Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros











Intervalo de año de publicación
1.
Phytochemistry ; 226: 114118, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38692344

RESUMEN

Chemical investigation on the leaves of Michelia champaca L. (Magnoliaceae) led to the isolation of five previously undescribed phenylethanoid glycosides (PhGs), 4-O-ß-d-glucopyranosyl-acteoside (1), 4‴-O-(6-O-E-caffeoyl)-ß-d-glucopyranosyl-acteoside (2), 4‴-O-(6-O-E-caffeoyl)-ß-d-glucopyranosyl-isoacteoside (3), 6""-O-E-feruloyl-echinacoside (4), and 6""-O-p-E-coumaroyl-echinacoside (5), together with eighteen known PhGs. Their structures were determined by spectroscopic and chemical methods. All the known PhGs except acteoside (8) were not previously reported in the genus. Twenty-one PhGs exhibited more potent DPPH radical scavenging activity and FRAP than l-ascorbic acid (l-AA), and twenty-two PhGs showed better ABTS radical cation scavenging activity than l-AA. In addition, twelve PhGs displayed more potent cellular reactive oxygen species scavenging activity than curcumin. The results revealed that the leaves of M. champaca are a rich source of phenylethanoid glycosides and antioxidants.


Asunto(s)
Glicósidos , Hojas de la Planta , Hojas de la Planta/química , Glicósidos/química , Glicósidos/aislamiento & purificación , Glicósidos/farmacología , Estructura Molecular , Compuestos de Bifenilo/antagonistas & inhibidores , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Picratos/antagonistas & inhibidores , Magnoliaceae/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Glucósidos/aislamiento & purificación , Glucósidos/química , Polifenoles
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542477

RESUMEN

Based on Sima and Lu's system of the family Magnoliaceae, the genus Lirianthe Spach s. l. includes approximately 25 species, each with exceptional landscaping and horticultural or medical worth. Many of these plants are considered rare and are protected due to their endangered status. The limited knowledge of species within this genus and the absence of research on its chloroplast genome have greatly impeded studies on the relationship between its evolution and systematics. In this study, the chloroplast genomes of eight species from the genus Lirianthe were sequenced and analyzed, and their phylogenetic relationships with other genera of the family Magnoliaceae were also elucidated. The results showed that the chloroplast genome sizes of the eight Lirianthe species ranged from 159,548 to 159,833 bp. The genomes consisted of a large single-copy region, a small single-copy region, and a pair of inverted repeat sequences. The GC content was very similar across species. Gene annotation revealed that the chloroplast genomes contained 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes, totaling 130 genes. Codon usage analysis indicated that codon usage was highly conserved among the eight Lirianthe species. Repeat sequence analysis identified 42-49 microsatellite sequences, 16-18 tandem repeats, and 50 dispersed repeats, with microsatellite sequences being predominantly single-nucleotide repeats. DNA polymorphism analysis revealed 10 highly variable regions located in the large single-copy and small single-copy regions, among which rpl32-trnL, petA-psbJ, and trnH-psbA were the recommended candidate DNA barcodes for the genus Lirianthe species. The inverted repeat boundary regions show little variation between species and are generally conserved. The result of phylogenetic analysis confirmed that the genus Lirianthe s. l. is a monophyletic taxon and the most affinal to the genera, Talauma and Dugandiodendron, in Sima and Lu's system and revealed that the genus Lirianthe s. s. is paraphyletic and the genus Talauma s. l. polyphyletic in Xia's system, while Magnolia subsection Gwillimia is paraphyletic and subsection Blumiana polyphyletic in Figlar and Nooteboom's system. Morphological studies found noticeable differences between Lirianthe species in aspects including leaf indumentum, stipule scars, floral orientation, tepal number, tepal texture, and fruit dehiscence. In summary, this study elucidated the chloroplast genome evolution within Lirianthe and laid a foundation for further systematic and taxonomic research on this genus.


Asunto(s)
Genoma del Cloroplasto , Magnolia , Filogenia , Anotación de Secuencia Molecular , Plantas/genética
3.
Plants (Basel) ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475534

RESUMEN

Seeds are one of the most important characteristics of plant evolution. Within a seed, the embryo, which will grow into a plant, can survive harsh environments. When the seeds are mature, the mother plant will disperse them from its body, allowing them to be taken away to grow in a new place. Otherwise, if the young generation grows alongside the mother plants in the same place, they will compete for sunlight and nutrition. The mother plants use different strategies to send away their seeds. One of these strategies is endozoochory, which means that the seeds disperse via ingestion by animals. There is a conflict between the seeds' abilities to attract animals and protect the embryo within the digestion systems of animals. Magnolia seeds exhibit typical endozoochory. The seed coats of Magnolia feature sarcotestas and sclerotestas. The sarcotesta, which is fleshy, bright-colored, and edible, attracts animals. The sclerotesta is hard and woody, protecting the embryo from the digestive systems of animals. In this study, we used scanning electron and light microscopes to examine the development of the sarcotesta and sclerotesta of Magnolia stellata seed coats. The results showed that the sarcotesta and sclerotesta come from the outer integument. This result confirms the hypothesis of Asa Gray from 1848. The dependence of the seed dispersal strategy on structural development is discussed.

4.
Genes (Basel) ; 15(3)2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38540394

RESUMEN

Magnolia kwangsiensis, a dioecious tree native to China, is recognized not only for its status as an at-risk species but also for its potential in therapeutic applications courtesy of its bioactive compounds. However, the genetic underpinnings of its leaf development and compound biosynthesis are not well documented. Our study aims to bridge this knowledge gap through comparative transcriptomics, analyzing gene expression through different leaf maturation stages. We studied the transcriptome of M. kwangsiensis leaves by applying RNA sequencing at juvenile, tender, and mature phases. We identified differentially expressed genes (DEGs) to explore transcriptional changes accompanying the developmental trajectory. Our analysis delineates the transcriptional landscape of over 20,000 genes with over 6000 DEGs highlighting significant transcriptional shifts throughout leaf maturation. Mature leaves demonstrated upregulation in pathways related to photosynthesis, cell wall formation, and polysaccharide production, affirming their structural integrity and specialized metabolic functions. Our GO and KEGG enrichment analyses underpin these findings. Furthermore, we unveiled coordinated gene activity correlating development with synthesizing therapeutically relevant polysaccharides. We identified four novel glycosyltransferases potentially pivotal in this synergistic mechanism. Our study uncovers the complementary evolutionary forces that concurrently sculpt structural and chemical defenses. These genetic mechanisms calibrate leaf tissue resilience and biochemical efficacy.


Asunto(s)
Magnolia , Magnolia/genética , Perfilación de la Expresión Génica , Transcriptoma/genética , Hojas de la Planta/genética , Hojas de la Planta/química , Análisis de Secuencia de ARN
5.
Phytochemistry ; 219: 113964, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38184162

RESUMEN

Six pairs of enantiomeric dilignans, (+)/(-)-magdiligols A-F, have been isolated from an ethanolic extract of the barks of Magnolia officinalis var. biloba. Their chemical structures were elucidated by extensive spectroscopic analyses, NMR calculation with DP4+ analysis, and the electronic circular dichroism spectra calculation. (+)/(-)-1-3 possessed a dihydrobenzopyran ring, while a propyl chain of 1 was linked via ether bond. (+)/(-)-Magdiligols D and E ((+)/(-)-4 and 5) were dilignans possessing a furan ring. (+)-Magdiligol B ((+)/(-)-2), (+)/(-)-magdiligol C ((+)/(-)-3), and racemes 2, 3, and 5 showed potential hepatoprotective effects against APAP-induced HepG2 cell damage, increased the cell viability from 65.4% to 72.7, 78.7.76.6, 73.9, 77.9 and 73.2%, via decreasing the level of the live enzymes ALH and LDH consistently. (+)/(-)-Magdiligols B-D ((+)/(-)-2-4) and (+)/(-)-magdiligol F ((+)/(-)-6) exhibited significant antioxidative activity. (+)/(-)-Magdiligols B-C ((+)/(-)-2 and 3), (-)-magdiligol D ((-)-4), and (+)-magdiligol E ((+)-5) displayed significant PTP1B inhibitory activity with IC50 values 1.41-3.42 µM. (+)/(-)-Magdiligol B ((+)/(-)-2), and its raceme (2) demonstrated α-glucosidase inhibitory activity with the IC50 values 1.47, 2.88 and 1.85 µM, respectively.


Asunto(s)
Magnolia , Humanos , Magnolia/química , Espectroscopía de Resonancia Magnética , Células Hep G2 , Estructura Molecular
6.
Phytochemistry ; 218: 113956, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135206

RESUMEN

Seventeen undescribed sesquiterpene-alkaloid hybrids (liriogerphines E-U, 1-17) were isolated and identified during a further phytochemical investigation on the branches and leaves of Chinese tulip tree (Liriodendron chinense), a rare medicinal and ornamental plant endemic to China. These unique heterodimers are conjugates of germacranolide-type sesquiterpenoids with structurally diverse alkaloids [i.e., aporphine- (1-15), proaporphine- (16), and benzyltetrahydroisoquinoline-type (17)] via the formation of a C-N bond. The previously undescribed structures were elucidated by comprehensive spectroscopic data analyses and electronic circular dichroism calculations. Such a class of sesquiterpene-alkaloid hybrids presumably biosynthesized via an aza-Michael addition is quite rare from terrestrial plants. In particular, the sesquiterpene-benzyltetrahydroisoquinoline hybrid skeleton has never been reported until the present study. All the isolates were evaluated for their cytotoxic effects against a small panel of leukemia cell lines (Raji, Jeko-1, Daudi, Jurkat, MV-4-11 and HL-60), and some of them exhibited considerable activities.


Asunto(s)
Alcaloides , Antineoplásicos , Liriodendron , Sesquiterpenos , Liriodendron/química , Alcaloides/química , Hojas de la Planta/química , Sesquiterpenos/química , Estructura Molecular
7.
Curr Issues Mol Biol ; 45(11): 9234-9251, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998755

RESUMEN

Magnoliaceae, a family of perennial woody plants, contains several endangered species whose taxonomic status remains ambiguous. The study of chloroplast genome information can help in the protection of Magnoliaceae plants and confirmation of their phylogenetic relationships. In this study, the chloroplast genomes were sequenced, assembled, and annotated in Woonyoungia septentrionalis and three Michelia species (Michelia champaca, Michelia figo, and Michelia macclurei). Comparative analyses of genomic characteristics, repetitive sequences, and sequence differences were performed among the four Magnoliaceae plants, and phylogenetic relationships were constructed with twenty different magnolia species. The length of the chloroplast genomes varied among the four studied species ranging from 159,838 bp (Woonyoungia septentrionalis) to 160,127 bp (Michelia macclurei). Four distinct hotspot regions were identified based on nucleotide polymorphism analysis. They were petA-psbJ, psbJ-psbE, ndhD-ndhE, and rps15-ycf1. These gene fragments may be developed and utilized as new molecular marker primers. By using Liriodendron tulipifera and Liriodendron chinense as outgroups reference, a phylogenetic tree of the four Magnoliaceae species and eighteen other Magnoliaceae species was constructed with the method of Shared Coding Sequences (CDS). Results showed that the endangered species, W. septentrionalis, is relatively genetically distinct from the other three species, indicating the different phylogenetic processes among Magnoliaceae plants. Therefore, further genetic information is required to determine the relationships within Magnoliaceae. Overall, complete chloroplast genome sequences for four Magnoliaceae species reported in this paper have shed more light on phylogenetic relationships within the botanical group.

8.
Nat Prod Res ; : 1-7, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38006214

RESUMEN

Two previously undescribed glycosidic bisnorsesquiterpenoids A - B (1 - 2), together with two known compounds (3 - 4), were isolated from the leaves and stems of Schisandra chinensis. Their structures were elucidated by extensive spectroscopic data (1D, 2D NMR, and HRESIMS). The anti-inflammatory activity, ABTS+ radical scavenging activity, and DPPH radical scavenging activity of compounds 1 - 4 were tested. However, all of these compounds showed only weak anti-inflammatory or antioxidant effects.

9.
Molecules ; 28(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375236

RESUMEN

The irrational use of synthetic pesticides in agriculture has had negative impacts on ecosystems and contributed to environmental pollution. Botanical pesticides offer a clean biotechnological alternative to meet the agricultural challenges posed by pests and arthropods. This article proposes the use of fruit structures (fruit, peel, seed, and sarcotesta) of several Magnolia species as biopesticides. The potential of extracts, essential oils, and secondary metabolites of these structures for pest control is described. From 11 Magnolia species, 277 natural compounds were obtained, 68.7% of which were terpenoids, phenolic compounds, and alkaloids. Finally, the importance of a correct management of Magnolia species to ensure their sustainable use and conservation is stressed.


Asunto(s)
Magnolia , Plaguicidas , Magnolia/química , Ecosistema , Plaguicidas/química , Control de Plagas , Agricultura
10.
Front Plant Sci ; 14: 1108701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844093

RESUMEN

Magnolia hypoleuca Sieb. & Zucc, a member of the Magnoliaceae of magnoliids, is one of the most economically valuable, phylogenetic and ornamental tree species in Eastern China. Here, the 1.64 Gb chromosome-level assembly covers 96.64% of the genome which is anchored to 19 chromosomes, with a contig N50 value of 1.71 Mb and 33,873 protein-coding genes was predicted. Phylogenetic analyses between M. hypoleuca and other 10 representative angiosperms suggested that magnoliids were placed as a sister group to the eudicots, rather than sister to monocots or both monocots and eudicots. In addition, the relative timing of the whole-genome duplication (WGD) events about 115.32 Mya for magnoliid plants. M. hypoleuca was found to have a common ancestor with M. officinalis approximately 23.4 MYA, and the climate change of OMT (Oligocene-Miocene transition) is the main reason for the divergence of M. hypoleuca and M. officinalis, which was along with the division of Japanese islands. Moreover, the TPS gene expansion observed in M. hypoleuca might contribute to the enhancement of flower fragrance. Tandem and proximal duplicates of younger age that have been preserved have experienced more rapid sequence divergence and a more clustered distribution on chromosomes contributing to fragrance accumulation, especially phenylpropanoid, monoterpenes and sesquiterpenes and cold tolerance. The stronger selective pressure drived the evolution of tandem and proximal duplicates toward plant self-defense and adaptation. The reference M. hypoleuca genome will provide insights into the evolutionary process of M. hypoleuca and the relationships between the magnoliids with monocots and eudicots, and enable us to delve into the fragrance and cold tolerance produced by M. hypoleuca and provide more robust and deep insight of how the Magnoliales evolved and diversified.

11.
Insects ; 13(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36554992

RESUMEN

Hostplant limitation is a key focus of the spatial interaction between a phytophagous butterfly and a hostplant. The possible drivers related to the hostplants are species richness, abundance, or availability, but no consensus has been reached. In this study, we investigated the butterfly-hostplant interaction using the case of the forest canopy butterfly T. aureus in Asia, whose narrow distribution is assumed to be limited by its exclusive hostplant, Magnoliaceae, in tropic and subtropic regions. We recorded the Magnoliaceae species, as well as plant and butterfly individuals in transect, and we collected tree traits and topography variables. The results confirm that this butterfly is limited by the hostplants of their larval stage. The hostplants occurred exclusively in the middle-mountain region, with preference only for primeval forests. The hostplant resource was superior in the middle-mountain region, particularly concentrating in primeval forests. The hostplant's abundance, together with altitude and habitat types, was critical to this butterfly's occurrence, while those hostplant trees with an exposed crown, which are demanded by this butterfly in its oviposition, were the best drivers of positive butterfly-hostplant interactions. Therefore, the hostplant's limitation was mainly determined by the availability of the hostplant. This case study supports the hypothesis that the limitation on this butterfly's occurrence was driven by the hostplant's availability, and it suggests that protecting high-quality forests is a valuable activity and essential in the conservation of canopy butterflies.

12.
Mitochondrial DNA B Resour ; 7(11): 1933-1935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386022

RESUMEN

Michelia macclurei (Dandy, 1928) is an evergreen broad-leaved tree species native to South China. This species has great ecological and economic importance. However, the genomic study of M. macclurei has lagged far behind. Here, we reported the complete chloroplast genome sequence of M. macclurei. The chloroplast genome size of M. macclurei was 160,139 bp, consisting of a pair of inverted repeat (IR) regions (26,575 bp), which was separated by a large single copy (LSC) region (88,167 bp) and a small single copy (SSC) region (18,822 bp). A total of 113 unique genes were annotated, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The overall GC content was 39.2%. Phylogenetic analysis based on 16 whole chloroplast genome sequences of Michelia species suggested that M. macclurei and M. maudiae are sister to each other, and jointly sister to M. chapensis.

13.
Pharm Biol ; 60(1): 1656-1668, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36052952

RESUMEN

CONTEXT: Michelia champaca L. (Magnoliaceae) has been known since ancient times for its rich medicinal properties. OBJECTIVE: The ethanol extract of Michelia champaca leaves (EEMC) was evaluated on depression and anxiety using in vivo and in silico studies. MATERIALS AND METHODS: Swiss albino mice were divided into control, standard, 100 and 200 mg/kg b.w. EEMC groups and for drug administration using oral gavage. The antidepressant activity was evaluated using forced swim test (FST) and tail suspension test (TST) whereas the anxiolytic activity through elevated plus maze and light and dark tests. The in silico studies included molecular docking against human potassium channel KCSA-FAB and human serotonin transporter, and ADME/T analysis. RESULTS: Open arm duration and entries were comparable between 200 mg/kg b.w. group (184.45 ± 1.00 s and 6.25 ± 1.11, respectively) and that of diazepam treated group (180.02 s ± 0.40 and 6.10 ± 0.05, respectively). Time spent in the light cubicle was higher (46.86 ± 0.03%), similar to that of diazepam (44.33 ± 0.64%), suggesting its potent anxiolytic activity. A delayed onset of immobility and lowered immobility time was seen at both the treatment doses (FST: 93.7 ± 1.70 and 89.1 ± 0.40 s; TST: 35.05 ± 2.75 and 38.50 ± 4.10 s) and the standard drug imipramine (FST: 72.7 ± 3.72 and TST: 30.01 ± 2.99 s), indicative of its antidepressant ability. In silico studies predicted doripenem to induce anxiolytic and antidepressant activity by inhibiting human potassium channel KCSA-FAB and human serotonin transporter proteins, respectively. CONCLUSIONS: EEMC is a rich source of bioactive compounds with strong antidepressant and anxiolytic properties.


Asunto(s)
Ansiolíticos , Magnoliaceae , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Diazepam , Humanos , Ratones , Simulación del Acoplamiento Molecular , Fitoquímicos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Canales de Potasio , Proteínas de Transporte de Serotonina en la Membrana Plasmática
14.
Biology (Basel) ; 11(9)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36138758

RESUMEN

Magnoliaceae plants are industrial tree species with high ornamental and medicinal value. We published six complete chloroplast genomes of Magnoliaceae by using Illumina sequencing. These showed a typical quadripartite structure of angiosperm and were 159,901−160,008 bp in size. A total of 324 microsatellite loci and six variable intergenic regions (Pi > 0.01) were identified in six genomes. Compared with five other genomes, the contraction and expansion of the IR regions were significantly different in Manglietia grandis. To gain a more thorough understanding of the intergeneric relationships in Magnoliaceae, we also included 31 published chloroplast genomes of close relative species for phylogenetic analyses. New insights into the intergeneric relationships of Magnoliaceae are provided based on our results and previous morphological, phytochemical and anatomical information. We suggest that the genus Yulania should be separated from the genus Michelia and its systematic position of should be restored; the genera Paramichelia and Tsoongiodendron should be merged into the genus Michelia; the genera Pachylarnax and Parakmeria should be combined into one genus. These findings will provide a theoretical basis for adjusting the phylogenetic position of Magnoliaceae at the molecular level.

15.
Mitochondrial DNA B Resour ; 7(5): 801-803, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573595

RESUMEN

Magnolia coriacea, Chang et B. L. (Magnoliaceae) is a critically endangered tree, endemic to Yunnan province, China. In this study, the complete chloroplast genome of M. coriacea was sequenced and analyzed. The total chloroplast genome size of M. coriacea is 160,113 bp, including a pair of inverted repeat regions (IRs, 26,576 bp) separated by a large single-copy (LSC, 88,175 bp) region and a small single-copy region (SSC, 18,786 bp). The complete chloroplast genome contains 86 protein-coding (PCGs), 37 transfer RNA (tRNAs), and 8 ribosomal RNA (rRNAs) genes. The phylogenetic analysis showed that M. coriacea is closely related to M. cathcartii. This study contributes to the bioinformatics on the evolution, genetic, conservation, and molecular biology for future studies of Magnoliaceae.

16.
Phytochemistry ; 200: 113211, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35490776

RESUMEN

Two undescribed sesquiterpene lactone-proaporphine hybrid skeletons, two undescribed sesquiterpenes, and four known compounds were isolated from the aerial part of Magnolia grandiflora L. The structures of isolated compounds were unambiguously determined based on the interpretation of a combination of NMR spectroscopy, HRESIMS, DP4+ probability calculation of carbon data, X-ray crystallographic analyses, and ECD calculation. The isolated compounds were investigated for their anti-inflammatory activity against nitric oxide production and the protein expression of COX-2 in LPS-stimulated RAW 264.7 cells.


Asunto(s)
Magnolia , Sesquiterpenos , Animales , Antiinflamatorios/farmacología , Lactonas/farmacología , Magnolia/química , Ratones , Estructura Molecular , Óxido Nítrico , Fitoquímicos , Células RAW 264.7 , Sesquiterpenos/química , Sesquiterpenos/farmacología
17.
Plant Dis ; 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35394333

RESUMEN

Magnolia wufengensis belongs to the Magnoliaceae family. Its variation-rich flowers (tepal number from 9 to 46, tepal color from pink to bright red) and excellent wood characteristics (strong, straight, texture) have important ornamental and economic value (Duan et al. 2019; Luyi et al. 2006). M. wufengensis is popularly cultivated in parks, courtyards, mountains, and along roadsides. In May 2020, leaf spot symptoms were observed on over 85% of M. wufengensis in Yuyangguan Township, Wufeng County, Hubei Province (110.60°E, 30.21°N). The damaged area was over 18.7 hectares. Early symptoms began as small brown spots with a light-yellow halo. Gradual lesions expanded, and the center was withered, gray, and necrotic with a dark brown border. Eventually, several spots combined with larger irregular lesions, turning the leaves yellow and causing them to fall off. The border of lesions and healthy tissues were cut into small pieces (5×5 mm), and surface sterilized with 1% sodium hypochlorite solution for three minutes, rinsed three times with sterile water, and plated on potato dextrose agar (PDA) medium at 25±2 °C with a 12h photoperiod under fluorescent lighting. Pure isolates (MCS1228.1, MCS1228.4, MCS1228.9) were gray to pale grayish, and their average growth rate was 10.5±1.23 mm/day. Conidiophores were hyaline, aseptate, branched. Conidia were hyaline, aseptate, cylindrical, and 14.00 to 25.17 × 4.74 to 6.56 µm in size (average 17.48 × 5.58 µm) (n=50). Appressoria were brown and showed multivariate shape. The morphological characteristics of the isolates corresponded to the description given for Colletotrichum fructicola (Liu et al. 2015). Molecular identification was accomplished through amplification of the internal transcribed spacer (IST), actin (ACT), calmodulin (CAL), chitin synthase (CHS-1) glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and beta-tubulin (TUB2) genes (Fu et al. 2018). The ITS (OL800580.1, OL800581.1, OL800582.1), ACT (GenBank accession No. OL873155- OL873157), CAL (GenBank accession No. OL873158- OL873160), CHS-1 (GenBank accession No. OL873161- OL873163), GAPDH (GenBank accession No. OL873164- OL873166) and TUB2 (GenBank accession No. OL873167- OL873169) sequences were deposited in GenBank. A Bayesian inference phylogenetic tree based on multilocus sequences was constructed, and the sequences of the 3 isolations showed the same homology with C. fructicola (Fu et al. 2018). To fulfill Koch's postulates, 30 potted seedlings were inoculated with 1×10^6 conidia/ml suspension of each isolate by spraying the leaves, and 30 potted seedlings were sprayed with sterile distilled water as control. Inoculated and control plants were kept in a greenhouse with 25/15°C (day/night) temperature and 80% relative humidity. In addition, 30 healthy detached leaves free of pests and diseases were washed three times with sterile distilled water, air-dried, and artificially inoculated using a 6 mm (diameter) PDA medium (5 days incubation) with mycelium. 30 leaves were inoculated with sterile PDA medium as control. All leaves were sprayed with sterile water every 24 hours, covered with plastic wrap, and incubated at 25±2 °C, 100% humidity. The experiment was repeated three times. Similar symptoms to those found initially were both observed on all the inoculated potted seedlings and detached leaves after 14 days and 5 days post inoculation (dpi), respectively. Whereas the controls remained symptomless. The reisolated pathogens from symptomatic tissues were identical to the original isolates. In this study, isolated fungi associated with M. wufengensis leaf spot were identified as C. fructicola based on morphological and multiloci phylogenetic analyses, and Koch's postulates. Colletotrichum species are important plant pathogens and cause diseases in a wide variety of woody and herbaceous plants (Cannon et al. 2012). C. fructicola has been identified as a responsible pathogen for apple (Casanova et al. 2016), Fatsia japonica (Shi et al. 2017), and Rubus corchorifolius (Wu et al. 2021) leaf spot. To our knowledge, this is the first report of C. fructicola causing leaf spot in M. wufengensis in China. This research may contribute to the development of management strategies for this disease.

18.
Ann Bot ; 130(1): 41-52, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35460565

RESUMEN

BACKGROUND AND AIMS: Ongoing global warming is a challenge for humankind. A series of drastic climatic changes have been proven to have occurred throughout the Cenozoic based on a variety of geological evidence, which helps to better understand our planet's future climate. Notably, extant biomes have recorded drastic environmental shifts. The climate in southern Asia, which hosts high biodiversity, is deeply impacted by the Asian monsoon. The origins and evolutionary dynamics of biomes occurring between the tropics and sub-tropics in southern Asia have probably been deeply impacted by climatic changes; however, these aspects remain poorly studied. We tested whether the evolutionary dynamics of the above biomes have recorded the drastic, late Cenozoic environmental shifts, by focusing on Magnolia section Michelia of the family Magnoliaceae. METHODS: We established a fine time-calibrated phylogeny of M. section Michelia based on complete plastid genomes and inferred its ancestral ranges. Finally, we estimated the evolutionary dynamics of this section through time, determining its diversification rate and the dispersal events that occurred between tropical and sub-tropical areas. KEY RESULTS: The tropical origin of M. section Michelia was dated to the late Oligocene; however, the diversification of its core group (i.e. M. section Michelia subsection Michelia) has occurred mainly from the late Miocene onward. Two key evolutionary shifts (dated approx. 8 and approx. 3 million years ago, respectively) were identified, each of them probably in response to drastic climatic changes. CONCLUSION: Here, we inferred the underlying evolutionary dynamics of biomes in southern Asia, which probably reflect late Cenozoic climatic changes. The occurrence of modern Asian monsoons was probably fundamental for the origin of M. section Michelia; moreover, the occurrence of asymmetric dispersal events between the tropics and sub-tropics hint at an adaptation strategy of M. section Michelia to global cooling, in agreement with the tropical conservatism hypothesis.


Asunto(s)
Magnolia , Magnoliaceae , Biodiversidad , Cambio Climático , Filogenia
19.
Chem Biodivers ; 19(4): e202100962, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35218144

RESUMEN

One new phenylpropanoid schineolignin D (1), one new sesquiterpene (-)-(7S,10S)-3,11,12,13-tetrahydroxycalamenene (2), one new quinic acid 4-(E)-O-coumaroylquinic acid ethyl ester (3), and seven known compounds 4-10 were separated from the roots of Schisandra chinensis. The chemical structures of all compounds were characterized by NMR spectroscopic experiments. All compounds were assessed for their neuroprotective effects on PC12 cell lines induced by H2 O2 . Compounds 1, 3-4, and 7 showed statistically significant neuroprotective activities with the negative control group at 12.5 µM.


Asunto(s)
Lignanos , Fármacos Neuroprotectores , Schisandra , Sesquiterpenos , Lignanos/química , Fármacos Neuroprotectores/análisis , Fármacos Neuroprotectores/farmacología , Raíces de Plantas/química , Schisandra/química , Sesquiterpenos/análisis , Sesquiterpenos/farmacología
20.
J Asian Nat Prod Res ; 24(7): 657-662, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34292086

RESUMEN

Two new (1-2) and three known quinic acid derivatives (3-5) were isolated from the leaves of Schisandra chinensis (Turcz) Baill. The structures of the compounds were determined by spectroscopic methods, especially the NMR techniques, and also by comparison with reported data in the literature. The cytotoxicity activities of these compounds were evaluated on human tumor cell lines LN229 and three of them showed a certain activity.


Asunto(s)
Lignanos , Schisandra , Lignanos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Hojas de la Planta/química , Ácido Quínico , Schisandra/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA