to analyse the expression of Gal-9 bone marrow (BM) cells in C57BL/6J (B6) mice. Furthermore, the co-expression of Gal-9 with the mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) was investigated. METHODS: The BM cells in adult C57BL/6J (B6) mice were collected and analysed in vitro. RESULTS: In a flow cytometric analysis of BM cells, Gal-9 was highly expressed in c-KithiSca-1-CD34-CD71+ erythroid progenitors (EPs), whereas it was downregulated in more differentiated c-KitloCD71+TER119+ cells. Subsequently, a negative selection of CD3-B220-Sca-1-CD34-CD41-CD16/32- EPs was performed. This resulted in substantial enrichment of KithiCD71+Gal-9+ cells and erythroid colony-forming units (CFU-Es), suggesting that the colony-forming subset of EPs are included in the KithiCD71+Gal-9+ population. Furthermore, we found that EPs had lower mTOR and AMPK expression levels in Gal-9 knockout B6 mice than in wild-type B6 mice. CONCLUSIONS: These results may stimulate further investigation of the role of Gal-9 in haematopoiesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA