Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Noncoding RNA Res ; 8(2): 164-173, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36632615

RESUMEN

Radiotherapy is widely used for cancer treatment, but paradoxically, it has been reported that surviving cancer cells can acquire resistance, leading to recurrence or metastasis. Efforts to reduce radioresistance are required to increase the effectiveness of radiotherapy. miRNAs are advantageous as therapeutic agents because it can simultaneously inhibit the expression of several target mRNAs. Therefore, this study discovered miRNA that regulated radioresistance and elucidated its signaling mechanism. Our previous study confirmed that miR-5088-5p was associated with malignancy and metastasis in breast cancer. As a study to clarify the relationship between radiation and miR-5088-5p identified as onco-miRNA, it was confirmed that radiation induced hypomethylation of the promoter of miR-5088-5p and its expression increased. On the other hand, miR-5088-5p inhibitors were confirmed to reduce radiation-induced epithelial-mesenchymal transition, stemness, and metastasis by reducing Slug. Therefore, this study showed the potential of miR-5088-5p inhibitors as therapeutic agents to suppress radioresistance.

2.
Regen Ther ; 19: 107-112, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35155723

RESUMEN

INTRODUCTION: Fluoride can induce the proliferation and activation of osteoblasts, resulting in skeletal fluorosis progression; however, the specific mechanism is unclear. METHODS: Cell proliferation was examined using the MTT assay. Flow cytometry was performed to detect the cell cycle distribution. Alkaline phosphatase (ALP) was calculated to evaluate bone formation and turnover. Gene methylation was examined using the MSP assay. mRNA and protein expression levels were assessed using qRT-PCR and Western blot assays. RESULTS: Low-concentration NaF treatment promoted the cell cycle progression of osteoblasts to S-phase, thus accelerating cell proliferation and activation in a concentration-dependent manner. In addition, the methylation of the MGMT and MLH1 genes was increased, and their mRNA expression was reduced. Furthermore, the DNA methyltransferase inhibitor 5-AZA-dC suppressed cell viability, cell number in S-phase, ALP activity and osteogenesis-related protein levels in osteoblasts treated with low doses of NaF. Meanwhile, 5-AZA-dC suppressed the increase in MGMT and MLH1 gene methylation in osteoblasts treated with low doses of NaF, leading to enhanced expression of MGMT and MLH1 mRNA. CONCLUSION: NaF treatment led to methylation of the DNA repair genes MGMT and MLH1 in osteoblasts, resulting in cell proliferation and activation and causing the development of skeletal fluorosis.

3.
Cancer Biol Ther ; 16(8): 1241-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147747

RESUMEN

Epigenetic changes play significant roles in cancer development. UHRF1, an epigenetic regulator, has been shown to be overexpressed and to coordinate tumor suppressor gene (TSG) silencing in several cancers. In a previous study, we found that UHRF1 promoted gastric cancer (GC) invasion and metastasis. However, the role and underlying mechanism of UHRF1 in GC carcinogenesis remain largely unknown. In the present study, we investigated UHRF1 expression and function in GC proliferation and explored its downstream regulatory mechanism. The results demonstrated that UHRF1 overexpression was an independent and significant predictor of GC prognosis. Downregulation of UHRF1 suppressed GC proliferation and growth in vitro and in vivo, and UHRF1 upregulation showed opposite effects. Furthermore, downregulation of UHRF1 reactivated 7 TSGs, including CDX2, CDKN2A, RUNX3, FOXO4, PPARG, BRCA1 and PML, via promoter demethylation. These results provide insight into the GC proliferation process, and suggest that targeting UHRF1 represents a new therapeutic approach to block GC development.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Genes Supresores de Tumor , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Anciano , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Línea Celular Tumoral , Metilación de ADN , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Regiones Promotoras Genéticas , Neoplasias Gástricas/mortalidad , Ubiquitina-Proteína Ligasas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancer Biol Ther ; 16(7): 1071-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25961369

RESUMEN

MiR-145 has been implicated in the progression of non-small cell lung cancer (NSCLC); however, its exact mechanism is not well established. Here, we report that miR-145 expression is decreased in NSCLC cell lines and tumor tissues and that this low level of expression is associated with DNA methylation. MiR-145 methylation in NSCLC was correlated with a more aggressive tumor phenotype and was associated with poor survival time, as shown by Kaplan-Meier analysis. Additional multivariate Cox regression analysis indicated that miR-145 methylation was an independent prognostic factor for poor survival in patients with NSCLC. Furthermore, we found that restoration of miR-145 expression inhibited proliferation, migration and invasion of NSCLC by the direct targeting of mucin 1 by miR-145. Our results indicate that low miR-145 expression, due to methylation, promotes NSCLC cell proliferation, migration and invasion by targeting mucin 1. Therefore, miR-145 may be a valuable therapeutic target for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Movimiento Celular/genética , Proliferación Celular/genética , Metilación de ADN , Neoplasias Pulmonares/genética , MicroARNs/genética , Mucina-1/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mucina-1/metabolismo , Análisis Multivariante , Invasividad Neoplásica , Pronóstico , Modelos de Riesgos Proporcionales , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/estadística & datos numéricos
5.
Toxicol Rep ; 2: 864-869, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-28962422

RESUMEN

Benzene, a known occupational and environmental contaminant, is associated with increased risk of leukemia. The objectives of this study were to elucidate the regulatory mechanism of the hypomethylated STAT3 involved in benzene toxicity in vitro. As 1,4-benzoquinone (1,4-BQ) is one of benzene's major toxic metabolites, AHH-1 cells were treated by 1,4-BQ for 24 h with or without pretreatment of the antioxidant a-LA or the methyltransferase inhibitor, 5-aza-2' deoxycytidine (5-aza). The cell viability was investigated using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. ROS was determined via 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) flow cytometric assays. The level of oxidative stress marker 8-OHdG was measured by enzyme-linked immunosorbent assay. Methylation-specific PCR was used to detect the methylation status of STAT3. Results indicated the significantly increasing expression of ROS and 8-OHdG which accompanied with STAT3 hypomethylation in 1,4-BQ-treated AHH-1 cells. α-LA suppressed the expression of both ROS and 8-OHdG, simultaneously reversed 1,4-BQ-induced STAT3 hypomethylation. However, although the methylation inhibitor, 5-aza reduced the expression level of ROS and 8-OHdG, but had no obvious inhibiting effect on STAT3 methylation level. Taken together, oxidative stress are involved 1,4-BQ-induced STAT3 methylation expression.

6.
Epigenetics ; 9(12): 1626-40, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25625847

RESUMEN

CREB3L1 has been recently proposed as a novel metastasis suppressor gene in breast cancer. Our current study highlights CREB3L1 expression, regulation, and function in bladder cancer. We demonstrate a significant downregulation of CREB3L1 mRNA expression (n = 64) in primary bladder cancer tissues caused by tumor-specific CREB3L1 promoter hypermethylation (n = 51). Based on pyrosequencing CREB3L1 methylation was shown to be potentially associated with a more aggressive phenotype of bladder cancer. These findings were verified by an independent public data set containing data from 184 bladder tumors. In addition, immunohistochemical evaluation showed that CREB3L1 protein expression is decreased in bladder cancer tissues as well. Interestingly, protein loss is predominately observed in the nuclei of aggressive tumor cells. Based on in vitro models we clearly show that CREB3L1 re-expression mediates suppression of tumor cell migration and colony growth of high grade and invasive bladder cancer cells. The candidate tumor suppressor and TGF-ß signaling inhibitor HTRA3 was furthermore identified as putative target gene of CREB3L1 in both invasive J82 bladder cells and primary bladder tumors. Hence, our data provide for the first time evidence that the transcription factor CREB3L1 may have an important role as a putative tumor suppressor in bladder cancer.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Epigénesis Genética , Silenciador del Gen , Proteínas del Tejido Nervioso/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Anciano , Línea Celular Tumoral , Movimiento Celular , Islas de CpG , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Metilación de ADN , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Proteínas del Tejido Nervioso/metabolismo , Regiones Promotoras Genéticas , Valores de Referencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA