Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(6): 1566-1581, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38205680

RESUMEN

In plants under drought stress, sugar content in roots increases, which is important for drought resistance. However, the molecular mechanisms for controlling the sugar content in roots during response to drought remain elusive. Here, we found that the MdDOF3-MdHT1.2 module-mediated glucose influx into the root is essential for drought resistance in apple (Malus × domestica). Drought induced glucose uptake from the rhizosphere and up-regulated the transcription of hexose transporter MdHT1.2. Compared with the wild-type plants, overexpression of MdHT1.2 promoted glucose uptake from the rhizosphere, thereby facilitating sugar accumulation in root and enhancing drought resistance, whereas silenced plants showed the opposite phenotype. Furthermore, ATAC-seq, RNA-seq and biochemical analysis demonstrated that MdDOF3 directly bound to the promoter of MdHT1.2 and was strongly up-regulated under drought. Overexpression of MdDOF3 in roots improved MdHT1.2-mediated glucose transport capacity and enhanced plant resistance to drought, but MdDOF3-RNAihr apple plants showed the opposite phenotype. Moreover, overexpression of MdDOF3 in roots did not attenuate drought sensitivity in MdHT1.2-RNAi plants, which was correlated with a lower glucose uptake capacity and glucose content in root. Collectively, our findings deciphered the molecular mechanism through which glucose uptake from the rhizosphere is mediated by MdDOF3-MdHT1.2, which acts to modulate sugar content in root and promote drought resistance.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Glucosa , Malus , Proteínas de Plantas , Plantas Modificadas Genéticamente , Rizosfera , Malus/genética , Malus/metabolismo , Glucosa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Resistencia a la Sequía
2.
Plants (Basel) ; 12(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38068670

RESUMEN

Rootstock selection and crop load adjustment are key practices in apple orchard management; nevertheless, the effects of rootstocks and crop load levels on important physiological processes of the scions, such as photosynthetic performance and carbohydrate accumulation, are still unclear. To investigate the impact of different rootstocks and crop load levels on scion photosynthesis and carbohydrate buildup, in 2020, 'Honeycrisp' trees grafted on rootstocks 'G.41', 'G.935', and 'M.9-T337' were thinned to low and high crop load levels, and photosynthetic performance and carbohydrate accumulation in leaves and fruit were evaluated. Leaves from 'G.935' showed the highest net photosynthesis and electron use efficiency of photosynthesis and the lowest activity for non-net carboxylative processes, all together indicative of enhanced photosynthetic performance. High crop load determined an increase in gas exchange, suggesting a positive feedback of high fruit competition on carbon assimilation. While rootstock 'M.9-T337' showed a higher accumulation of starch in leaves, no pattern regarding the composition of leaf-soluble sugars among rootstocks could be identified. Conversely, by the end of the harvest season, leaves from low-cropping trees had higher fructose, glucose, and sorbitol than those from high-cropping trees, but differences in starch content were not significant. Fructose and sorbitol concentrations were affected by rootstock and crop load, respectively. Overall, this study showed that high cropping enhanced photosynthesis in 'Honeycrisp' apple and determined lower accumulation of some soluble carbohydrates (fructose, glucose, sorbitol) in leaves. This study also provided insights into how rootstocks affect photosynthetic performance of 'Honeycrisp', highlighting 'G.935' as the rootstock conferring the highest photosynthetic capacity under the present experimental conditions.

3.
Genes (Basel) ; 14(5)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37239324

RESUMEN

The columnar growth trait of apple (Malus × domestica Borkh.) is genetically controlled by the Columnar (Co) locus on 10 chromosomes, including several candidate genes. Except for MdCo31, other candidate genes at the Co locus are less elucidated. In this study, a strategy of step-by-step screening was adopted to select 11 candidate genes by experimental cloning, transient expression, and genetic transformation. There existed several SNPs in four genes by sequence alignment in columnar and non-columnar apples. Two genes were detected in the nucleus and three genes in the cell membrane, other genes were located in multiple cellular structures by subcellular location. Ectopic expression demonstrated that more branching occurred in MdCo38-OE by upregulating NtPIN1 and NtGA2ox and enlarged leaves in MdCo41-OE tobaccos by upregulating NtCCDs. Transcripts of MdCo38 and MdCo41 were associated with the Co genotypes in apples. The results indicate that MdCo38 and MdCo41 are involved in the columnar growth phenotype in apple, probably through altering polar auxin transport, active gibberellin levels, and strigolactone biosynthesis.


Asunto(s)
Malus , Malus/metabolismo , Giberelinas/metabolismo , Fenotipo , Membrana Celular
4.
Plants (Basel) ; 12(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36986937

RESUMEN

A basic knowledge of linkage disequilibrium and population structure is necessary in order to determine the genetic control and identify significant associations with agronomical and phytochemical compounds in apple (Malus × domestica Borkh). In this study, 186 apple accessions (Pop1), representing both Spanish native accessions (94) and non-Spanish cultivars (92) from the EEAD-CSIC apple core collection, were assessed using 23 SSRs markers. Four populations were considered: Pop1, Pop2, Pop3, and Pop4. The initial Pop1 was divided into 150 diploid (Pop2) and 36 triploid accessions (Pop3), while for the inter-chromosomal linkage disequilibrium and the association mapping analysis, 118 phenotype diploid accessions were considered Pop4. Thus, the average number of alleles per locus and observed heterozygosity for the overall sample set (Pop1) were 15.65 and 0.75, respectively. The population structure analysis identified two subpopulations in the diploid accessions (Pop2 and Pop4) and four in the triploids (Pop3). Regarding the Pop4, the population structure with K = 2 subpopulations segregation was in agreement with the UPGMA cluster analysis according to the genetic pairwise distances. Moreover, the accessions seemed to be segregated by their origin (Spanish/non-Spanish) in the clustering analysis. One of the two subpopulations encountered was quite-exclusively formed by non-Spanish accessions (30 out of 33). Furthermore, agronomical and basic fruit quality parameters, antioxidant traits, individual sugars, and organic acids were assessed for the association mapping analysis. A high level of biodiversity was exhibited in the phenotypic characterization of Pop4, and a total of 126 significant associations were found between the 23 SSR markers and the 21 phenotypic traits evaluated. This study also identified many new marker-locus trait associations for the first time, such as in the antioxidant traits or in sugars and organic acids, which may be useful for predictions and for a better understanding of the apple genome.

5.
Tree Physiol ; 42(11): 2306-2318, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-35951430

RESUMEN

In polycarpic plants, meristem fate varies within individuals in a given year. In perennials, the proportion of floral induction (FI) in meristems also varies between consecutive years and among genotypes of a given species. Previous studies have suggested that FI of meristems could be determined by the within-plant competition for carbohydrates and by hormone signaling as key components of the flowering pathway. At the genotypic level, variability in FI was also associated with variability in architectural traits. However, the part of genotype-dependent variability in FI that can be explained by either tree architecture or tree physiology is still not fully understood. This study aimed at deciphering the respective effect of architectural and physiological traits on FI variability within apple trees by comparing six genotypes with contrasted architectures. Shoot type demography as well as the flowering and fruit production patterns were followed over 6 years and characterized by different indexes. Architectural morphotypes were then defined based on architectural traits using a clustering approach. For two successive years, non-structural starch content in leaf, stem and meristems, and hormonal contents (gibberellins, cytokinins, auxin and abscisic acid) in meristems were quantified and correlated to FI within-tree proportions. Based on a multi-step regression analysis, cytokinins and gibberellins content in meristem, starch content in leaves and the proportion of long shoots in tree annual growth were shown to contribute to FI. Although the predictive linear model of FI was common to all genotypes, each of the explicative variables had a different weight in FI determination, depending on the genotype. Our results therefore suggest both a common determination model and a genotype-specific architectural and physiological profile linked to its flowering behavior.


Asunto(s)
Malus , Malus/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Árboles , Genotipo , Almidón/metabolismo , Flores
6.
Front Plant Sci ; 13: 875528, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873993

RESUMEN

Apple species are the unique naturally rich source of dihydrochalcones, phenolic compounds with an elusive role in planta, but suggested auto-allelochemical features related to "apple replant disease" (ARD). Our aim was to elucidate the physiological basis of the phytotoxic action of dihydrochalcone phloretin in the model plant Arabidopsis and to promote phloretin as a new prospective eco-friendly phytotoxic compound. Phloretin treatment induced a significant dose-dependent growth retardation and severe morphological abnormalities and agravitropic behavior in Arabidopsis seedlings. Histological examination revealed a reduced starch content in the columella cells and a serious disturbance in root architecture, which resulted in the reduction in length of meristematic and elongation zones. Significantly disturbed auxin metabolome profile in roots with a particularly increased content of IAA accumulated in the lateral parts of the root apex, accompanied by changes in the expression of auxin biosynthetic and transport genes, especially PIN1, PIN3, PIN7, and ABCB1, indicates the role of auxin in physiological basis of phloretin-induced growth retardation. The results reveal a disturbance of auxin homeostasis as the main mechanism of phytotoxic action of phloretin. This mechanism makes phloretin a prospective candidate for an eco-friendly bioherbicide and paves the way for further research of phloretin role in ARD.

7.
Front Microbiol ; 13: 797234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633666

RESUMEN

Apple is typically stored under low temperature and controlled atmospheric conditions to ensure a year round supply of high quality fruit for the consumer. During storage, losses in quality and quantity occur due to spoilage by postharvest pathogens. One important postharvest pathogen of apple is Botrytis cinerea. The fungus is a broad host necrotroph with a large arsenal of infection strategies able to infect over 1,400 different plant species. We studied the apple-B. cinerea interaction to get a better understanding of the defense response in apple. We conducted an RNAseq experiment in which the transcriptome of inoculated and non-inoculated (control and mock) apples was analyzed at 0, 1, 12, and 28 h post inoculation. Our results show extensive reprogramming of the apple's transcriptome with about 28.9% of expressed genes exhibiting significant differential regulation in the inoculated samples. We demonstrate the transcriptional activation of pathogen-triggered immunity and a reprogramming of the fruit's metabolism. We demonstrate a clear transcriptional activation of secondary metabolism and a correlation between the early transcriptional activation of the mevalonate pathway and reduced susceptibility, expressed as a reduction in resulting lesion diameters. This pathway produces the building blocks for terpenoids, a large class of compounds with diverging functions including defense. 1-MCP and hot water dip treatment are used to further evidence the key role of terpenoids in the defense and demonstrate that ethylene modulates this response.

8.
Plants (Basel) ; 11(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35050084

RESUMEN

Modern apple orchard systems should guarantee homogeneity of fruit internal and external qualities and fruit maturity parameters. However, when orchards reach productive age, a variation of these parameters takes place and mostly it is related to uneven light distribution within the tree canopy. The aim of the study was to evaluate the canopy position's effect on fruit internal and external quality parameters. This is the first study where all the main fruit quality and maturation parameters were evaluated on the same trees and were related to the light conditions and photosynthetic parameters. Four fruit positions were tested: top of the apple tree, lower inside part of the canopy, and east and west sides of the apple tree. Fruit quality variability was significant for fruit size, blush, colour indices, total sugar content, dry matter concentration, accumulation of secondary metabolites and radical scavenging activity. Fruit position in the canopy did not affect flesh firmness and fruit maturity parameters such as the starch index, Streif index and respiration rate. At the Lithuanian geographical location (55°60' N), significantly, the highest fruit quality was achieved at the top of the apple tree. The tendency was established that apple fruits from the west side of the canopy have better fruit quality than from the east side and it could be related to better light conditions at the west side of the tree. Inside the canopy, fruits were distinguished only by the higher accumulation of triterpenic compounds and higher content of malic acid. Light is a main factor of fruit quality variation, thus all orchard management practices, including narrow two-dimensional tree canopies and reflecting ground covers which improve light penetration through the tree canopy, should be applied.

9.
Phytochemistry ; 192: 112972, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34624729

RESUMEN

Apple replant disease (ARD) is a severe soil-borne disease frequently observed in apple tree nurseries and orchards worldwide. One of the responses of apple trees to ARD is the formation of biphenyl and dibenzofuran phytoalexins in their roots. However, there is no information on whether or not these phytoalexins are exuded into the soil. To answer this open question, a model system was established using the ARD-sensitive apple rootstock M26 (Malus × domestica Borkh. Rosaceae) and GC-MS analysis in combination with an in-house GC-MS database including retention indices. We have detected a total of 35 phytoalexins, i.e. 10 biphenyls and 25 dibenzofurans in root samples, thereby adding eight compounds to the previously reported 27 phytoalexins of Malinae species. When in vitro cultured M26 plantlets were treated with yeast extract, all the 35 phytoalexins were formed in the roots and 85.2% of the total phytoalexin amount was exuded into the culture medium. In roots of M26 plants grown in ARD soil in pot, 26 phytoalexins were detected and their exudation was demonstrated using two independent approaches of collecting root exudates. In a modified dipping experiment and a soil-hydroponic hybrid setup, the exudation rate was 39.5% and 20.6%, respectively. The exudation rates for individual phytoalexins differed, indicating controlled exudation processes. The exuded phytoalexins may play an important role in shaping the soil microbiome, which appears to greatly influence the development and severity of ARD.


Asunto(s)
Malus , Benzofuranos , Compuestos de Bifenilo , Dibenzofuranos , Raíces de Plantas , Sesquiterpenos , Suelo , Fitoalexinas
10.
BMC Plant Biol ; 21(1): 231, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030661

RESUMEN

BACKGROUND: Aroma is one the most crucial inherent quality attributes of fruit. 'Ruixue' apples were selected from a cross between 'Pink Lady' and 'Fuji', a later ripening yellow new cultivar. However, there is little known about the content and composition of aroma compounds in 'Ruixue' apples or the genetic characters of 'Ruixue' and its parents. In addition, the metabolic pathways for biosynthesis of aroma volatiles and aroma-related genes remain poorly understood. RESULTS: Volatile aroma compounds were putatively identified using gas chromatography-mass spectrometry (GC-MS). Our results show that the profile of volatile compounds changes with ripening. Aldehydes were the dominant volatile compounds in early fruit development, with alcohols and esters increasing dramatically during maturation. On the basis of a heatmap dendrogram, these aroma compounds clustered into seven groups. In ripe fruit, esters and terpenoids were the main aroma volatiles in ripening fruit of 'Pink Lady' and 'Fuji' apples, and they included butyl 2-methylbutanoate; propanoic acid, hexyl ester; propanoic acid, hexyl ester; hexanoic acid, hexyl ester; acetic acid, hexyl ester and (Z, E)-α-farnesene. Interestingly, aldehydes and terpenoids were the dominant volatile aroma compounds in ripening fruit of 'Ruixue', and they mainly included hexanal; 2-hexenal; octanal; (E)-2-octenal; nonanal and (Z, E)-α-farnesene. By comparing the transcriptome profiles of 'Ruixue' and its parents fruits during development, we identified a large number of aroma-related genes related to the fatty acid, isoleucine and sesquiterpenoid metabolism pathways and transcription factors that may volatile regulate biosynthesis. CONCLUSIONS: Our initial study facilitates a better understanding of the volatile compounds that affect fruit flavour as well as the mechanisms underlying differences in flavour between 'Ruixue' and its parents.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/metabolismo , Malus/crecimiento & desarrollo , Malus/genética , Malus/metabolismo , Odorantes , Compuestos Orgánicos Volátiles/metabolismo , China , Perfilación de la Expresión Génica , Variación Genética , Genotipo
11.
Front Plant Sci ; 11: 1213, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849752

RESUMEN

Adjustable crop load primarily involves bud manipulation, and usually switches from vegetative to reproductive buds. While this switch is not fully understood, it is still controlled by the ratio of hormones, which promote or inhibit bud formation. To determine the reasons for biennial bearing, the effect of apple rootstock, scion cultivar, crop load, as well as metabolic changes of endogenous phytohormones [zeatin, jasmonic acid, indole-3 acetic acid (IAA), abscisic acid (ABA), and gibberellins 1, 3, and 7 (GAs)], and soluble sugars (glucose, fructose, and sorbitol) were evaluated, and their connections with return bloom and yield of apple tree buds were analyzed. Cultivars "Ligol" and "Auksis" were tested on five rootstocks contrasting in induced vigor: semi-dwarfing M.26; dwarfing M.9, B.396, and P 67; and super-dwarfing P 22. Crop load levels were adjusted before flowering, leaving 75, 113, and 150 fruits per tree. Principal component analysis (PCA) scatter plot of the metabolic response of phytohormones and sugars indicated that the effect of the semi-dwarfing M.26 rootstock was significantly different from that of the dwarfing M.9 and P 67, as well as the super-dwarfing P 22 rootstocks in both varieties. The most intensive crop load (150 fruits per tree) produced a significantly different response compared to less intensive crop loads (113 and 75) in both varieties. In contrast to soluble sugar accumulation, increased crop load resulted in an increased accumulation of phytohormones, except for ABA. Dwarfing rootstocks M.9, B.396, and P 67, as well as super-dwarf P 22 produced an altered accumulation of promoter phytohormones, while the more vigorous semi-dwarfing M.26 rootstock induced a higher content of glucose and inhibitory phytohormones, by increasing content of IAA, ABA, and GAs. The most significant decrease in return bloom resulted from the highest crop load in "Auksis" grafted on M.9 and P 22 rootstocks. Average difference in flower number between crop loads of 75 and 150 fruits per tree in "Ligol" was 68%, while this difference reached ~ 90% for P 22, and ~ 75% for M.9 and M.26 rootstocks. Return bloom was dependent on the previous year's crop load, cultivar, and rootstock.

12.
J Sci Food Agric ; 100(9): 3666-3674, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32246459

RESUMEN

BACKGROUND: Apples have a leading role in the Italian fruit sector, and high-quality apples, including the Golden Delicious variety, are cultivated mainly in the Northern mountain districts. In the present study, Golden Delicious apples from PDO (Protected Designation of Origin) and PGI (Protected Geographical Indication) cultivation districts were characterized according to their Sr isotope composition and compared with apples from other Northern Italian districts. RESULTS: Apples collected in two consecutive years (2017 and 2018) confirmed the low annual variability of the 87 Sr/86 Sr ratio. The isotope ratio of apples was highly correlated with that of the soil extracts of the respective orchards. Statistical differences were highlighted between cultivation districts. However, because similar geological features characterized some areas, their ratios overlapped and a complete separation of the districts was not possible. CONCLUSION: The 87 Sr/86 Sr ratio is an excellent marker for studies of food traceability because it retains the information about the place of origin. However, its strength is limited when comparing products from cultivation areas sharing similar geological features. In the perspective of geographical traceability, a multichemical characterization can overcome the limits of single-parameter approach. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Malus/química , Suelo/química , Isótopos de Estroncio/análisis , Agricultura , Frutas/química , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Italia , Malus/crecimiento & desarrollo , Malus/metabolismo , Isótopos de Estroncio/metabolismo
13.
Front Plant Sci ; 10: 1233, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695709

RESUMEN

In plants, organs are inter-dependent for growth and development. Here, we aimed to investigate the distance at which interaction between organs operates and the relative contribution of within-tree variation in carbohydrate and hormonal contents on floral induction and fruit growth, in a fruit tree case study. Manipulations of leaf and fruit numbers were performed in two years on "Golden delicious" apple trees, at the shoot or branch scale or one side of Y-shape trees. For each treatment, floral induction proportion and mean fruit weight were recorded. Gibberellins content in shoot apical meristems, photosynthesis, and non-structural carbohydrate concentrations in organs were measured. Floral induction was promoted by leaf presence and fruit absence but was not associated with non-structural content in meristems. This suggests a combined action of promoting and inhibiting signals originating from leaves and fruit, and involving gibberellins. Nevertheless, these signals act at short distance only since leaf or fruit presence at long distances had no effect on floral induction. Conversely, fruit growth was affected by leaf presence even at long distances when sink demands were imbalanced within the tree, suggesting long distance transport of carbohydrates. We thus clarified the inter-dependence and distance effect among organs, therefore their degree of autonomy that appeared dependent on the process considered, floral induction or fruit growth.

14.
Int J Mol Sci ; 20(9)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083412

RESUMEN

Apple (Malus × domestica Borkh.) is one of the most important cultivated tree fruit crops worldwide. However, sustainable apple production is threatened by powdery mildew (PM) disease, which is caused by the obligate biotrophic fungus Podosphaera leucotricha. To gain insight into the molecular basis of the PM infection and disease progression, RNA-based transcriptional profiling (RNA-seq) was used to identify differentially expressed genes (DEGs) in apples following inoculation with P. leucotricha. Four RNA-seq libraries were constructed comprising a total of 214 Gb of high-quality sequence. 1177 DEGs (661 upregulated and 629 downregulated) have been identified according to the criteria of a ratio of infection/control fold change > 2, and a false discovery rate (FDR) < 0.001. The majority of DEGs (815) were detected 12 h after inoculation, suggesting that this is an important time point in the response of the PM infection. Gene annotation analysis revealed that DEGs were predominately associated with biological processes, phenylpropanoid biosynthesis, hormone signal transduction and plant-pathogen interactions. Genes activated by infection corresponded to transcription factors (e.g., AP2/ERF, MYB, WRKY and NAC) and synthesis of defense-related metabolites, including pathogenesis-related genes, glucosidase and dehydrin. Overall, the information obtained in this study enriches the resources available for research into the molecular-genetic mechanisms of the apple/powdery mildew interactions, and provides a theoretical basis for the development of new apple varieties with resistance to PM.


Asunto(s)
Ascomicetos/fisiología , Perfilación de la Expresión Génica , Malus/genética , Malus/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Malondialdehído/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/genética , Factores de Tiempo , Factores de Transcripción/metabolismo
15.
Biochem Genet ; 57(5): 709-733, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30997626

RESUMEN

The Aux/IAA (auxin/indole-3-acetic acid) gene family is one of the early auxin-responsive gene families, which play a central role in auxin response. Few reports are involved in Aux/IAA genes in fruit trees, especially in apple (Malus × domestica Borkh.). A total of 33 MdIAA members were identified, of which 27 members contained four conserved domains, whereas the others lost one or two conserved domains. Several cis-elements in promoters of MdIAAs were predicted responsive to hormones and abiotic stress. Tissue-specific expression patterns of MdIAAs in different apple tree ideotypes were investigated by quantitative real-time PCR. A large number of MdIAAs were highly expressed in leaf buds and reproductive organs, and MdIAAs clustered in same group showed similar expression profiles. Overexpression of MdIAA18 in Arabidopsis resulted in compact phenotype. These results indicated that MdIAA genes may be involved in vegetative and reproductive growth of apple. Taken together, the results provide useful clues to reveal the function of MdIAAs in apple and control apple tree architecture by manipulation of MdIAAs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Regiones Promotoras Genéticas , Estrés Fisiológico , Frutas/genética , Frutas/metabolismo , Estudio de Asociación del Genoma Completo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética
16.
J Agric Food Chem ; 66(40): 10513-10521, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30230825

RESUMEN

The 87Sr/86Sr ratio of a produce is generally linked with the soil geological features of the growing areas. This study aimed at assessing to which extent the addition of external Sr by agricultural practices, like irrigation and mineral nutrient supply, influences this relationship. In a first experiment, oat plants in two soils reflected the 87Sr/86Sr of the soil. However, this link was significantly altered at increasing levels of external Sr soil supplies. In a second experiment, apple trees transplanted in pots modified their original 87Sr/86Sr, which became progressively closer to the soil Sr isotope ratio. The addition of tap water and fertilizers, with different Sr isotopic signatures, slightly affected plant 87Sr/86Sr. Results confirm the potential of the 87Sr/86Sr ratio as a geographical tracer of agricultural commodities, but whenever the range of 87Sr/86Sr variability among soils from different geographical areas is narrow, the influence of external Sr-sources may smooth over these diversities.


Asunto(s)
Malus/química , Suelo/química , Isótopos de Estroncio/análisis , Fertilizantes/análisis , Geografía , Árboles/química , Agua/análisis
17.
Plant Physiol Biochem ; 125: 136-142, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29448155

RESUMEN

Arabidopsis SUPERMAN and its family members of its family play important roles in plant growth and floral organ development; yet much less is known about their functions expanding in apple tree development. Previous work has identified 12 SUP-like genes in the apple (Malus × domestica Borkh.) genome, and the MdSUP11 which is expressed in both vegetative and reproductive organs of apple. However, the function of MdSUP11 remains obscure. In this study, the ß-glucuronidase expression driven by the MdSUP11 native promoter was detected in roots, young leaves, and floral organs of transgenic Arabidopsis. In transgenic tobacco, overexpression of MdSUP11 lead to dwarfism, aberrant leaf shapes, and morphological changes of floral organs. Endogenous concentrations of auxin (indole-3-acetic acid), abscisic acid, isopentenyl adenosine and zeatin riboside were significantly higher in young MdSUP11-transformed tobacco plants than in non-transformed plants. Gene expression analysis using real-time quantitative PCR showed up-regulation of NtDFR2 and NtANS1 expression in unopened transgenic flowers, whereas NtCHS expression was not changed significantly. Together, these results suggest that MdSUP11 is associated with apple's vegetative and reproductive development. Its overexpression in tobacco affects leaf and flower organ development and plant height; potentially by changing NtDFR2 and NtANS1 expression and endogenous levels of indole-3-acetic acid, cytokinins and abscisic acid.


Asunto(s)
Flores , Malus , Hojas de la Planta , Raíces de Plantas , Regiones Promotoras Genéticas , Factores de Transcripción , Flores/genética , Flores/metabolismo , Malus/genética , Malus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
18.
Front Plant Sci ; 8: 1923, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176988

RESUMEN

Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.

19.
BMC Plant Biol ; 17(1): 77, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28431510

RESUMEN

BACKGROUND: Superficial scald is a physiological disorder of apple fruit characterized by sunken, necrotic lesions appearing after prolonged cold storage, although initial injury occurs much earlier in the storage period. To determine the degree to which the transition to cell death is an active process and specific metabolism involved, untargeted metabolic and transcriptomic profiling was used to follow metabolism of peel tissue over 180 d of cold storage. RESULTS: The metabolome and transcriptome of peel destined to develop scald began to diverge from peel where scald was controlled using antioxidant (diphenylamine; DPA) or rendered insensitive to ethylene using 1-methylcyclopropene (1-MCP) beginning between 30 and 60 days of storage. Overall metabolic and transcriptomic shifts, representing multiple pathways and processes, occurred alongside α-farnesene oxidation and, later, methanol production alongside symptom development. CONCLUSIONS: Results indicate this form of peel necrosis is a product of an active metabolic transition involving multiple pathways triggered by chilling temperatures at cold storage inception rather than physical injury. Among multiple other pathways, enhanced methanol and methyl ester levels alongside upregulated pectin methylesterases are unique to peel that is developing scald symptoms similar to injury resulting from mechanical stress and herbivory in other plants.


Asunto(s)
Respuesta al Choque por Frío , Frutas/metabolismo , Malus/metabolismo , Enfermedades de las Plantas , Hidrolasas de Éster Carboxílico/genética , Frío , Ésteres/metabolismo , Almacenamiento de Alimentos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Malus/enzimología , Malus/genética , Metaboloma , Metanol/metabolismo , Enfermedades de las Plantas/genética , Regulación hacia Arriba
20.
Front Plant Sci ; 8: 22, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28163714

RESUMEN

Alternaria blotch disease of apple (Malus × domestica Borkh.), caused by the apple pathotype of Alternaria alternata, is one of the most serious fungal diseases to affect apples. To develop an understanding of how apples respond to A. alternata apple pathotype (AAAP) infection, we examined the host transcript accumulation over the period between 0 and 72 h post AAAP inoculation. Large-scale gene expression analysis was conducted of the compatible interaction between "Starking Delicious" apple cultivar and AAAP using RNA-Seq and digital gene expression (DGE) profiling methods. Our results show that a total of 9080 differentially expressed genes (DEGs) were detected (>two-fold and FDR < 0.001) by RNA-Seq. During the early phase of infection, 12 h post inoculation (HPI), AAAP exhibited limited fungal development and little change in the transcript accumulation status (950 DEGs). During the intermediate phase of infection, the period between 18 and 36 HPI, increased fungal development, active infection, and increased transcript accumulation were detected (4111 and 3838 DEGs detected at each time point, respectively). The majority of DEGs were detected by 72 HPI, suggesting that this is an important time point in the response of apples' AAAP infection. Subsequent gene ontology (GO) and pathway enrichment analyses showed that DEGs are predominately involved in biological processes and metabolic pathways; results showed that almost gene associated with photosynthesis, oxidation-reduction were down-regulated, while transcription factors (i.e., WRKY, MYB, NAC, and Hsf) and DEGs involved in cell wall modification, defense signaling, the synthesis of defense-related metabolites, including pathogenesis-related (PRs) genes and phenylpropanoid/cyanoamino acid /flavonoid biosynthesis, were activated during this process. Our study also suggested that the cell wall defensive vulnerability and the down-regulation of most PRs and HSP70s in "Starking Delicious" following AAAP infection might interpret its susceptible to AAAP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA