Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ophthalmol Sci ; 3(2): 100263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36864830

RESUMEN

Purpose: Quantification of retinal xanthophyll carotenoids in eyes with and without age-related macular degeneration (AMD) via macular pigment optical volume (MPOV), a metric for xanthophyll abundance from dual wavelength autofluorescence, plus correlations to plasma levels, could clarify the role of lutein (L) and zeaxanthin (Z) in health, AMD progression, and supplementation strategies. Design: Cross-sectional observational study (NCT04112667). Participants: Adults ≥ 60 years from a comprehensive ophthalmology clinic, with healthy maculas or maculas meeting fundus criteria for early or intermediate AMD. Methods: Macular health and supplement use was assessed by the Age-related Eye Disease Study (AREDS) 9-step scale and self-report, respectively. Macular pigment optical volume was measured from dual wavelength autofluorescence emissions (Spectralis, Heidelberg Engineering). Non-fasting blood draws were assayed for L and Z using high-performance liquid chromatography. Associations among plasma xanthophylls and MPOV were assessed adjusting for age. Main Outcome Measures: Age-related macular degeneration presence and severity, MPOV in fovea-centered regions of radius 2.0° and 9.0°; plasma L and Z (µM/ml). Results: Of 809 eyes from 434 persons (89% aged 60-79, 61% female), 53.3% eyes were normal, 28.2% early AMD, and 18.5% intermediate AMD. Macular pigment optical volume 2° and 9° were similar in phakic and pseudophakic eyes, which were combined for analysis. Macular pigment optical volume 2° and 9° and plasma L and Z were higher in early AMD than normal and higher still in intermediate AMD (P < 0.0001). For all participants, higher plasma L was correlated with higher MPOV 2° (Spearman correlation coefficient [Rs] = 0.49; P < 0.0001). These correlations were significant (P < 0.0001) but lower in normal (Rs = 0.37) than early and intermediate AMD (Rs = 0.52 and 0.51, respectively). Results were similar for MPOV 9°. Plasma Z, MPOV 2°, and MPOV 9° followed this same pattern of associations. Associations were not affected by supplement use or smoking status. Conclusions: A moderate positive correlation of MPOV with plasma L and Z comports with regulated xanthophyll bioavailability and a hypothesized role for xanthophyll transfer in soft drusen biology. An assumption that xanthophylls are low in AMD retina underlies supplementation strategies to reduce progression risk, which our data do not support. Whether higher xanthophyll levels in AMD are due to supplement use cannot be determined in this study.

2.
Ophthalmol Sci ; 1(3): 100039, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36247822

RESUMEN

Purpose: To evaluate macular pigment response to carotenoid supplementation in glaucomatous eyes. Design: Double-masked, randomized, placebo-controlled clinical trial, the European Nutrition in Glaucoma Management Study (ClinicalTrials.gov identifier, NCT04460365). Participants: Sixty-two participants (38 men, 24 women) with a diagnosis of open-angle glaucoma were enrolled. Forty-two were randomized to receive the active supplement, 20 participants were allocated to placebo. Methods: Macular pigment optical density (MPOD) was measured by autofluorescence using the Heidelberg Spectralis scanning laser ophthalmoscope. Macular pigment optical density volume within the central 6° of retinal eccentricity as well as MPOD at 0.23°, 0.51°, 0.74°, and 1.02° were recorded at baseline and at 6-month intervals over 18 months. Visual function was assessed using visual acuity, mesopic and photopic contrast sensitivity under glare conditions, photo stress recovery time, microperimetry, and Glaucoma Activities Limitation 9 questionnaire. Advanced glaucoma module scans of retinal nerve fiber layer thickness and ganglion cell complex thickness over the central 6° of retinal eccentricity also were completed at each study visit. Main Outcome Measures: Change in MPOD after supplementation with 10 mg lutein, 2 mg zeaxanthin, and 10 mg meso-zeaxanthin or placebo over 18 months. Results: A mixed-model repeated measures analysis of variance revealed a statistically significant increase in MPOD volume (significant time effect: F(3,111) = 89.31, mean square error (MSE) = 1656.9; P < 0.01). Post hoc t tests revealed a significant difference in MPOD volume at each study visit for the treatment group (P < 0.01 for all), but no change in the placebo group (P > 0.05 for all). A statistically significant increase in mesopic contrast sensitivity under glare conditions was noted at 18 months in the treatment group, but not placebo. No other structural or functional changes were observed. No serious adverse events were noted during the trial. Conclusions: Macular pigment can be augmented in glaucomatous eyes by supplementation with a formulation containing the carotenoids lutein, zeaxanthin, and meso-zeaxanthin. The greatest relative benefit was observed in those with the lowest baseline levels, but increases were noted across all participants and each retinal eccentricity. The potential benefits of MP augmentation for macular health in glaucoma merit further long-term evaluation.

3.
J Nutr Sci ; 7: e8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29430299

RESUMEN

Reduced absorption capacity in patients with intestinal resections (IR) could result in malabsorption of fat-soluble components like carotenoids, which are of clinical interest in relation to visual health. In this case cohort, we investigated the association between IR and serum lutein, zeaxanthin, ß-carotene and macular pigment optical density, when compared with healthy controls. Ten patients with IR and twelve healthy controls were included in the study. Baseline characteristics were comparable between groups, except for higher serum TAG (P < 0·05) and shorter bowel length (P < 0·0001) in the group with IR. Serum lutein, zeaxanthin, ß-carotene and macular pigment optical density were >15 % lower in the patient group compared with healthy controls (P < 0·05, adjusted for age) and, in the case of serum lutein and zeaxanthin, also for dietary intake of carotenoids. Results suggest that for a test of macular carotenoid supplementation, subjects with a potentially clinically significant carotenoid deficit could be recruited among patients with IR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA