Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Alzheimers Dement ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254209

RESUMEN

INTRODUCTION: Magnetic resonance imaging (MRI) segmentation algorithms make it possible to study detailed medial temporal lobe (MTL) substructures as hippocampal subfields and amygdala subnuclei, offering opportunities to develop biomarkers for preclinical Alzheimer's disease (AD). METHODS: We identified the MTL substructures significantly associated with tau-positron emission tomography (PET) signal in 581 non-demented individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI-3). We confirmed our results in our UCLouvain cohort including 110 non-demented individuals by comparing volumes between individuals with different visual Braak's stages and clinical diagnosis. RESULTS: Four amygdala subnuclei (cortical, central, medial, and accessory basal) were associated with tau in amyloid beta-positive (Aß+) clinically normal (CN) individuals, while the global amygdala and hippocampal volumes were not. Using UCLouvain data, we observed that both Braak I-II and Aß+ CN individuals had smaller volumes in these subnuclei, while no significant difference was observed in the global structure volumes or other subfields. CONCLUSION: Measuring specific amygdala subnuclei, early atrophy may serve as a marker of temporal tauopathy in preclinical AD, identifying individuals at risk of progression. HIGHLIGHTS: Amygdala atrophy is not homogeneous in preclinical Alzheimer's disease (AD). Tau pathology is associated with atrophy of specific amygdala subnuclei, specifically, the central, medial, cortical, and accessory basal subnuclei. Hippocampal and amygdala volume is not associated with tau in preclinical AD. Hippocampus and CA1-3 volume is reduced in preclinical AD, regardless of tau.

2.
Alzheimers Dement ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041435

RESUMEN

INTRODUCTION: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis. METHODS: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data. JPM was compared to a linear regression approach analogous to the one used in the amyloid PET Centiloid scale. RESULTS: A strong linear relationship was observed between CTR values across brain regions. Using the JPM approach, CTR estimates were similar to, but more accurate than, those derived using the linear regression approach. DISCUSSION: Preliminary findings using the JPM support the development and adoption of a universal scale for tau-PET quantification. HIGHLIGHTS: Tested a novel joint propagation model (JPM) to harmonize quantification of tau PET. Units of common scale are termed "CenTauRs". Tested a Centiloid-like linear regression approach. Using five cohorts with head-to-head tau PET, JPM outperformed linearregressionbased approach. Strong linear relationship was observed between CenTauRs values across brain regions.

3.
Brain ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990981

RESUMEN

Both sleep alterations and epileptiform activity are associated with the accumulation of amyloid-ß and tau pathology and are currently investigated for potential therapeutic interventions in Alzheimer's disease (AD). However, a bidirectional intertwining relation between sleep and neuronal hyperexcitability might modulate the effects of AD pathology on the corresponding associations. To investigate this, we performed multiple day simultaneous foramen ovale (FO) plus scalp EEG and polysomnography (PSG) recordings and acquired 18F-MK6240 tau PET-MR in three patients in the prodromal stage of AD and in two patients with mild and moderate dementia due to AD, respectively. As an eligibility criterion for the present study, subjects either had a history of a recent seizure (n = 2) or subclinical epileptiform activity (SEA) on a previous scalp EEG taken in a research context (n = 3). The 18F-MK6240 standard uptake value ratio (SUVR) and asymmetry index (AI) were calculated in a priori defined volumes of interest (VOIs). Linear mixed effects models were used to study associations between interictal epileptiform discharges (IEDs), PSG parameters and 18F-MK6240 SUVR. Epileptiform activity was bilateral but asymmetrically present on FO electrodes in all patients and ≥ 95% of IEDs were not visible on scalp EEG. In one patient two focal seizures were detected on FO electrodes, both without visual scalp EEG correlate. We observed lateralized periodic discharges, brief potentially ictal rhythmic discharges and lateralized rhythmic delta activity on FO electrodes in four patients. Unlike scalp EEG, intracranial electrodes showed a lateralization of epileptiform activity. Although the amount of IEDs on intracranial electrodes was not associated to the 18F-MK6240 SUVR binding in different VOIs, there was a congruent asymmetry of the 18F-MK6240 binding towards the most epileptic hemisphere for the mesial (P = 0.007) and lateral temporal cortex (P = 0.006). IEDs on intracranial electrodes were most abundant during slow wave sleep (SWS) (92/h) and N2 (81/h), followed by N1 (33/h) and least frequent during wakefulness (17/h) and REM sleep (9/h). The extent of IEDs during sleep was not reflected in the relative time in each sleep stage spent (REM% (P = 0.415), N1% (P = 0.668), N2% (P = 0.442), SWS% (P = 0.988)), and not associated with the arousal index (P = 0.317), apnea-hypopnea index (P = 0.846) or oxygen desaturation index (P = 0.746). Together, our observations suggest a multi-directional interaction between sleep, epileptiform activity and tau pathology in AD.

4.
Eur J Nucl Med Mol Imaging ; 51(6): 1662-1674, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228971

RESUMEN

PURPOSE: [18F]MK-6240, a second-generation tau PET tracer, is increasingly used for the detection and the quantification of in vivo cerebral tauopathy in Alzheimer's disease (AD). Given that neurological symptoms are better explained by the topography rather than by the nature of brain lesions, our study aimed to evaluate whether cognitive impairment would be more closely associated with the spatial extent than with the intensity of tau-PET signal, as measured by the standard uptake value ratio (SUVr). METHODS: [18F]MK6240 tau-PET data from 82 participants in the AD spectrum were quantified in three different brain regions (Braak ≤ 2, Braak ≤ 4, and Braak ≤ 6) using SUVr and the extent of tauopathy (EOT, percentage of voxels with SUVr ≥ 1.3). PET data were first compared between diagnostic categories, and ROC curves were computed to evaluate sensitivity and specificity. PET data were then correlated to cognitive performances and cerebrospinal fluid (CSF) tau values. RESULTS: The EOT in the Braak ≤ 2 region provided the highest diagnostic accuracies, distinguishing between amyloid-negative and positive clinically unimpaired individuals (threshold = 9%, sensitivity = 79%, specificity = 82%) as well as between prodromal AD and preclinical AD (threshold = 38%, sensitivity = 81%, specificity = 93%). The EOT better correlated with cognition than SUVr (∆R2 + 0.08-0.09) with the best correlation observed for EOT in the Braak ≤ 4 region (R2 = 0.64). Cognitive performances were more closely associated with PET metrics than with CSF values. CONCLUSIONS: Quantifying [18F]MK-6240 tau PET in terms of EOT rather than SUVr significantly increases the correlation with cognitive performances. Quantification in the mesiotemporal lobe is the most useful to diagnose preclinical AD or prodromal AD.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Isoquinolinas , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Anciano , Proteínas tau/metabolismo , Anciano de 80 o más Años , Persona de Mediana Edad , Tauopatías/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Transporte Biológico , Radiofármacos/farmacocinética
5.
J Neurotrauma ; 41(3-4): 420-429, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38038357

RESUMEN

Epidemiological studies have identified prior traumatic brain injury (TBI) as a risk factor for developing Alzheimer's disease (AD). Neurofibrillary tangles (NFTs) are common to AD and chronic traumatic encephalopathy following repetitive mild TBI. However, it is unclear if a single TBI is sufficient to cause accumulation of NFTs. We performed a [18F]MK-6240 positron emission tomography (PET) imaging study to assess NFTs in patients who had sustained a single TBI at least 2 years prior to study inclusion. Fourteen TBI patients (49 ± 20 years; 5 M/9 F; 8 moderate-severe, 1 mild-probable, 5 symptomatic-possible TBI) and 40 demographically similar controls (57 ± 19 years; 19 M/21 F) underwent simultaneous [18F]MK-6240 PET and magnetic resonance imaging (MRI) as well as neuropsychological assessment including the Cambridge Neuropsychological Test Automated Battery (CANTAB). A region-based voxelwise partial volume correction was applied, using parcels obtained by FreeSurfer v6.0, and standardized uptake value ratios (SUVR) were calculated relative to the cerebellar gray matter. Group differences were assessed on both a voxel- and a volume-of-interest-based level and correlations of [18F]MK-6240 SUVR with time since injury as well as with clinical outcomes were calculated. Visual assessment of TBI images did not show global or focal increases in tracer uptake in any subject. On a group level, [18F]MK-6240 SUVR was not significantly different in patients versus controls or between subgroups of moderate-severe TBI versus less severe TBI. Within the TBI group, One Touch Stockings problem solving and spatial working memory (executive function), reaction time (attention), and Mini-Mental State Examination (MMSE) (global cognition) were associated with [18F]MK-6240 SUVR. We found no group-based increase of [18F]MK-6240 brain uptake in patients scanned at least 2 years after a single TBI compared with healthy volunteers, which suggests that no NFTs are building up in the first years after a single TBI. Nonetheless, correlations with cognitive outcomes were found that warrant further investigation.


Asunto(s)
Enfermedad de Alzheimer , Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Isoquinolinas , Humanos , Tomografía de Emisión de Positrones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Encéfalo/patología , Enfermedad de Alzheimer/patología , Conmoción Encefálica/patología , Proteínas tau/metabolismo
6.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790438

RESUMEN

Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identified AD brain tissue with elevated tau burden, purified filaments, and determined the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine K353, and isoleucine 360. This information elucidates the basis of MK-6240 PET in quantifying PHF deposits in AD and may facilitate the structure-based design of superior ligands against tau amyloids.

7.
J Neuroradiol ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37907155

RESUMEN

PURPOSE: The present study investigates a multimodal imaging assessment of glymphatic function and its association with brain amyloid-beta deposition. METHODS: Two brain CSF clearance measures (vCSF and DTI-ALPS) were derived from dynamic PET and MR diffusion tensor imaging (DTI) for 50 subjects, 24/50 were Aß positive (Aß+). T1W, T2W, DTI, T2FLAIR, and 11C-PiB and 18F-MK-6240 PET were acquired. Multivariate linear regression models were assessed with both vCSF and DTI-ALPS as independent variables and brain Aß as the dependent variable. Three types of models were evaluated, including the vCSF-only model, the ALPS-only model and the vCSF+ALPS combined model. Models were applied to the whole group, and Aß subgroups. All analyses were controlled for age, gender, and intracranial volume. RESULTS: Sample demographics (N=50) include 20 males and 30 females with a mean age of 69.30 (sd=8.55). Our results show that the combination of vCSF and ALPS associates with Aß deposition (p < 0.05, R2 = 0.575) better than either vCSF (p < 0.05, R2 = 0.431) or ALPS (p < 0.05, R2 = 0.372) alone in the Aß+ group. We observed similar results in whole-group analyses (combined model: p < 0.05, R2 = 0.287; vCSF model: p <0.05, R2 = 0.175; ALPS model: p < 0.05, R2 = 0.196) with less significance. Our data also showed that vCSF has higher correlation (r = -0.548) in subjects with mild Aß deposition and DTI-ALPS has higher correlation (r=-0.451) with severe Aß deposition subjects. CONCLUSION: The regression model with both vCSF and DTI-ALPS is better associated with brain Aß deposition. These two independent brain clearance measures may better explain the variation in Aß deposition than either term individually. Our results suggest that vCSF and DTI-ALPS reflect complementary aspects of brain clearance functions.

8.
J Nucl Med ; 64(11): 1798-1805, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37709531

RESUMEN

A methodology for determining tau PET thresholds is needed to confidently detect early tau deposition. We compared multiple threshold-determining methods in participants who underwent either 18F-flortaucipir or 18F-MK-6240 PET scans. Methods: 18F-flortaucipir (n = 798) and 18F-MK-6240 (n = 216) scans were processed and sampled to obtain regional SUV ratios. Subsamples of the cohorts were based on participant diagnosis, age, amyloid-ß status (positive or negative), and neurodegeneration status (positive or negative), creating older-adult (age ≥ 55 y) cognitively unimpaired (amyloid-ß-negative, neurodegeneration-negative) and cognitively impaired (mild cognitive impairment/Alzheimer disease, amyloid-ß-positive, neurodegeneration-positive) groups, and then were further subsampled via matching to reduce significant differences in diagnostic prevalence, age, and Mini-Mental State Examination score. We used the biostatistical estimation of tau threshold hallmarks (BETTH) algorithm to determine sensitivity and specificity in 6 composite regions. Results: Parametric double receiver operating characteristic analysis yielded the greatest joint sensitivity in 5 of the 6 regions, whereas hierarchic clustering, gaussian mixture modeling, and k-means clustering all yielded perfect joint specificity (2.00) in all regions. Conclusion: When 18F-flortaucipir and 18F-MK-6240 are used, Alzheimer disease-related tau status is best assessed using 2 thresholds, a sensitivity one based on parametric double receiver operating characteristic analysis and a specificity one based on gaussian mixture modeling, delimiting an uncertainty zone indicating participants who may require further evaluation.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Carbolinas , Disfunción Cognitiva/diagnóstico por imagen , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo , Persona de Mediana Edad
9.
Phys Med Biol ; 68(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116511

RESUMEN

Objective. Positron emission tomography (PET) imaging of tau deposition using [18F]-MK6240 often involves long acquisitions in older subjects, many of whom exhibit dementia symptoms. The resulting unavoidable head motion can greatly degrade image quality. Motion increases the variability of PET quantitation for longitudinal studies across subjects, resulting in larger sample sizes in clinical trials of Alzheimer's disease (AD) treatment.Approach. After using an ultra-short frame-by-frame motion detection method based on the list-mode data, we applied an event-by-event list-mode reconstruction to generate the motion-corrected images from 139 scans acquired in 65 subjects. This approach was initially validated in two phantoms experiments against optical tracking data. We developed a motion metric based on the average voxel displacement in the brain to quantify the level of motion in each scan and consequently evaluate the effect of motion correction on images from studies with substantial motion. We estimated the rate of tau accumulation in longitudinal studies (51 subjects) by calculating the difference in the ratio of standard uptake values in key brain regions for AD. We compared the regions' standard deviations across subjects from motion and non-motion-corrected images.Main results. Individually, 14% of the scans exhibited notable motion quantified by the proposed motion metric, affecting 48% of the longitudinal datasets with three time points and 25% of all subjects. Motion correction decreased the blurring in images from scans with notable motion and improved the accuracy in quantitative measures. Motion correction reduced the standard deviation of the rate of tau accumulation by -49%, -24%, -18%, and -16% in the entorhinal, inferior temporal, precuneus, and amygdala regions, respectively.Significance. The list-mode-based motion correction method is capable of correcting both fast and slow motion during brain PET scans. It leads to improved brain PET quantitation, which is crucial for imaging AD.


Asunto(s)
Enfermedad de Alzheimer , Procesamiento de Imagen Asistido por Computador , Humanos , Anciano , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Movimiento (Física) , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
10.
J Nucl Med ; 64(6): 968-975, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997330

RESUMEN

6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) has high affinity and selectivity for hyperphosphorylated tau and readily crosses the blood-brain barrier. This study investigated whether the early phase of [18F]MK6240 can be used to provide a surrogate index of cerebral perfusion. Methods: Forty-nine subjects who were cognitively normal (CN), had mild cognitive impairment (MCI), or had Alzheimer's disease (AD) underwent paired dynamic [18F]MK6240 and [11C]Pittsburgh compound B (PiB) PET, as well as structural MRI to obtain anatomic information. Arterial blood samples were collected in a subset of 24 subjects for [18F]MK6240 scans to derive metabolite-corrected arterial input functions. Regional time-activity curves were extracted using atlases available in the Montreal Neurologic Institute template space and using FreeSurfer. The early phase of brain time-activity curves was analyzed using a 1-tissue-compartment model to obtain a robust estimate of the rate of transfer from plasma to brain tissue, K 1 (mL⋅cm-3⋅min-1), and the simplified reference tissue model 2 was investigated for noninvasive estimation of the relative delivery rate, R 1 (unitless). A head-to-head comparison with R 1 derived from [11C]PiB scans was performed. Grouped differences in R 1 were evaluated among CN, MCI, and AD subjects. Results: Regional K 1 values suggested a relatively high extraction fraction. R 1 estimated noninvasively from simplified reference tissue model 2 agreed well with R 1 calculated indirectly from the blood-based compartment modeling (r = 0.99; mean difference, 0.024 ± 0.027), suggesting that robust estimates were obtained. R 1 measurements obtained with [18F]MK6240 correlated strongly and overall agreed well with those obtained from [11C]PiB (r = 0.93; mean difference, -0.001 ± 0.068). Statistically significant differences were observed in regional R 1 measurements among CN, MCI, and AD subjects, notably in the temporal and parietal cortices. Conclusion: Our results provide evidence that the early phase of [18F]MK6240 images may be used to derive a useful index of cerebral perfusion. The early and late phases of a [18F]MK6240 dynamic acquisition may thus offer complementary information about the pathophysiologic mechanisms of the disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Disfunción Cognitiva/diagnóstico por imagen , Compuestos de Anilina , Circulación Cerebrovascular
11.
Alzheimers Dement (N Y) ; 9(1): e12372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873926

RESUMEN

Background: The positron emission tomography (PET) radiotracer [18F]MK-6240 exhibits high specificity for neurofibrillary tangles (NFTs) of tau protein in Alzheimer's disease (AD), high sensitivity to medial temporal and neocortical NFTs, and low within-brain background. Objectives were to develop and validate a reproducible, clinically relevant visual read method supporting [18F]MK-6240 use to identify and stage AD subjects versus non-AD and controls. Methods: Five expert readers used their own methods to assess 30 scans of mixed diagnosis (47% cognitively normal, 23% mild cognitive impairment, 20% AD, 10% traumatic brain injury) and provided input regarding regional and global positivity, features influencing assessment, confidence, practicality, and clinical relevance. Inter-reader agreement and concordance with quantitative values were evaluated to confirm that regions could be read reliably. Guided by input regarding clinical applicability and practicality, read classifications were defined. The readers read the scans using the new classifications, establishing by majority agreement a gold standard read for those scans. Two naïve readers were trained and read the 30-scan set, providing initial validation. Inter-rater agreement was further tested by two trained independent readers in 131 scans. One of these readers used the same method to read a full, diverse database of 1842 scans; relationships between read classification, clinical diagnosis, and amyloid status as available were assessed. Results: Four visual read classifications were determined: no uptake, medial temporal lobe (MTL) only, MTL and neocortical uptake, and uptake outside MTL. Inter-rater kappas were 1.0 for the naïve readers gold standard scans read and 0.98 for the independent readers 131-scan read. All scans in the full database could be classified; classification frequencies were concordant with NFT histopathology literature. Discussion: This four-class [18F]MK-6240 visual read method captures the presence of medial temporal signal, neocortical expansion associated with disease progression, and atypical distributions that may reflect different phenotypes. The method demonstrates excellent trainability, reproducibility, and clinical relevance supporting clinical use. Highlights: A visual read method has been developed for [18F]MK-6240 tau positron emission tomography.The method is readily trainable and reproducible, with inter-rater kappas of 0.98.The read method has been applied to a diverse set of 1842 [18F]MK-6240 scans.All scans from a spectrum of disease states and acquisitions could be classified.Read classifications are consistent with histopathological neurofibrillary tangle staging literature.

12.
J Prev Alzheimers Dis ; 10(2): 251-258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36946452

RESUMEN

OBJECTIVES: Longitudinal tau quantification may provide a useful marker of drug efficacy in clinical trials. Different tau PET tracers may have different sensitivity to longitudinal changes, but without a head-to-head dataset or a carefully designed case-matching procedure, comparing results in different cohorts can be biased. In this study, we compared the tau PET tracers, 18F-MK6240 and 18F-flortaucipir (FTP), both cross-sectionally and longitudinally by case-matching subjects in the AIBL and ADNI longitudinal cohort studies. METHODS: A subset of 113 participants from AIBL and 113 from ADNI imaged using 18F-MK6240 and 18F-FTP respectively, with baseline and follow-up, were matched based on baseline clinical diagnosis, MMSE, age and amyloid (Aß) PET centiloid value. Subjects were grouped as 64 Aß- cognitively unimpaired (CU), 22 Aß+ CU, 14 Aß+ mild cognitive impairment (MCI) and 13 Aß+ Alzheimer's disease (AD). Tracer retention was measured in the mesial, temporoparietal, rest of the cortex, and a meta-temporal region composed of entorhinal, inferior/middle temporal, fusiform, parahippocampus and amygdala. T-tests were employed to assess group separation at baseline using SUVR Z-scores and longitudinally using SUVR%/Yr. RESULTS: Both tracers detected statistically significant differences at baseline in most regions between all clinical groups. Only 18F-MK6240 showed statistically significant higher rate of SUVR increase in Aß+ CU compared to Aß- CU in the mesial, meta-temporal and temporoparietal regions. CONCLUSION: 18F-MK6240 appears to be a more sensitive tracer for change in tau level at the preclinical stage of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Estudios Longitudinales , Estudios Transversales , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
13.
EBioMedicine ; 88: 104450, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36709581

RESUMEN

BACKGROUND: Tau positron emission tomography (PET) imaging enables longitudinal observation of tau accumulation in Alzheimer's disease (AD). 18F-MK6240 is a high affinity tracer for the paired helical filaments of tau in AD, widely used in clinical trials, despite sparse longitudinal natural history data. We aimed to evaluate the natural history of tau accumulation, and the impact of disease stage and reference region on the magnitude and effect size of regional change. METHODS: One hundred and eighty-four participants: 89 cognitively unimpaired (CU) beta-amyloid negative (Aß-), 44 CU Aß+, 51 cognitively impaired Aß+ (26 with mild cognitive impairment [MCI] and 25 with dementia) had follow-up 18F-MK6240 PET for one to four years (median 1.48). Regional standardised uptake value ratios (SUVR) were generated. Two reference regions were examined: cerebellar cortex and eroded subcortical white matter. FINDINGS: CU Aß- participants had very low rates of tau accumulation in the mesial temporal lobe (MTL). In CU Aß+, significantly higher rate of accumulation was seen in the MTL (particularly the amygdala), extending into the inferior temporal lobes. In MCI Aß+, the rate of accumulation was greatest in the lateral temporal, parietal and lateral occipital cortex, and plateaued in the MTL. Accumulation was global in AD Aß+, except for a plateau in the MTL. The eroded subcortical white matter reference region showed no significant advantage over the cerebellar cortex and appeared prone to spill-over in AD participants. Data fitting suggested approximately 15-20 years to accumulate tau to typical AD levels. INTERPRETATION: Tau accumulation occurs slowly. Rates vary according to brain region, disease stage and tend to plateau at high levels. Rates of tau accumulation are best measured in the MTL and inferior temporal cortex in preclinical AD and in large neocortical areas, in MCI and AD. FUNDING: NHMRC; Cerveau Technologies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Proteínas tau , Envejecimiento , Péptidos beta-Amiloides , Disfunción Cognitiva/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos
14.
J Nucl Med ; 64(3): 452-459, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36396455

RESUMEN

6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) tau PET tracer quantifies the brain tau neurofibrillary tangle load in Alzheimer disease. The aims of our study were to test the stability of common reference region estimates in the cerebellum over time and across diagnoses and evaluate the effects of age-related and off-target retention on the longitudinal quantification of [18F]MK6240 in target regions. Methods: We assessed reference, target, age-related, and off-target regions in 125 individuals across the aging and Alzheimer disease spectrum with longitudinal [18F]MK6240 SUVs and SUV ratios (SUVRs) (mean ± SD, 2.25 ± 0.40 y of follow-up). We obtained SUVR from meninges, exhibiting frequent off-target retention with [18F]MK6240. Additionally, we compared tracer uptake between 37 cognitively unimpaired young (CUY) (mean age, 23.41 ± 3.33 y) and 27 cognitively unimpaired older (CU) adults (amyloid-ß-negative and tau-negative, 58.50 ± 9.01 y) to identify possible nonvisually apparent, age-related signal. Two-tailed t testing and Pearson correlation testing were used to determine the difference between groups and associations between changes in region uptake, respectively. Results: Inferior cerebellar gray matter SUV did not differ on the basis of diagnosis and amyloid-ß status, cross-sectionally and over time. [18F]MK6240 uptake significantly differed between CUY and CU adults in the putamen or pallidum (affecting ∼75% of the region) and in the Braak II region (affecting ∼35%). Changes in meningeal and putamen or pallidum SUVRs did not significantly differ from zero, nor did they vary across diagnostic groups. We did not observe significant correlations between longitudinal changes in age-related or meningeal off-target retention and changes in target regions, whereas changes in all target regions were strongly correlated. Conclusion: Inferior cerebellar gray matter was similar across diagnostic groups cross-sectionally and stable over time and thus was deemed a suitable reference region for quantification. Despite not being visually perceptible, [18F]MK6240 has age-related retention in subcortical regions, at a much lower magnitude but topographically colocalized with significant off-target signal of the first-generation tau tracers. The lack of correlation between changes in age-related or meningeal and target retention suggests little influence of possible off-target signals on longitudinal tracer quantification. Nevertheless, the age-related retention in the Braak II region needs to be further investigated. Future postmortem studies should elucidate the source of the newly reported age-related [18F]MK6240 signal, and in vivo studies should further explore its impact on tracer quantification.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Adulto Joven , Adulto , Enfermedad de Alzheimer/diagnóstico por imagen , Tomografía de Emisión de Positrones , Ovillos Neurofibrilares/metabolismo , Encéfalo/metabolismo , Péptidos beta-Amiloides , Proteínas tau/metabolismo
15.
Ann Nucl Med ; 37(2): 108-120, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36411357

RESUMEN

OBJECTIVE: A new tau PET tracer [18F]MK-6240 has been developed; however, its dosimetry and pharmacokinetics have been published only for a European population. This study investigated the safety, radiation dosimetry, pharmacokinetics and biodistribution of [18F]MK-6240 in Japanese elderly subjects. Also, the pattern and extent of brain retention of [18F]MK-6240 in Japanese healthy elderly subjects and patients with Alzheimer's disease (AD) were investigated. These Japanese results were compared with previous reports on non-Japanese. METHODS: Three healthy elderly subjects and three AD patients were enrolled. Dynamic whole-body PET scans were acquired for up to 232 min after starting injection of [18F]MK-6240 (370.4 ± 27.0 MBq) for the former, while a dynamic brain scan was performed from 0 to 75 min post injection for the latter. For both groups, brain PET scans were conducted from 90 to 110 min post injection. Sequential venous blood sampling was performed to measure the radioactivity concentration in the whole blood and plasma as well as the percentages of parent [18F]MK-6240 and radioactive metabolites in plasma. Organ doses and effective doses were estimated using the OLINDA Ver.2 software. Standardized uptake value ratios (SUVRs) and distribution volume ratios (DVRs) by Logan reference tissue model (LRTM) were measured in eight brain regions using the cerebellar cortex as the reference. Blood tests, urine analysis, vital signs and electrocardiography were performed for safety assessments. RESULTS: No adverse events were observed. The highest radiation doses were received by the gallbladder (257.7 ± 74.9 µGy/MBq) and the urinary bladder (127.3 ± 11.7 µGy/MBq). The effective dose was 26.8 ± 1.4 µSv/MBq. The parent form ([18F]MK-6240) was metabolized quickly and was less than 15% by 35 min post injection. While no obvious accumulation was found in the brain of healthy subjects, focal accumulation of [18F]MK-6240 was observed in the cerebral cortex of AD patients. Regional SUVRs of the focal lesions in AD patients increased gradually over time, and the difference of SUVRs between healthy subjects and AD patients became large and stable at 90 min after injection. High correlations of SUVR and DVR were observed (p < 0.01). CONCLUSION: The findings supported safety and efficacy of [18F]MK-6240 as a tau PET tracer for Japanese populations. Even though the number of subjects was limited, the radiation dosimetry profiles, pharmacokinetics, and biodistribution of [18F]MK-6240 were consistent with those for non-Japanese populations. TRIAL REGISTRATION: Japan Pharmaceutical Information Center ID, JapicCTI-194972.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Distribución Tisular , Radiometría , Isoquinolinas/metabolismo , Tomografía de Emisión de Positrones/métodos
16.
Mol Imaging Biol ; 25(3): 513-527, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36258099

RESUMEN

PURPOSE: In vivo detection of transactivation response element DNA binding protein-43 kDa (TDP-43) aggregates through positron emission tomography (PET) would impact the ability to successfully develop therapeutic interventions for a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS).  The purpose of the present study is to evaluate the ability of six tau PET radioligands to bind to TDP-43 aggregates in post-mortem brain tissues from ALS patients. PROCEDURES: Herein, we report the first head-to-head evaluation of six tritium labeled isotopologs of tau-targeting PET radioligands, [3H]MK-6240 (a.k.a. florquinitau), [3H]Genentech Tau Probe-1 (GTP-1), [3H]JNJ-64326067(JNJ-067), [3H]CBD-2115, [3H]flortaucipir, and [3H]APN-1607, and their ability to bind to the ß-pleated sheet structures of aggregate TDP-43 in post-mortem ALS brain tissues by autoradiography and immunostaining methods. Post-mortem frontal cortex, motor cortex, and cerebellum tissues were evaluated, and binding intensity was aligned with areas of elevated phosphorylated tau (ptau), pTDP-43, and ß-amyloid. RESULTS: Negligible binding was observed with [3H]MK-6240, [3H]JNJ-067, and [3H]GTP-1. While [3H]CBD-2115 displayed marginal specific binding, this binding did not significantly correlate with the distribution of pTDP-43 and AT8 inclusions. Of the remaining ligands, the distribution of [3H]flortaucipir did not significantly correlate to pTDP-43 pathology; however, specific binding trends to a positive relationship with tau. Finally, [3H]APN-1607 relates most strongly to amyloid load and does not indicate pTDP-43 pathology as confirmed by [3H]PiB distribution in sister sections. CONCLUSIONS: Our results demonstrate the prominent nature of mixed pathology in ALS, and do not support the application of [3H]MK-6240, [3H]JNJ-067, [3H]GTP-1, [3H]CBD-2115, [3H]flortaucipir, or [3H]APN-1607 for selective imaging TDP-43 in ALS for clinical research with the currently available in vitro data. Identification of potent and selective radiotracers for TDP-43 remains an ongoing challenge.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteínas de Unión al ADN/metabolismo , Guanosina Trifosfato
17.
J Cereb Blood Flow Metab ; 43(4): 581-594, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36420769

RESUMEN

[18F]MK-6240 meningeal/extracerebral off-target binding may impact tau quantification. We examined the kinetics and longitudinal changes of extracerebral and reference regions. [18F]MK-6240 PET was performed in 24 cognitively-normal and eight cognitively-impaired subjects, with arterial samples in 13 subjects. Follow-up scans at 6.1 ± 0.5 (n = 25) and 13.3 ± 0.9 (n = 16) months were acquired. Extracerebral and reference region (cerebellar gray matter (CerGM)-based, cerebral white matter (WM), pons) uptake were evaluated using standardized uptake values (SUV90-110), spectral analysis, and distribution volume. Longitudinal changes in SUV90-110 were examined. The impact of reference region on target region outcomes, partial volume correction (PVC) and regional erosion were evaluated. Eroded WM and pons showed lower variability, lower extracerebral contamination, and lower longitudinal changes than CerGM-based regions. CerGM-based regions resulted larger cross-sectional effect sizes for group differentiation. Extracerebral signal was high in 50% of subjects and exhibited irreversible kinetics and nonsignificant longitudinal changes over one-year but was highly variable at subject-level. PVC resulted in higher variability in reference region uptake and longitudinal changes. Our results suggest that eroded CerGM may be preferred for cross-sectional, whilst eroded WM or pons may be preferred for longitudinal [18F]MK-6240 studies. For CerGM, erosion was necessary (preferred over PVC) to address the heterogenous nature of extracerebral signal.


Asunto(s)
Disfunción Cognitiva , Humanos , Estudios Transversales , Cinética , Tomografía de Emisión de Positrones/métodos , Estudios de Casos y Controles
18.
J Nucl Med ; 64(3): 444-451, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36175137

RESUMEN

In vivo characterization of pathologic deposition of tau protein in the human brain by PET imaging is a promising tool in drug development trials of Alzheimer disease (AD). 6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine (18F-MK-6240) is a radiotracer with high selectivity and subnanomolar affinity for neurofibrillary tangles that shows favorable nonspecific brain penetration and excellent kinetic properties. The purpose of the present investigation was to develop a visual assessment method that provides both an overall assessment of brain tauopathy and regional characterization of abnormal tau deposition. Methods: 18F-MK-6240 scans from 102 participants (including cognitively normal volunteers and patients with AD or other neurodegenerative disorders) were reviewed by an expert nuclear medicine physician masked to each participant's diagnosis to identify common patterns of brain uptake. This initial visual read method was field-tested in a separate, nonoverlapping cohort of 102 participants, with 2 additional naïve readers trained on the method. Visual read outcomes were compared with semiquantitative assessments using volume-of-interest SUV ratio. Results: For the visual read, the readers assessed 8 gray-matter regions per hemisphere as negative (no abnormal uptake) or positive (1%-25% of the region involved, 25%-75% involvement, or >75% involvement) and then characterized the tau binding pattern as positive or negative for evidence of tau and, if positive, whether brain uptake was in an AD pattern. The readers demonstrated agreement 94% of the time for overall positivity or negativity. Concordance on the determination of regional binary outcomes (negative or positive) showed agreement of 74.3% and a Fleiss κ of 0.912. Using clinical diagnosis as the ground truth, the readers demonstrated a sensitivity of 73%-79% and specificity of 91%-93%, with a combined reader-concordance sensitivity of 80% and specificity of 93%. The average SUV ratio in cortical regions showed a robust correlation with visually derived ratings of regional involvement (r = 0.73, P < 0.0001). Conclusion: We developed a visual read algorithm for 18F-MK-6240 PET offering determination of both scan positivity and the regional degree of cortical involvement. These cross-sectional results show strong interreader concordance on both binary and regional assessments of tau deposition, as well as good sensitivity and excellent specificity supporting use as a tool for clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Humanos , Estudios Transversales , Encéfalo/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones/métodos
19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1027880

RESUMEN

Objective:To investigate the tau deposition pattern in Alzheimer′s disease (AD) and its correlation with cognition by 18F-MK6240 PET imaging. Methods:From August 2021 to February 2022, 46 elderly people over 55 years old (16 males, 30 females; age (68.9±7.7) years) were included from outpatient and community in Shanghai. Structural brain MRI, β-amyloid (Aβ) PET imaging, tau-PET imaging and comprehensive neuropsychological tests batteries were conducted. The subjects were divided into AD group ( n=16) and normal cognition (NC) group ( n=30) according to the 2018 National Institute on aging and Alzheimer′s Association (NIA-AA) diagnostic criteria. Quantitative analysis was conducted to investigate the tau deposition pattern in AD after preprocessing 18F-MK6240 PET images with MRI images. SUV ratio (SUVR) of brain regions such as entorhinal cortex, hippocampus, parahippocampal gyrus, amygdala, insular lobe, frontal lobe, precuneus, occipital lobe, thalamus and putamen were analyzed, with cerebellum as reference region. The differences of tau deposition in brain regions between AD and NC groups were analyzed by independent-sample t test. The associations between SUVR and Mini-Mental State Examination (MMSE) score and Montreal Cognitive Assessment-Basic (MoCA-B) score were analyzed by Pearson correlation analysis. Results:AD displayed a significant tau deposition in frontal lobes, temporal lobes and parietal lobes compared with NC. SUVR of brain regions in AD group were higher than those in NC group ( t values: 3.37-9.61, all P<0.05). SUVR in brain regions were negatively correlated with MMSE score ( r values: from -0.735 to -0.350, all P<0.05) and MoCA-B score ( r values: from -0.723 to -0.367, all P<0.05). Conclusion:18F-MK6240 PET can demonstrate the tau deposition in the brain of AD patients, and the tau deposition is related to cognitive function.

20.
Front Aging Neurosci ; 15: 1272946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161595

RESUMEN

Introduction: The accumulation of neurofibrillary tau tangles, a neuropathological hallmark of Alzheimer's disease (AD), occurs in medial temporal lobe (MTL) regions early in the disease process, with some of the earliest deposits localized to subregions of the entorhinal cortex. Although functional specialization of entorhinal cortex subregions has been reported, few studies have considered functional associations with localized tau accumulation. Methods: In this study, stepwise linear regressions were used to examine the contributions of regional tau burden in specific MTL subregions, as measured by 18F-MK6240 PET, to individual variability in cognition. Dependent measures of interest included the Clinical Dementia Rating Sum of Boxes (CDR-SB), Mini Mental State Examination (MMSE), and composite scores of delayed episodic memory and language. Other model variables included age, sex, education, APOE4 status, and global amyloid burden, indexed by 11C-PiB. Results: Tau burden in right Brodmann area 35 (BA35), left and right Brodmann area 36 (BA36), and age each uniquely contributed to the proportion of explained variance in CDR-SB scores, while right BA36 and age were also significant predictors of MMSE scores, and right BA36 was significantly associated with delayed episodic memory performance. Tau burden in both left and right BA36, along with education, uniquely contributed to the proportion of explained variance in language composite scores. Importantly, the addition of more inclusive ROIs, encompassing less granular segmentation of the entorhinal cortex, did not significantly contribute to explained variance in cognition across any of the models. Discussion: These findings suggest that the ability to quantify tau burden in more refined MTL subregions may better account for individual differences in cognition, which may improve the identification of non-demented older adults who are on a trajectory of decline due to AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA