Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 58(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36556927

RESUMEN

Background and Objectives: Deposits of monosodium urate (MSU) crystals due to increased levels of uric acid (UA) have been associated with bone formation and erosion, mainly in patients with chronic gout. The synovial membrane (SM) comprises several types of cells, including mesenchymal stem cells (SM-MSCs); however, it is unknown whether UA and MSU induce osteogenesis through SM-MSCs. Materials and Methods: Cultures of SM were immunotyped with CD44, CD69, CD90, CD166, CD105, CD34, and CD45 to identify MSCs. CD90+ cells were isolated by immunomagnetic separation (MACS), colony-forming units (CFU) were identified, and the cells were exposed to UA (3, 6.8, and 9 mg/dL) and MSU crystals (1, 5, and 10 µg/mL) for 3 weeks, and cellular morphological changes were evaluated. IL-1ß and IL-6 were determined by ELISA, mineralization was assessed by alizarin red, and the expression of Runx2 was assessed by Western blot. Results: Cells derived from SM and after immunomagnetic separation were positive for CD90 (53 ± 8%) and CD105 (52 ± 18%) antigens, with 53 ± 5 CFU identified. Long-term exposure to SM-MSCs by UA and MSU crystals did not cause morphological damage or affect cell viability, nor were indicators of inflammation detected. Mineralization was observed at doses of 6.8 mg/dL UA and 5 µg/mL MSU crystals; however, the differences were not significant with respect to the control. The highest dose of MSU crystals (10 µg/mL) induced significant Runx2 expression with respect to the control (1.4 times greater) and SM-MSCs cultured in the osteogenic medium. Conclusions: MSU crystals may modulate osteogenic differentiation of SM-MSCs through an increase in Runx2.


Asunto(s)
Gota , Células Madre Mesenquimatosas , Humanos , Ácido Úrico/farmacología , Osteogénesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Proteínas
2.
Inflammopharmacology ; 30(6): 2399-2410, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36173505

RESUMEN

BACKGROUND: There is a growing search for therapeutic targets in the treatment of gout. The present study aimed to evaluate the analgesic and anti-inflammatory potential of angiotensin type 2 receptor (AT2R) antagonism in an acute gout attack mouse model. METHODS: Male wild-type (WT) C57BL/6 mice either with the AT2R antagonist, PD123319 (10 pmol/joint), or with vehicle injections, or AT2R KO mice, received intra-articular (IA) injection of monosodium urate (MSU) crystals (100 µg/joint), that induce the acute gout attack, and were tested for mechanical allodynia, thermal hyperalgesia, spontaneous nociception and ankle edema development at several times after the injections. To test an involvement of AT2R in joint pain, mice received an IA administration of angiotensin II (0.05-5 nmol/joint) with or without PD123319, and were also evaluated for pain and edema development. Ankle joint tissue samples from mice undergoing the above treatments were assessed for myeloperoxidase activity, IL-1ß release, mRNA expression analyses and nitrite/nitrate levels, 4 h after injections. RESULTS: AT2R antagonism has robust antinociceptive effects on mechanical allodynia (44% reduction) and spontaneous nociception (56%), as well as anti-inflammatory effects preventing edema formation (45%), reducing myeloperoxidase activity (54%) and IL-1ß levels (32%). Additionally, Agtr2tm1a mutant mice have largely reduced painful signs of gout. Angiotensin II administration causes pain and inflammation, which was prevented by AT2R antagonism, as observed in mechanical allodynia 4 h (100%), spontaneous nociception (46%), cold nociceptive response (54%), edema formation (83%), myeloperoxidase activity (48%), and IL-1ß levels (89%). PD123319 treatment also reduces NO concentrations (74%) and AT2R mRNA levels in comparison with MSU untreated mice. CONCLUSION: Our findings show that AT2R activation contributes to acute pain in experimental mouse models of gout. Therefore, the antagonism of AT2R may be a potential therapeutic option to manage gout arthritis.


Asunto(s)
Dolor Agudo , Artritis Gotosa , Gota , Ratones , Masculino , Animales , Ácido Úrico , Hiperalgesia/tratamiento farmacológico , Angiotensina II , Receptor de Angiotensina Tipo 2 , Peroxidasa , Ratones Endogámicos C57BL , Gota/tratamiento farmacológico , Gota/metabolismo , Artritis Gotosa/tratamiento farmacológico , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Antiinflamatorios/uso terapéutico , Edema/tratamiento farmacológico , Antioxidantes/uso terapéutico , Dolor Agudo/tratamiento farmacológico , ARN Mensajero
3.
Inflammopharmacology ; 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28508104

RESUMEN

We investigated the anti-inflammatory and analgesic effects of quercetin in monosodium urate crystals (MSU)-induced gout arthritis, and the sensitivity of quercetin effects to naloxone, an opioid receptor antagonist. Mice were treated with quercetin, and mechanical hyperalgesia was assessed at 1-24 h after MSU injection. In vivo, leukocyte recruitment, cytokine levels, oxidative stress, NFκB activation, and gp91phox and inflammasome components (NLRP3, ASC, Pro-caspase-1, and Pro-IL-1ß) mRNA expression by qPCR were determined in the knee joints at 24 h after MSU injection. Inflammasome activation was determined, in vitro, in lipopolysaccharide-primed macrophages challenged with MSU. Quercetin inhibited MSU-induced mechanical hyperalgesia, leukocyte recruitment, TNFα and IL-1ß production, superoxide anion production, inflammasome activation, decrease of antioxidants levels, NFκB activation, and inflammasome components mRNA expression. Naloxone pre-treatment prevented all the inhibitory effects of quercetin over MSU-induced gout arthritis. These results demonstrate that quercetin exerts analgesic and anti-inflammatory effect in the MSU-induced arthritis in a naloxone-sensitive manner.

4.
J Innate Immun ; 9(4): 387-402, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28467984

RESUMEN

Tissue injury leads to the release of uric acid (UA). At high local concentrations, UA can form monosodium urate crystals (MSU). MSU and UA stimulate neutrophils to release extracellular traps (NET). Here, we investigated whether these NET could be involved in the development of inflammation by stimulating cytokine release by airway epithelial cells. We found that NET significantly increased the secretion of CXCL8/IL-8 and IL-6 by alveolar and bronchial epithelial cells. These effects were not observed when NETosis was inhibited by Diphenyleneiodonium, elastase inhibitor, or Cl-amidine. Similar findings were made with NET induced by cigarette smoke extract, suggesting that NET proinflammatory capacity is independent of the inducing stimulus. Furthermore, NET affected neither the viability and morphology of epithelial cells nor the barrier integrity of polarized cells. The epithelial stimulatory capacity of NET was not affected by degradation of DNA with micrococcal nuclease, treatment with heparin, or inhibition of the elastase immobilized to DNA, but it was significantly reduced by pretreatment with an anti-HMGB-1 blocking antibody. Altogether, our findings indicate that NET exert direct proinflammatory effects on airway epithelial cells that might contribute in vivo to the further recruitment of neutrophils and the perpetuation of inflammation upon lung tissue damage.


Asunto(s)
Bronquios/parasitología , Trampas Extracelulares/metabolismo , Inflamación/inmunología , Interleucina-6/metabolismo , Neutrófilos/inmunología , Alveolos Pulmonares/patología , Mucosa Respiratoria/inmunología , Anticuerpos Bloqueadores/farmacología , Células Cultivadas , Fumar Cigarrillos/efectos adversos , Trampas Extracelulares/inmunología , Proteína HMGB1/inmunología , Humanos , Interleucina-8/metabolismo , Compuestos Onio/farmacología , Ornitina/análogos & derivados , Ornitina/farmacología , Proteínas Inhibidoras de Proteinasas Secretoras/farmacología , Mucosa Respiratoria/patología , Ácido Úrico/metabolismo
5.
Arthritis Res Ther ; 18(1): 117, 2016 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-27209322

RESUMEN

BACKGROUND: Gout is the most common inflammatory arthropathy of metabolic origin and it is characterized by intense inflammation, the underlying mechanisms of which are unknown. The aim of this study was to evaluate the oxidative stress in human fibroblast-like synoviocytes (FLS) exposed to monosodium urate (MSU) crystals, which trigger an inflammatory process. METHODS: Human FLS isolated from synovial tissue explants were stimulated with MSU crystals (75 µg/mL) for 24 h. Cellular viability was evaluated by crystal violet staining, apoptosis was assessed using Annexin V, and the cellular content of reactive oxygen species (ROS) and nitrogen species (RNS) (O2 (-), H2O2, NO) was assessed with image-based cytometry and fluorometric methods. In order to determine protein oxidation levels, protein carbonyls were detected through oxyblot analysis, and cell ultrastructural changes were assessed by transmission electron microscopy. RESULTS: The viability of FLS exposed to MSU crystals decreased by 30 % (P < 0.05), while apoptosis increased by 42 % (P = 0.01). FLS stimulated with MSU crystals exhibited a 2.1-fold increase in H2O2 content and a 1.5-fold increase in O2 (-) and NO levels. Oxyblots revealed that the spots obtained from FLS protein lysates exposed to MSU crystals exhibited protein carbonyl immunoreactivity, which reflects the presence of oxidatively modified proteins. Concomitantly, MSU crystals triggered the induction of changes in the morphostructure of FLS, such as the thickening and discontinuity of the endoplasmic reticulum, and the formation of vacuoles and misfolded glycoproteins. CONCLUSIONS: Our results prove that MSU crystals induce the release of ROS and RNS in FLS, subsequently oxidizing proteins and altering the cellular oxidative state of the endoplasmic reticulum, which results in FLS apoptosis.


Asunto(s)
Fibroblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sinoviocitos/efectos de los fármacos , Ácido Úrico/toxicidad , Apoptosis/efectos de los fármacos , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Gota/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Reacción en Cadena en Tiempo Real de la Polimerasa , Sinoviocitos/metabolismo , Sinoviocitos/patología
6.
Clin Rheumatol ; 34(10): 1667-72, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25854697

RESUMEN

Gout is a disorder of urate metabolism in which persistent high urate levels in the extracellular fluids result in the deposition of monosodium urate (MSU) crystal in joints and periarticular tissues. In recent years, this disease represents an increasingly common health problem, so the pace of investigation in the field has accelerated tremendously. New research advances in the pathogenesis of hyperuricemia and in the understanding of how MSU crystals induce an acute gouty attack have been focused in this review on the processes of inflammation and involvement of the innate immune response; in addition, we discuss new knowledge about the role of the reactive oxygen species in establishing oxidative stress in MSU crystal-induced arthritis.


Asunto(s)
Artritis Gotosa/metabolismo , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Cristalización , Citocinas/metabolismo , Humanos , Hiperuricemia/fisiopatología , Inmunidad Innata , Inflamación , Articulaciones/inmunología , Especies Reactivas de Oxígeno , Ácido Úrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA