Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Curr Issues Mol Biol ; 46(7): 7395-7410, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39057080

RESUMEN

Cholangiocellular carcinoma (CCA) is the second most common primary liver cancer, with increasing incidence worldwide and inadequate therapeutic options. Intra- and extrahepatic bile ducts have distinctly different embryonic origins and developmental behavior, and accordingly, intra- and extrahepatic CCAs (ICC vs. ECC) are molecularly different. A promising strategy in oncotherapy is targeted therapy, targeting proteins that regulate cell survival and proliferation, such as the MAPK/ERK and PI3K/AKT/mTOR signaling pathways. Inhibitors of these pathways have been tested previously in CCA cell lines. However, these cell lines could not be clearly assigned to ICC or ECC, and the results indicated apoptosis induction by targeted therapeutics. We tested targeted therapeutics (selumetinib, MK2206) in three defined ICC cell lines (HuH28, RBE, SSP25). We observed additive effects of the dual inhibition of the two pathways, in accordance with the inhibition of phospho-AKT and phospho-ERK1/2 expression. Proliferation was blocked more effectively with dual inhibition than with each single inhibition, but cell numbers did not drop below baseline. Accordingly, we observed G1 phase arrest but not apoptosis or cell death (measured by cleaved caspase-3, AIFM1 regulation, sub-G0/G1 phase). We conclude that the dual inhibition of the MAPK/ERK and PI3K/AKT/mTOR pathways is highly effective to block the proliferation of ICC cell lines in vitro; however, potential clinical applications must be critically examined, as a proliferation block could also induce resistance to standard therapies.

2.
Cancer ; 130(5): 702-712, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37947157

RESUMEN

BACKGROUND: Recurrent/metastatic adenoid cystic carcinoma (ACC) is a rare, incurable disease. MYB is a putative oncogenic driver in ACC that is often overexpressed through an MYB-NFIB rearrangement. The authors hypothesized that AKT inhibition with the allosteric inhibitor MK-2206 could decrease MYB expression and induce tumor regression in patients with incurable ACC (ClinicalTrials.gov identifier NCT01604772). METHODS: Patients with progressive, incurable ACC were enrolled and received MK-2206 150 mg weekly; escalation to 200 mg was allowed. The primary end point was confirmed response. Secondary end points were progression-free survival, overall survival, and safety. An exploratory analysis evaluating the effect of MK-2206 on MYB expression was conducted in a subset of patients. RESULTS: Sixteen patients were enrolled, and 14 were evaluable for efficacy. No confirmed responses were observed. Thirteen patients had stable disease, and one had disease progression as their best response. The median progression-free survival was 9.7 months (95% CI, 3.8-11.8 months), and the median overall survival was 18.0 months (95% CI, 11.8-29.9 months). Nine of 16 patients (56%) had at least one grade 3 treatment-related adverse event, and the most common were rash (38%), fatigue (19%), decreased lymphocyte count (13%), and hyperglycemia (13%). Twelve of 14 tumors (86%) had detectable MYB expression by immunohistochemistry, and seven of 14 tumors (50%) had an MYB-NFIB gene rearrangement. Serial biopsies revealed decreased MYB levels with MK-2206 in four of five patients. CONCLUSIONS: MK-2206 failed to induce clinical responses in patients with incurable ACC. AKT inhibition may diminish MYB protein levels, although the effect was highly variable among patients. Novel approaches to target MYB in ACC are needed.


Asunto(s)
Carcinoma Adenoide Quístico , Neoplasias de las Glándulas Salivales , Humanos , Carcinoma Adenoide Quístico/tratamiento farmacológico , Carcinoma Adenoide Quístico/genética , Proteínas Proto-Oncogénicas c-akt , Recurrencia Local de Neoplasia , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Neoplasias de las Glándulas Salivales/tratamiento farmacológico , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología
3.
Front Pharmacol ; 14: 1235285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521473

RESUMEN

Introduction: The overexpression of ATP-binding cassette (ABC) transporters, ABCB1 and ABCG2, are two of the major mediators of multidrug resistance (MDR) in cancers. Although multiple ABCB1 and ABCG2 inhibitors have been developed and some have undergone evaluation in clinical trials, none have been clinically approved. The compound, MK-2206, an inhibitor of the protein kinases AKT1/2/3, is undergoing evaluation in multiple clinical trials for the treatment of certain types of cancers, including those resistant to erlotinib. In this in vitro study, we conducted in vitro experiments to determine if MK-2206 attenuates multidrug resistance in cancer cells overexpressing the ABCB1 or ABCG2 transporter. Methodology: The efficacy of MK-2206 (0.03-1 µM), in combination with the ABCB1 transporter sub-strates doxorubicin and paclitaxel, and ABCG2 transporter substrates mitoxantrone, SN-38 and topotecan, were determined in the cancer cell lines, KB-C2 and SW620/Ad300, which overexpress the ABCB1 transporter or H460/MX20 and S1-M1-80, which overexpress the ABCG2 transporter, respectively. The expression level and the localization of ABCG2 transporter on the cancer cells membranes were determined using western blot and immunofluorescence assays, respectively, following the incubation of cells with MK-2206. Finally, the interaction between MK-2206 and human ABCG2 transporter was predicted using computer-aided molecular modeling. Results: MK-2206 significantly increased the efficacy of anticancer compounds that were substrates for the ABCG2 but not the ABCB1 transporter. MK-2206 alone (0.03-1 µM) did not significantly alter the viability of H460/MX20 and S1-M1-80 cancer cells, which overexpress the ABCG2 transporter, compared to cells incubated with vehicle. However, MK-2206 (0.3 and 1 µM) significantly increased the anticancer efficacy of mitoxantrone, SN-38 and topotecan, in H460/MX20 and S1-M1-80 cancer cells, as indicated by a significant decrease in their IC50 values, compared to cells incubated with vehicle. MK-2206 significantly increased the basal activity of the ABCG2 ATPase (EC50 = 0.46 µM) but did not significantly alter its expression level and sub-localization in the membrane. The molecular modeling results suggested that MK-2206 binds to the active pocket of the ABCG2 transporter, by a hydrogen bond, hydrophobic interactions and π-π stacking. Conclusion: These in vitro data indicated that MK-2206 surmounts resistance to mitoxantrone, SN-38 and topotecan in cancer cells overexpressing the ABCG2 transporter. If these results can be translated to humans, it is possible that MK-2206 could be used to surmount MDR in cancer cells overexpressing the ABCG2 transporter.

4.
Hematology ; 28(1): 2214465, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37222135

RESUMEN

The MCL1 inhibitors are undergoing clinical testing for multiple leukemia. However, because that MCL1 inhibition has on-target hematopoietic, hepatic and cardiac toxicities, there is substantial interest in finding agents can sensitize leukemia cells to the MCL1 inhibitors. Here we describe that the AKT inhibitors MK-2206 and Gsk690693 sensitize multiple leukemia cells to the MCL1 inhibitor S63845. Further experiments demonstrate that MK-2206 and Gsk690693 sensitize S63845 through the mitochondrial apoptosis pathway. Moreover, MK-2206 downregulates the anti-apoptotic protein BCLXL and induces the BH3-only pro-apoptotic protein BAD dephosphorylation and mitochondrial translocation. Knockdown of BAD significantly inhibits MK-2206-induced sensitization to S63845. Thus, our results suggest that MK-2206 sensitizes multiple leukemia cells to S63845-induced apoptosis, with the mechanisms involving BAD dephosphorylation and BCLXL downregulation.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Apoptosis
5.
Cells ; 12(7)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048053

RESUMEN

Hyperactive sphingosine 1-phosphate (S1P) signaling is associated with a poor prognosis of triple-negative breast cancer (TNBC). Despite recent evidence that links the S1P receptor 1 (S1P1) to TNBC cell survival, its role in TNBC invasion and the underlying mechanisms remain elusive. Combining analyses of human TNBC cells with zebrafish xenografts, we found that phosphorylation of S1P receptor 1 (S1P1) at threonine 236 (T236) is critical for TNBC dissemination. Compared to luminal breast cancer cells, TNBC cells exhibit a significant increase of phospho-S1P1 T236 but not the total S1P1 levels. Misexpression of phosphorylation-defective S1P1 T236A (alanine) decreases TNBC cell migration in vitro and disease invasion in zebrafish xenografts. Pharmacologic disruption of S1P1 T236 phosphorylation, using either a pan-AKT inhibitor (MK2206) or an S1P1 functional antagonist (FTY720, an FDA-approved drug for treating multiple sclerosis), suppresses TNBC cell migration in vitro and tumor invasion in vivo. Finally, we show that human TNBC cells with AKT activation and elevated phospho-S1P1 T236 are sensitive to FTY720-induced cytotoxic effects. These findings indicate that the AKT-enhanced phosphorylation of S1P1 T236 mediates much of the TNBC invasiveness, providing a potential biomarker to select TNBC patients for the clinical application of FTY720.


Asunto(s)
Clorhidrato de Fingolimod , Receptores de Esfingosina-1-Fosfato , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Clorhidrato de Fingolimod/farmacología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Treonina , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Pez Cebra/metabolismo
6.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674872

RESUMEN

Numerous hematologic neoplasms, including acute B-lymphoblastic leukemia (B-ALL), are characterized by overexpression of anti-apoptotic BCL-2 family proteins. Despite the high clinical efficacy of the specific BCL-2 inhibitor venetoclax in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL), dose limitation and resistance argue for the early exploration of rational combination strategies. Recent data indicated that BCL-2 inhibition in B-ALL with KMT2A rearrangements is a promising intervention option; however, combinatorial approaches have not been in focus so far. The PI3K/AKT pathway has emerged as a possible target structure due to multiple interactions with the apoptosis cascade as well as relevant dysregulation in B-ALL. Herein, we demonstrate for the first time that combined BCL-2 and PI3K/AKT inhibition has synergistic anti-proliferative effects on B-ALL cell lines. Of note, all tested combinations (venetoclax + PI3K inhibitors idelalisib or BKM-120, as well as AKT inhibitors MK-2206 or perifosine) achieved comparable anti-leukemic effects. In a detailed analysis of apoptotic processes, among the PI3K/AKT inhibitors only perifosine resulted in an increased rate of apoptotic cells. Furthermore, the combination of venetoclax and perifosine synergistically enhanced the activity of the intrinsic apoptosis pathway. Subsequent gene expression studies identified the pro-apoptotic gene BBC3 as a possible player in synergistic action. All combinatorial approaches additionally modulated extrinsic apoptosis pathway genes. The present study provides rational combination strategies involving selective BCL-2 and PI3K/AKT inhibition in B-ALL cell lines. Furthermore, we identified a potential mechanistic background of the synergistic activity of combined venetoclax and perifosine application.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Leucemia Mieloide Aguda/metabolismo , Línea Celular Tumoral
7.
Cancer Sci ; 114(5): 2123-2138, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36644819

RESUMEN

Therapeutic effects of MK-2206 are largely limited due to the complexity of the pathogenesis of nasopharyngeal cancer (NPC). Here, we aimed to investigate whether and how circLASP1 is involved in the therapeutic effects of MK-2206 on NPC. We showed circLASP1 was increased while miR-625 was decreased in NPC tissues and cell lines. CircLASP1 silence strengthened the therapeutic effects of MK-2206 via suppressing NPC cell proliferation and inducing autophagy and apoptosis in vitro. In mechanism analyses, we found that circLASP1 indirectly released AKT by directly binding to miR-625 in NPC cells, and miR-625 acted as a tumor suppressor in NPC and activated cell autophagy through inhibiting the AKT/mTOR pathway. Most importantly, knockdown of circLASP1 was revealed to enhance the therapeutic effects of MK-2206 on NPC in vivo. Our results suggest that the circLASP1/miR-625 axis is involved the therapeutic effects of MK-2206 on NPC by regulating autophagy, proliferation, and apoptosis through the AKT/mTOR pathway. miR-625 is involved in NPC tumorigenesis.


Asunto(s)
MicroARNs , Neoplasias Nasofaríngeas , Humanos , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Proliferación Celular , MicroARNs/genética , MicroARNs/farmacología , Regulación Neoplásica de la Expresión Génica
8.
Mol Biol Rep ; 50(1): 319-329, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36331743

RESUMEN

BACKGROUND: Due to deficiencies in the expression of hormone receptors, such as PR, ER and HER2, it is challenging to treat triple-negative breast cancer, which does not respond to single targeted therapy. Ruxolitinib is a Janus kinase (JAK)1/JAK2 inhibitor. MK-2206 is an allosteric AKT inhibitor. Due to the limited activities of ruxolitinib and MK-2206 for monotherapy, the need for cotreatment with other drugs has emerged. This study is the first to examine the effects of ruxolitinib and MK-2206 cotreatment on apoptosis and JAK2/STAT5 and PI3K/AKT signaling in MDA-MB-231 breast cancer cells. Additionally, this work aimed to decrease the side effects of ruxolitinib and increase its anticancer effects with MK-2206 cotreatment. METHODS AND RESULTS: Cell viability was reduced in a dose- and time-dependent manner after exposure to ruxolitinib, MK-2206 or both for 48 h, as shown by MTT assay. Ruxolitinib had a synergistic antiproliferative effect, as demonstrated by colony formation and wound healing assays. The effects of ruxolitinib, MK-2206 and their combination on apoptosis, as well as PI3K/AKT and JAK/STAT signaling, were examined by western blot analyses. Cotreatment with ruxolitinib and MK-2206 reduced proliferation with the dual inhibition of JAK2/STAT5 and PI3K/AKT signaling by decreasing PI3K, AKT, JAK2, STAT5, Caspase-9, Caspase-7, PARP, c-Myc, and Bcl-2 and increasing P53 and PTEN protein expression. CONCLUSIONS: Our results revealed the roles of P53 and PTEN in the regulation of apoptosis and the PI3K/AKT and JAK2/STAT5 signaling pathways. The dual inhibition of JAK2/STAT5 and PI3K/AKT may reduce metastasis by decreasing tumor cell survival.


Asunto(s)
Neoplasias de la Mama , Proteínas Proto-Oncogénicas c-akt , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/farmacología , Proteína p53 Supresora de Tumor , Línea Celular Tumoral , Apoptosis , Janus Quinasa 2/metabolismo , Proliferación Celular
9.
Acta Pharmacol Sin ; 44(4): 853-864, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36261513

RESUMEN

Hepatocellular carcinoma (HCC) remains challenging due to the lack of efficient therapy. Promoting degradation of certain cancer drivers has become an innovative therapy. The nuclear transcription factor sine oculis homeobox 1 (SIX1) is a key driver for the progression of HCC. Here, we explored the molecular mechanisms of ubiquitination of SIX1 and whether targeting SIX1 degradation might represent a potential strategy for HCC therapy. Through detecting the ubiquitination level of SIX1 in clinical HCC tissues and analyzing TCGA and GEPIA databases, we found that ubiquitin specific peptidase 1 (USP1), a deubiquitinating enzyme, contributed to the lower ubiquitination and high protein level of SIX1 in HCC tissues. In HepG2 and Hep3B cells, activation of EGFR-AKT signaling pathway promoted the expression of USP1 and the stability of its substrates, including SIX1 and ribosomal protein S16 (RPS16). In contrast, suppression of EGFR with gefitinib or knockdown of USP1 restrained EGF-elevated levels of SIX1 and RPS16. We further revealed that SNS-023 (formerly known as BMS-387032) induced degradation of SIX1 and RPS16, whereas this process was reversed by reactivation of EGFR-AKT pathway or overexpression of USP1. Consequently, inactivation of the EGFR-AKT-USP1 axis with SNS-032 led to cell cycle arrest, apoptosis, and suppression of cell proliferation and migration in HCC. Moreover, we showed that sorafenib combined with SNS-032 or gefitinib synergistically inhibited the growth of Hep3B xenografts in vivo. Overall, we identify that both SIX1 and RPS16 are crucial substrates for the EGFR-AKT-USP1 axis-driven growth of HCC, suggesting a potential anti-HCC strategy from a novel perspective.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/patología , Gefitinib , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB , Proteínas Ribosómicas , Proteínas de Homeodominio/metabolismo
10.
Cells ; 11(21)2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36359901

RESUMEN

Renal fibrosis is a common pathological feature of various kidney diseases, leading to irreversible renal failure and end-stage renal disease. However, there are still no effective treatments to reverse renal fibrosis. This study aimed to explore the potential mechanism of a targeted drug for fibrosis. Here, unilateral ureteral obstruction (UUO)-treated mice and a TGF-ß1-treated human renal tubular epithelial cell line (HK-2 cells) were used as models of renal fibrosis. Based on the changes of mRNA in UUO kidneys detected by transcriptome sequencing, MK-2206, an Akt inhibitor, was predicted as a potential drug to alleviate renal fibrosis through bioinformatics. We dissolved UUO mice with MK-2206 by gastric gavage and cultured TGF-ß-induced HK-2 cells with MK-2206. Histopathological examinations were performed after MK-2206 intervention, and the degree of renal fibrosis, as well as the expression of Akt/mTOR pathway-related proteins, were evaluated by immunohistochemical staining, immunofluorescence staining, and Western blot. The results showed that MK-2206 significantly improved the pathological structure of the kidney. Furthermore, MK-2206 intervention effectively inhibited UUO- and TGF-ß1-induced epithelial-mesenchymal transition, fibroblast activation, and extracellular matrix deposition. Mechanistically, MK-2206 treatment attenuated the activation of the Akt/mTOR signaling pathway. Taken together, our study revealed for the first time that MK-2206 is a promising drug for the improvement of renal fibrosis.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Ratones , Humanos , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibrosis , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Transducción de Señal , Obstrucción Ureteral/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo
11.
Cell Rep ; 40(6): 111177, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947955

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease with variable patient responses to therapy. Selinexor, an inhibitor of nuclear export, has shown promising clinical activity for AML. To identify the molecular context for monotherapy sensitivity as well as rational drug combinations, we profile selinexor signaling responses using phosphoproteomics in primary AML patient samples and cell lines. Functional phosphosite scoring reveals that p53 function is required for selinexor sensitivity consistent with enhanced efficacy of selinexor in combination with the MDM2 inhibitor nutlin-3a. Moreover, combining selinexor with the AKT inhibitor MK-2206 overcomes dysregulated AKT-FOXO3 signaling in resistant cells, resulting in synergistic anti-proliferative effects. Using high-throughput spatial proteomics to profile subcellular compartments, we measure global proteome and phospho-proteome dynamics, providing direct evidence of nuclear translocation of FOXO3 upon combination treatment. Our data demonstrate the potential of phosphoproteomics and functional phosphorylation site scoring to successfully pinpoint key targetable signaling hubs for rational drug combinations.


Asunto(s)
Leucemia Mieloide Aguda , Proteína p53 Supresora de Tumor , Apoptosis , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Hidrazinas , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Triazoles , Proteína p53 Supresora de Tumor/metabolismo
12.
Mol Ther Nucleic Acids ; 29: 538-549, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36035756

RESUMEN

Palbociclib is in early-stage clinical testing in advanced hepatocellular carcinoma (HCC). Here, we investigated whether the anti-tumor activity of palbociclib, which prevents the CDK4/6-mediated phosphorylation of RB1 but simultaneously activates AKT signaling, could be improved by its combination with a PI3K/AKT/mTOR inhibitor in liver cancer models. The selective pan-AKT inhibitor, MK-2206, or the microRNA-199a-3p were tested in combination with palbociclib in HCC cell lines and in the TG221 HCC transgenic mouse model. The combination palbociclib/MK-2206 was highly effective, but too toxic to be tolerated by mice. Conversely, the combination miR-199a-3p mimics/palbociclib not only induced a complete or partial regression of tumor lesions, but was also well tolerated. After 3 weeks of treatment, the combination produced a significant reduction in number and size of tumor nodules in comparison with palbociclib or miR-199a-3p mimics used as single agents. Moreover, we also reported the efficacy of this combination against sorafenib-resistant cells in vitro and in vivo. At the molecular level, the combination caused the simultaneous decrease of the phosphorylation of both RB1 and of AKT. Our findings provide pre-clinical evidence for the efficacy of the combination miR-199a-3p/palbociclib as anti-HCC treatment or as a new approach to overcome sorafenib resistance.

13.
Life (Basel) ; 12(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36013437

RESUMEN

Glioblastoma is the most common and aggressive primary brain tumor. Multiple genetic and epigenetic alterations in several major signaling pathways-including the phosphoinositide 3-kinases (PI3K)/AKT/mTOR and the Raf/MEK/ERK pathway-could be found. We therefore aimed to investigate the biological and molecular effects of small-molecule kinase inhibitors that may interfere with those pathways. For this purpose, patient-derived glioblastoma cells were challenged with dactolisib, ipatasertib, MK-2206, regorafenib, or trametinib. To determine the effects of the small-molecule kinase inhibitors, assays of cell proliferation and apoptosis and immunoblot analyses were performed. To further investigate the effects of ipatasertib on organotypic brain slices harboring glioblastoma cells, the tumor growth was estimated. In addition, the network activity in brain slices was assessed by electrophysiological field potential recordings. Multi-kinase inhibitor regorafenib and both MK-2206 and dactolisib were very effective in all preclinical tumor models, while with respect to trametinib, two cell lines were found to be highly resistant. Only in HROG05 cells, ipatasertib showed anti-tumoral effects in vitro and in organotypic brain slices. Additionally, ipatasertib diminished synchronous network activity in organotypic brain slices. Overall, our data suggest that ipatasertib was only effective in selected tumor models, while especially regorafenib and MK-2206 presented a uniform response pattern.

15.
Pharmacol Res ; 183: 106403, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35987481

RESUMEN

The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Adulto , Carcinogénesis , Niño , Humanos , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
16.
Rep Biochem Mol Biol ; 11(1): 157-165, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35765523

RESUMEN

Background: Prostate cancer is known as one of the most prevalent health disorders in the male population globally. The aim of the current study was to evaluate the effects of separate and concomitant use of MK-2206 and salinomycin on prostate cancer cell line. Methods: The antitumor potential of separate and concomitant use of MK-2206 and salinomycin was evaluated in a panel of prostate cancer cell line (PC-3). To get insights into the underlying mechanism of action, different assays including the rate of apoptosis, cell viability, and gene expression were performed in treated prostate cancer cells. Results: A significant reduction was detected in the viability percentage of prostate cancer cells (p< 0.001) and the rate of Akt expression (p< 0.001) in all salinomycin, MK-2206, and salinomycin+MK-2206 groups compared to the negative control group. Furthermore, in comparison with the negative control group, there was a notable increase in both the rate of Bad expression (p< 0.001) and prostate cancer cells apoptosis after salinomycin, MK-2206, and salinomycin+MK-2206 treatments. Moreover, the concomitant use of salinomycin+MK-2206 revealed synergistic improvements regarding the viability of prostate cancer cells and the rate of the Akt and Bad expressions compared to the separate administration of salinomycin and MK-2206 (all p< 0.05). Conclusion: The findings of the present study may contribute to improving the efficacy of the therapies regarding the management of prostate cancer and providing a beneficial strategy in clinical trials.

17.
Iran J Allergy Asthma Immunol ; 21(2): 178-188, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35490271

RESUMEN

Up-regulation of immune checkpoint ligands is considered as one of the most important immune escape mechanisms in acute myeloid leukemia (AML). Herein, we investigate a relationship between the inhibition of PI3K/Akt/mTOR signaling pathways and the regulation of immune checkpoint ligands in AML cells. The HL-60 cell line was treated with idelalisib as PI3K inhibitor, MK-2206 as Akt inhibitor, and everolimus as mTOR inhibitor either in a single or combined format. Cell viability and apoptosis were evaluated using MTT and flow cytometry assays, respectively. The relative expression of PD-L1, galectin-9, and CD155 was determined by real-time PCR. Our findings demonstrated decreased proliferation and increased apoptosis of HL-60 cells after treatment with idelalisib, MK-2206, and everolimus. As expected, the combined treatment showed a more inhibiting effect than the single treatment. Interestingly, our results elucidated that the expression of PD-L1 and Gal-9 but not MK-2206 decreased after treatment with idelalisib and everolimus. Regarding CD155, the expression of this molecule was downregulated after treatment with everolimus, but not idelalisib and MK-2206. However, combined treatment of HL-60 cells with two or three inhibitors decreased the expression levels of PD-L1, Gal-9, and CD155 checkpoint ligands. We showed that PI3K/Akt/mTOR pathway inhibitors not only serve as cytotoxic drugs but also regulate the expression of immune checkpoint ligands and interfere with the immune evasion mechanisms of AML leukemic cells. Combinational treatment approaches to block these pathways might be a promising and novel therapeutic strategy for AML patients via interfering in immune escape mechanisms.


Asunto(s)
Leucemia Mieloide Aguda , Fosfatidilinositol 3-Quinasas , Inhibidores de la Angiogénesis/farmacología , Antígeno B7-H1/genética , Línea Celular , Everolimus/farmacología , Everolimus/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Ligandos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Serina-Treonina Quinasas TOR/uso terapéutico
18.
Gynecol Oncol Rep ; 40: 100974, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35434236

RESUMEN

Uterine serous carcinoma (USC) is an uncommon subtype of endometrial cancer with a poor prognosis. USCs have genomic alterations in the PI3K pathway. A prior phase II study of AKT inhibitor MK-2206 (an allosteric AKT inhibitor, primarily affecting AKT1 and AKT2) in endometrial cancers resulted in progression-free survival (PFS) of ≥6 months in five out of seven patients with USC. To further assess the activity of MK-2206 in USC, we designed a phase II, single-stage assessment of MK-2206 in patients with advanced or recurrent high-grade serous endometrial cancer, who had received up to two lines of prior therapy. MK-2206 (135 mg) was administered orally once per week, in continuous 28-day cycles. Fourteen patients received treatment. The most common treatment-related adverse events were diarrhea (36%), acneiform rash (36%), nausea (29%), fatigue (29%), and hyperglycemia (21%); most events were grade 1-2. One confirmed partial response was observed in a patient who was also alive and progression-free at 6 months. One additional patient was alive and progression-free at 6 months. The clinical benefit rate was 14.3% (95% CI: 1.8 to 42.8). Five patients had stable disease (35.7%) and seven had progressive disease (50%); one was unevaluable. Median PFS was 2 months (95% CI: 1.6 to 4.4) and median overall survival was 6.4 months (95% CI: 5.1 to not reached). In summary, MK-2206 had limited activity in USC, although a few patients achieved sustained progression-free intervals in this study and in the previously reported phase II trial of MK-2206. Further investigations are needed to identify features associated with response.

19.
Cell Signal ; 93: 110301, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35259456

RESUMEN

Acute lymphoblastic leukemia is the most common cause of cancer-related death in children and, especially for patients in a high-risk group, still represents a poor prognosis. The PI3K/AKT/mTOR signaling pathway has been identified as a frequently constitutively activated switching point in the disease of ALL. Despite the knowledge of the therapeutic importance of the signaling pathway, the results of clinically effective treatment strategies have so far been extremely sobering. In particular, monotherapy approaches represent a major problem with regard to cell resistance. In this work, the PI3K/AKT/mTOR signaling pathway was examined as a therapeutic target for the treatment of childhood acute lymphoblastic leukemia (ALL) with a new therapeutic approach to avoid cell resistance. Therefore, we used a combined therapeutic approach with inhibitors directed against AKT (MK2206), mTOR (RAD001) and the most prominent and aberrantly activated tyrosine kinase. In case of BCR-ABL-positive B-ALL cells we used a combination with the classic inhibitor Imatinib and in case of MLL-AF4-positive B-ALL cells we used a combination with Quizartinib (directed against FLT3). We show, in particular compared to the monotherapies, a highly significant inhibition of the growth of these cells after this new specific triple combination therapy. Furthermore, we show that inhibiting AKT alone leads to a feedback mechanism and an upregulation of the phosphorylation of a number of receptor-tyrosine-kinases. After isoform-specific knockdown of the three AKT isoforms in ALL cells we identified that especially ErbB2/Her2 is most strongly phosphorylated in cells with AKT2 knockdown. AKT isoform 1 and 2 knockdown cells show, in contrast to AKT isoform 3 knockdown cells, a weak proliferation and are presumably kept alive among others by the increased phosphorylation of the receptor-tyrosine-kinase ErbB2. This work provides first indications for a new combination therapy of B-ALL cells, which is directed against AKT, mTOR and a predominantly highly activated kinase.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Línea Celular Tumoral , Niño , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Tirosina
20.
Chinese Pharmacological Bulletin ; (12): 1363-1368, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1014016

RESUMEN

Aim To investigate the protective effect of mogroside V on hydrogen peroxide ( H,02 )-induced oxidative stress response in mouse islet (3 cells MIN6 and the relation of its mechanism to PI3K/Akt signa¬ling pathway.Methods MIN6 cells were treated with 500 (jimol • L_1 H,(), after mogroside V,and cell via¬bility was detected by MTT.The release of reactive ox¬ygen species ( ROS) and apoptotic percentage of MIN6 cells were determined by flow cytometry.The expres¬sions of apoptosis-related factor Bel-2 , proliferation-re¬lated factor PCNA, protein Akt and p-Akt were deter¬mined by Western blot.Results H,02 restrained the proliferation of MIN6 cells obviously, induced ROS pro¬duction and apoptosis, and reduced the expression of Bel-2 and PCN A.The expressions of protein Akt and p-Akt decreased.After treatment of mogroside V , the release of ROS decreased, and the apoptosis of MIN6 cells was inhibited.The expression levels of apoptosis- related protein Bcl-2 and proliferation-related protein PCN A were reversed.The expressions of protein Akt and P-Akt increased.The viability of MIN6 cells in¬duced by H,0, increased.In addition, mogroside V partly reversed the apoptosis induction and ROS pro¬duction of Akt inhibitor MK2206 (5 jjimol • L"1 ) on MIN6 cells.Conclusions Mogroside V has protec¬tive effect on H202-induced oxidative damage in MIN6 cells and its mechanism is related to PI3K/Akt signa¬ling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA