Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408513

RESUMEN

A new MOF-74(Ni)/NiOOH heterogeneous composite was synthesized via NiOOH microsphere precursor. The electrocatalytic methanol oxidation reactions' (MOR) performance was assessed. The as-prepared MOF-74(Ni)/NiOOH exhibited excellent activity with high peak current density (27.62 mA·cm-2) and high mass activity (243.8 mA·mg-1). The enhanced activity could be a result of the synergistic effect of the MOF-74(Ni)/NiOOH heterocomposite providing more exposed active sites, a beneficial diffusion path between the catalyst surface and electrolyte, and improved conductivity, favorable for improving MOR performance.

2.
J Colloid Interface Sci ; 612: 132-145, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34992014

RESUMEN

Though the highest CO2 capture capacity belongs to liquid amine-solutions, solid matters capable of CO2 capture are also highly sought, providing that, they offer at least analogous CO2 adsorption capacity and CO2/N2 selectivity. Herein, a surprisingly high-performance Ni-based metal-organic framework for CO2 adsorption, namely MOF-74(Ni), was synthesized by a facile condensation reflux approach. It was found that the structure and CO2 adsorption isosteric heat of MOF-74(Ni) could tune upon varying the synthesis duration under various temperatures. The optimized MOF-74(Ni)-24-140 (synthesized at 140 °C for 24 h) displays outstanding CO2 adsorption capacity of 8.29/6.61 mmol/g at 273/298 K under normal pressure of 1.0 bar, several times higher than previously reported MOF-74-Ni (2.0/2.1 times), UTSA-16 (1.5/1.6 times), and DA-CMP-1 (3.6/4.9 times) under similar conditions. The excellent CO2 capture capacity is associated to the abundant adsorption sites (mainly arising from the cationic Ni2+ ions) and narrow micropore channels (mainly arising from the cage structure of Ni2+ ions coordinated with organic linkers). Offering a high CO2 selectivity (CO2/N2 = 49) and a well-tuned isosteric heat of CO2 adsorption (27-52 kJ/mol) besides its decent CO2 capture capacity, MOF-74(Ni) strongly stands out as an efficient and strong CO2 capturing material with industrial scale applicability.

3.
J Hazard Mater ; 424(Pt B): 127465, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34655872

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), as a major source that significantly increase the risk of developing lung cancer, severely jeopardize public health in modern society. The analysis of PAHs and their metabolites (hydroxylated PAHs, OH-PAHs) is important for biomonitoring and exposure assessment. However, due to the difference in their physico-chemical properties and matrix interference, realizing high-performance extraction of both PAHs and OH-PAHs is still a challenge. Herein, a nickel-doped hierarchical porous carbon (Ni/HPC) is synthesized by carbonizing the polystyrene (PS) infiltrated metal-organic frameworks (MOF-74(Ni)). The obtained Ni/HPC exhibits hierarchical pores and evenly distributed Ni atoms, providing efficient diffusion pathways and adsorption sites. The custom Ni/HPC-coated solid-phase microextraction (SPME) fiber shows superior enrichment capabilities for PAHs and their metabolites under various interfering conditions, verifying its practicability in real sample analysis. The proposed method provides a new strategy to synthesize carbon-based adsorbents that achieves matrix-resistant enrichment of PAHs and OH-PAHs, which simplifies the related sample preparation process for environmental analysis and clinical diagnosis.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Carbono , Humanos , Límite de Detección , Hidrocarburos Policíclicos Aromáticos/análisis , Poliestirenos , Porosidad , Microextracción en Fase Sólida , Contaminantes Químicos del Agua/análisis
4.
J Colloid Interface Sci ; 610: 280-294, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34922080

RESUMEN

Based on single metal-organic framework (MOF) composite catalyst ZIF-67/g-C3N4 (ZG), the composite catalysts ZIF-67/MOF-74(Ni)/g-C3N4 (ZNG) and ZIF-67/MIL-100(Fe)/g-C3N4 (ZMG) with double MOFs were synthesized, used to effectively activate peroxymonosulfate (PMS) for degrade venlafaxine (VEN). Various characterization methods (XRD, FT-IR, Raman, SEM, EDS, TEM and TG) showed that ZIF-67 and g-C3N4; ZIF-67, MOF-74(Ni) and g-C3N4; as well as ZIF-67, MIL-100(Fe) and g-C3N4 successfully formed heterostructures. The series of catalytic degradation results showed that within 120 min, the degradation rate of VEN by ZMG achieved 100% and the mineralization rate reached 51.32%. The removal rate of VEN by ZNG was 91.38%, while that by ZG was only 27.75%. Free radical quenching tests and EPR further confirmed the production of OH and SO4-, which could be conducive to the degradation of VEN. The mechanism analysis of PMS activation confirmed that the interaction of Fe2+/Co3+ was stronger than that of Ni2+/Co3+, and it was an important driving force to significantly enhance the synergistic effect. Finally, Gauss theory calculation and HPLC-MS/MS were used to analyze the intermediate products of VEN. It was verified that the main chemical reactions in the degradation process of VEN were hydroxylation, dehydration, demethylation and tertiary amine substitution.


Asunto(s)
Estructuras Metalorgánicas , Antidepresivos , Peróxidos , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masas en Tándem , Clorhidrato de Venlafaxina
5.
ACS Appl Mater Interfaces ; 9(41): 35908-35916, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28952710

RESUMEN

Metal-organic frameworks (MOFs) have shown promising performance in separation, adsorption, reaction, and storage of various industrial gases; however, their large-scale applications have been hampered by the lack of a proper strategy to formulate them into scalable gas-solid contactors. Herein, we report the fabrication of MOF monoliths using the 3D printing technique and evaluation of their adsorptive performance in CO2 removal from air. The 3D-printed MOF-74(Ni) and UTSA-16(Co) monoliths with MOF loadings as high as 80 and 85 wt %, respectively, were developed, and their physical and structural properties were characterized and compared with those of MOF powders. Our adsorption experiments showed that, upon exposure to 5000 ppm (0.5%) CO2 at 25 °C, the MOF-74(Ni) and UTSA-16(Co) monoliths can adsorb CO2 with uptake capacities of 1.35 and 1.31 mmol/g, respectively, which are 79% and 87% of the capacities of their MOF analogues under the same conditions. Furthermore, a stable performance was obtained for self-standing 3D-printed monolithic structures with relatively good adsorption kinetics. The preliminary findings reported in this investigation highlight the advantage of the robocasting (3D printing) technique for shaping MOF materials into practical configurations that are suitable for various gas separation applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA