Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochimie ; 208: 180-185, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36638953

RESUMEN

After four decades of research primarily focused on tumour genetics, the importance of metabolism in tumour biology is receiving renewed attention. Cancer cells undergo energy, biosynthetic and metabolic rewiring, which involves several pathways with a prevalent change from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, known as the Warburg effect. During carcinogenesis, microenvironmental changes can trigger the transition from OXPHOS to lactic acid fermentation, an ancient form of energy supply, mimicking the behaviour of certain anaerobic unicellular organisms according to "atavistic" models of cancer. However, the role of this transition as a mechanism of cancer drug resistance is unclear. Here, we hypothesise that the metabolic rewiring of cancer cells to fermentation can be triggered, enhanced, and sustained by exposure to chronic or high-dose chemotherapy, thereby conferring resistance to drug therapy. We try to expand on the idea that metabolic reprogramming from OXPHOS to lactate fermentation in drug-resistant tumour cells occurs as a general phenotypic mechanism in any type of cancer, regardless of tumour cell heterogeneity, biodiversity, and genetic characteristics. This metabolic response may therefore represent a common feature in cancer biology that could be exploited for therapeutic purposes to overcome chemotherapy resistance, which is currently a major challenge in cancer treatment.


Asunto(s)
Ácido Láctico , Neoplasias , Humanos , Ácido Láctico/metabolismo , Fermentación , Glucólisis , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Resistencia a Antineoplásicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA