Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569465

RESUMEN

Long QT syndrome (LQTS) can lead to ventricular arrhythmia and sudden cardiac death. The most common congenital cause of LQTS is mutations in the channel subunits generating the cardiac potassium current IKs. Zebrafish (Danio rerio) have been proposed as a powerful system to model human cardiac diseases due to the similar electrical properties of the zebrafish heart and the human heart. We used high-resolution all-optical electrophysiology on ex vivo zebrafish hearts to assess the effects of IKs analogues on the cardiac action potential. We found that chromanol 293B (an IKs inhibitor) prolonged the action potential duration (APD) in the presence of E4031 (an IKr inhibitor applied to drug-induced LQT2), and to a lesser extent, in the absence of E4031. Moreover, we showed that PUFA analogues slightly shortened the APD of the zebrafish heart. However, PUFA analogues failed to reverse the APD prolongation in drug-induced LQT2. However, a more potent IKs activator, ML-277, partially reversed the APD prolongation in drug-induced LQT2 zebrafish hearts. Our results suggest that IKs plays a limited role in ventricular repolarizations in the zebrafish heart under resting conditions, although it plays a more important role when the IKr is compromised, as if the IKs in zebrafish serves as a repolarization reserve as in human hearts. This study shows that potent IKs activators can restore the action potential duration in drug-induced LQT2 in the zebrafish heart.


Asunto(s)
Síndrome de QT Prolongado , Canales de Potasio con Entrada de Voltaje , Animales , Humanos , Antiarrítmicos/farmacología , Pez Cebra , Corazón , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/genética , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Potenciales de Acción , Canales de Potasio con Entrada de Voltaje/farmacología
2.
Biomedicines ; 11(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37189765

RESUMEN

Long QT syndrome type 1 with affected IKs is associated with a high risk for developing Torsade de Pointes (TdP) arrhythmias and eventually sudden cardiac death. Therefore, it is of high interest to explore drugs that target IKs as antiarrhythmics. We examined the antiarrhythmic effect of IKs channel activator ML277 in the chronic atrioventricular block (CAVB) dog model. TdP arrhythmia sensitivity was tested in anesthetized mongrel dogs (n = 7) with CAVB in series: (1) induction experiment at 4 ± 2 weeks CAVB: TdP arrhythmias were induced with our standardized protocol using dofetilide (0.025 mg/kg), and (2) prevention experiment at 10 ± 2 weeks CAVB: the antiarrhythmic effect of ML277 (0.6-1.0 mg/kg) was tested by infusion for 5 min preceding dofetilide. ML277: (1) temporarily prevented repolarization prolongation induced by dofetilide (QTc: 538 ± 65 ms at induction vs. 393 ± 18 ms at prevention, p < 0.05), (2) delayed the occurrence of the first arrhythmic event upon dofetilide (from 129 ± 28 s to 180 ± 51 s, p < 0.05), and (3) decreased the arrhythmic outcome with a significant reduction in the number of TdP arrhythmias, TdP score, arrhythmia score and total arrhythmic events (from 669 ± 132 to 401 ± 228, p < 0.05). IKs channel activation by ML277 temporarily suppressed QT interval prolongation, delayed the occurrence of the first arrhythmic event and reduced the arrhythmic outcome in the CAVB dog model.

3.
Proc Natl Acad Sci U S A ; 119(45): e2207067119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36763058

RESUMEN

The cardiac KCNQ1 potassium channel carries the important IKs current and controls the heart rhythm. Hundreds of mutations in KCNQ1 can cause life-threatening cardiac arrhythmia. Although KCNQ1 structures have been recently resolved, the structural basis for the dynamic electro-mechanical coupling, also known as the voltage sensor domain-pore domain (VSD-PD) coupling, remains largely unknown. In this study, utilizing two VSD-PD coupling enhancers, namely, the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and a small-molecule ML277, we determined 2.5-3.5 Å resolution cryo-electron microscopy structures of full-length human KCNQ1-calmodulin (CaM) complex in the apo closed, ML277-bound open, and ML277-PIP2-bound open states. ML277 binds at the "elbow" pocket above the S4-S5 linker and directly induces an upward movement of the S4-S5 linker and the opening of the activation gate without affecting the C-terminal domain (CTD) of KCNQ1. PIP2 binds at the cleft between the VSD and the PD and brings a large structural rearrangement of the CTD together with the CaM to activate the PD. These findings not only elucidate the structural basis for the dynamic VSD-PD coupling process during KCNQ1 gating but also pave the way to develop new therapeutics for anti-arrhythmia.


Asunto(s)
Corazón , Canal de Potasio KCNQ1 , Humanos , Canal de Potasio KCNQ1/metabolismo , Microscopía por Crioelectrón , Piperidinas
4.
Elife ; 82019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31329101

RESUMEN

Upon membrane depolarization, the KCNQ1 potassium channel opens at the intermediate (IO) and activated (AO) states of the stepwise voltage-sensing domain (VSD) activation. In the heart, KCNQ1 associates with KCNE1 subunits to form IKs channels that regulate heart rhythm. KCNE1 suppresses the IO state so that the IKs channel opens only to the AO state. Here, we tested modulations of human KCNQ1 channels by an activator ML277 in Xenopus oocytes. It exclusively changes the pore opening properties of the AO state without altering the IO state, but does not affect VSD activation. These observations support a distinctive mechanism responsible for the VSD-pore coupling at the AO state that is sensitive to ML277 modulation. ML277 provides insights and a tool to investigate the gating mechanism of KCNQ1 channels, and our study reveals a new strategy for treating long QT syndrome by specifically enhancing the AO state of native IKs currents.


Asunto(s)
Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/tratamiento farmacológico , Canales de Potasio con Entrada de Voltaje/genética , Animales , Membrana Celular/genética , Membrana Celular/fisiología , Polaridad Celular/genética , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/patología , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Piperidinas/farmacología , Potasio/metabolismo , Tiazoles/farmacología , Compuestos de Tosilo/farmacología , Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA