Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Neurol ; 14: 1246430, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37830087

RESUMEN

Objective: Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a rare neurodegenerative disease for which there is no specific treatment. Very few cases have been treated with single-target deep brain stimulation (DBS), and the results were not satisfactory. We applied multi-target DBS to an SCA3/MJD patient and performed positron emission computed tomography (PET) before and after DBS to explore the short-term clinical therapeutic effect. Materials and methods: A 26-year-old right-hand-dominant female with a family history of SCA3/MJD suffered from cerebellar ataxia and dystonia. Genetic testing indicated an expanded CAG trinucleotide repeat in the ATXN3 gene and a diagnosis of SCA3/MJD. Conservative treatment had no obvious effect; therefore, leads were implanted in the bilateral dentate nucleus (DN) and the globus pallidus internus (GPi) and connected to an external stimulation device. The treatment effect was evaluated in a double-blind, randomized protocol in five phases (over a total of 15 days): no stimulation, GPi, DN, or sham stimulation, and combined GPi and DN stimulation. 18F-fluoro-2-deoxy-d-glucose and dopamine transporter PET, Scale for the Assessment and Rating of Ataxia, Fahn-Tolosa-Marin Clinical Rating Scale for Tremor (FTM), Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), and SF-36 quality of life scores were compared before and after DBS. Results: The Total Scale for the Assessment and Rating of Ataxia scores improved by ~42% (from 24 to 14). The BFMDRS movement scores improved by ~30% (from 40.5 to 28.5). The BFMDRS disability scores improved by ~12.5% (from 16 to 14). Daily living activities were not noticeably improved. Compared with the findings in pre-DBS imaging, 18F-fluoro-2-deoxy-d-glucose uptake increased in the cerebellum, while according to dopamine transporter imaging, there were no significant differences in the bilateral caudate nucleus and putamen. Conclusion: Multi-target acute stimulation (DN DBS and GPi DBS) in SCA3/MJD can mildly improve cerebellar ataxia and dystonia and increase cerebellar metabolism.

2.
Cells ; 12(10)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37408238

RESUMEN

Machado-Joseph disease (MJD) is a dominant neurodegenerative disease caused by an expanded CAG repeat in the ATXN3 gene encoding the ataxin-3 protein. Several cellular processes, including transcription and apoptosis, are disrupted in MJD. To gain further insights into the extent of dysregulation of mitochondrial apoptosis in MJD and to evaluate if expression alterations of specific apoptosis genes/proteins can be used as transcriptional biomarkers of disease, the expression levels of BCL2, BAX and TP53 and the BCL2/BAX ratio (an indicator of susceptibility to apoptosis) were assessed in blood and post-mortem brain samples from MJD subjects and MJD transgenic mice and controls. While patients show reduced levels of blood BCL2 transcripts, this measurement displays low accuracy to discriminate patients from matched controls. However, increased levels of blood BAX transcripts and decreased BCL2/BAX ratio are associated with earlier onset of disease, indicating a possible association with MJD pathogenesis. Post-mortem MJD brains show increased BCL2/BAX transcript ratio in the dentate cerebellar nucleus (DCN) and increased BCL2/BAX insoluble protein ratio in the DCN and pons, suggesting that in these regions, severely affected by degeneration in MJD, cells show signs of apoptosis resistance. Interestingly, a follow-up study of 18 patients further shows that blood BCL2 and TP53 transcript levels increase over time in MJD patients. Furthermore, while the similar levels of blood BCL2, BAX, and TP53 transcripts observed in preclinical subjects and controls is mimicked by pre-symptomatic MJD mice, the expression profile of these genes in patient brains is partially replicated by symptomatic MJD mice. Globally, our findings indicate that there is tissue-specific vulnerability to apoptosis in MJD subjects and that this tissue-dependent behavior is partially replicated in a MJD mouse model.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Estudios de Seguimiento , Enfermedades Neurodegenerativas/complicaciones , Proteína X Asociada a bcl-2/genética , Ratones Transgénicos , Apoptosis
3.
Mol Med ; 29(1): 96, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438701

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant hereditary ataxia worldwide, which is however in a lack of effective treatment. In view of that engineered exosomes are a promising non-invasive gene therapy transporter that can overcome the traditional problem of poor drug delivery, the aim of this study was to evaluate, for the first time, the value of exosome-based microRNA therapy in SCA3 and the therapeutic effects of intravenously administrated ATXN3 targeting microRNAs in transgenic SCA3 mouse models. METHODS: The rabies virus glycoprotein (RVG) peptide-modified exosomes loaded with miR-25 or miR-181a were peripherally injected to enable targeted delivery of miRNAs to the brain of SCA3 mice. The behaviors, ATXN3 level, purkinje cell and other neuronal loss, and neuroinflammation were evaluated 4 weeks after initial treatment. RESULTS: The targeted and efficient delivery of miR-25 and miR-181a by modified exosomes substantially inhibited the mutant ATXN3 expression, reduced neuron apoptosis and induced motor improvements in SCA3 mouse models without increasing the neuroinflammatory response. CONCLUSIONS: Our study confirmed the therapeutic potential of engineered exosome-based miR-25 and miR-181a treatment in substantially reducing ATXN3 aggregation and cytotoxicity by relying on its targeted and efficient drug delivery performance in SCA3 mice. This treatment method shows a promising prospect for future clinical applications in SCA3.


Asunto(s)
Exosomas , Enfermedad de Machado-Joseph , MicroARNs , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/terapia , Ratones Transgénicos , Apoptosis , MicroARNs/genética
4.
Mol Ther ; 31(5): 1275-1292, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37025062

RESUMEN

Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominantly inherited ataxia worldwide. It is caused by an over-repetition of the trinucleotide CAG within the ATXN3 gene, which confers toxic properties to ataxin-3 (ATXN3) species. RNA interference technology has shown promising therapeutic outcomes but still lacks a non-invasive delivery method to the brain. Extracellular vesicles (EVs) emerged as promising delivery vehicles due to their capacity to deliver small nucleic acids, such as microRNAs (miRNAs). miRNAs were found to be enriched into EVs due to specific signal motifs designated as ExoMotifs. In this study, we aimed at investigating whether ExoMotifs would promote the packaging of artificial miRNAs into EVs to be used as non-invasive therapeutic delivery vehicles to treat MJD/SCA3. We found that miRNA-based silencing sequences, associated with ExoMotif GGAG and ribonucleoprotein A2B1 (hnRNPA2B1), retained the capacity to silence mutant ATXN3 (mutATXN3) and were 3-fold enriched into EVs. Bioengineered EVs containing the neuronal targeting peptide RVG on the surface significantly decreased mutATXN3 mRNA in primary cerebellar neurons from MJD YAC 84.2 and in a novel dual-luciferase MJD mouse model upon daily intranasal administration. Altogether, these findings indicate that bioengineered EVs carrying miRNA-based silencing sequences are a promising delivery vehicle for brain therapy.


Asunto(s)
Enfermedad de Machado-Joseph , MicroARNs , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/terapia , MicroARNs/genética , Ataxina-3/genética , Interferencia de ARN , Péptidos/genética
5.
Front Neurosci ; 17: 1118429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875652

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disease caused by a CAG repeat expansion in the ATXN3 gene. Though the ATXN3 protein is expressed ubiquitously throughout the CNS, regional pathology in SCA3 patients is observed within select neuronal populations and more recently within oligodendrocyte-rich white matter tracts. We have previously recapitulated these white matter abnormalities in an overexpression mouse model of SCA3 and demonstrated that oligodendrocyte maturation impairments are one of the earliest and most progressive changes in SCA3 pathogenesis. Disease-associated oligodendrocyte signatures have recently emerged as significant contributors to several other neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease, but their role in regional vulnerability and disease progression remains unexplored. Here, we are the first to comparatively assess myelination in human tissue in a region-dependent manner. Translating these findings to SCA3 mouse models of disease, we confirmed endogenous expression of mutant Atxn3 leads to regional transcriptional dysregulation of oligodendrocyte maturation markers in Knock-In models of SCA3. We then investigated the spatiotemporal progression of mature oligodendrocyte transcriptional dysregulation in an overexpression SCA3 mouse model and how it relates to the onset of motor impairment. We further determined that regional reduction in mature oligodendrocyte cell counts in SCA3 mice over time parallels the onset and progression of brain atrophy in SCA3 patients. This work emphasizes the prospective contributions of disease-associated oligodendrocyte signatures to regional vulnerability and could inform timepoints and target regions imperative for biomarker assessment and therapeutic intervention in several neurodegenerative diseases.

6.
Biomedicines ; 11(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36830784

RESUMEN

Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant ataxia worldwide. MJD is characterized by late-onset progressive cerebellar ataxia associated with variable clinical findings, including pyramidal signs and a dystonic-rigid extrapyramidal syndrome. In the Portuguese archipelago of the Azores, the worldwide population cluster for this disorder (prevalence of 39 in 100,000 inhabitants), a cohort of MJD mutation carriers belonging to extensively studied pedigrees has been followed since the late 1990s. Studies of the homogeneous Azorean MJD cohort have been contributing crucial information to the natural history of this disease as well as allowing the identification of novel molecular biomarkers. Moreover, as interventional studies for this globally rare and yet untreatable disease are emerging, this cohort should be even more important for the recruitment of trial participants. In this paper, we profile the Azorean cohort of MJD carriers, constituted at baseline by 20 pre-ataxic carriers and 52 patients, which currently integrates the European spinocerebellar ataxia type 3/Machado-Joseph disease Initiative (ESMI), a large European longitudinal MJD cohort. Moreover, we summarize the main studies based on this cohort and highlight the contributions made to advances in MJD research. Knowledge of the profile of the Azorean MJD cohort is not only important in the context of emergent interventional trials but is also pertinent for the implementation of adequate interventional measures, constituting relevant information for Lay Associations and providing data to guide healthcare decision makers.

7.
Cerebellum ; 22(1): 37-45, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35034258

RESUMEN

Untranslated regions are involved in the regulation of transcriptional and post-transcriptional processes. Characterization of these regions remains poorly explored for ATXN3, the causative gene of Machado-Joseph disease (MJD). Although a few genetic modifiers have been identified for MJD age at onset (AO), they only explain a small fraction of the AO variance. Our aim was to analyse variation at the 3'UTR of ATXN3 in MJD patients, analyse its impact on AO and attempt to build haplotypes that might discriminate between normal and expanded alleles.After assessing ATXN3 3'UTR variants in molecularly confirmed MJD patients, an in silico analysis was conducted to predict their functional impact (e.g. their effect on miRNA-binding sites). Alleles in cis with the expanded (CAG)n were inferred from family data, and haplotypes were built. The effect of the alternative alleles on the AO and on SARA and NESSCA ataxia scales was tested.Nine variants, all previously described, were found. For eight variants, in silico analyses predicted (a) deleterious effects (rs10151135; rs55966267); (b) changes on miRNA-binding sites (rs11628764; rs55966267; rs709930) and (c) alterations of RNA-binding protein (RBP)-binding sites (rs1055996; rs910369; rs709930; rs10151135; rs3092822; rs7158733). Patients harbouring the alternative allele at rs10151135 had significantly higher SARA Axial subscores (p = 0.023), comparatively with those homozygous for the reference allele. Ten different haplotypes were obtained, one of which was exclusively found in cis with the expanded and four with the normal allele. These findings, which are relevant for the design of allele-specific therapies, warrant further investigation in independent MJD cohorts.


Asunto(s)
Enfermedad de Machado-Joseph , MicroARNs , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Ataxina-3/genética , Regiones no Traducidas 3'/genética , MicroARNs/genética , Variación Genética , Proteínas Represoras/genética
8.
Cerebellum ; 22(3): 348-354, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35426040

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a rare disease with diagnosis offered by the Unified Health System in Brazil. Our aim was to investigate the diagnostic delay in an interval of 23 years in a public university hospital, and some potentially determining factors. METHODS: A retrospective review of the medical records of subjects identified at our institution between 1999 and 2017 was carried out, including residents of Rio Grande do Sul. The diagnostic delay was equivalent to the difference between age at onset of symptoms and age at molecular diagnosis. Calendar years, educational level, sex, distance between the household and the clinics, age and being the index case were studied as modifying factors. RESULTS: SCA3/MJD had a median diagnostic delay of 5 years. Index cases had delays of 6 versus 4 years (p<0.001) for subsequent family members. Delay correlated with age (rho=0.346, p<0.001), but not with age at disease onset (rho=0.005, p=0.91). No change was observed with the level of education of individuals or with the distance between household and hospital from 1999 to 2017. DISCUSSION: The diagnostic delay of SCA3/MJD is high in our region, where its occurrence has been reported for years. Failure to change the delay over the years suggests ineffective dissemination to the population, but a smaller lag among younger people can portray the effect of digital inclusion.


Asunto(s)
Enfermedad de Machado-Joseph , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Diagnóstico Tardío , Brasil
9.
Cerebellum ; 22(6): 1192-1199, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36323979

RESUMEN

Spinocerebellar ataxia type 3 or Machado-Joseph disease (MJD/SCA3) is the most prevalent autosomal dominant cerebellar ataxia worldwide, but its frequency varies by geographic region. We describe MJD/SCA3 patients diagnosed in a tertiary healthcare institution in Peru. In a cohort of 341 individuals (253 probands) with clinical ataxia diagnosis, seven MJD/SCA3 probands were identified and their pedigrees extended, detecting a total of 18 MJD/SCA3 cases. Out of 506 alleles from all probands from this cohort, the 23-CAG repeat was the most common ATXN3 allele (31.8%), followed by the 14-CAG repeat allele (26.1%). Normal alleles ranged from 12 to 38 repeats while pathogenic alleles ranged from 64 to 75 repeats. We identified 80 large normal (LN) alleles (15.8%). Five out of seven families declared an affected family member traced back to foreign countries (England, Japan, China, and Trinidad and Tobago). MJD/SCA3 patients showed ataxia, accompanied by pyramidal signs, dysarthria, and dysphagia as well as abnormal oculomotor movements. In conclusion, ATXN3 allelic distribution in non-MJD/SCA3 patients with ataxia is similar to the distribution in normal individuals around the world, whereas LN allele frequency reinforces no correlation with the frequency of MJD/SCA3. Evidence of any atypical MJD/SCA3 phenotype was not found. Furthermore, haplotypes are required to confirm the foreign origin of MJD/SCA3 in the Peruvian population.


Asunto(s)
Enfermedad de Machado-Joseph , Degeneraciones Espinocerebelosas , Humanos , Enfermedad de Machado-Joseph/diagnóstico , Enfermedad de Machado-Joseph/epidemiología , Enfermedad de Machado-Joseph/genética , Perú/epidemiología , Ataxina-3/genética , Frecuencia de los Genes , Degeneraciones Espinocerebelosas/genética
10.
Plant Cell Rep ; 42(3): 469-486, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36567335

RESUMEN

KEY MESSAGE: This article attempts to provide comprehensive review of plant deubiquitinases, paying special attention to recent advances in their biochemical activities and biological functions. Proteins in eukaryotes are subjected to post-translational modifications, in which ubiquitination is regarded as a reversible process. Cellular deubiquitinases (DUBs) are a key component of the ubiquitin (Ub)-proteasome system responsible for cellular protein homeostasis. DUBs recycle Ub by hydrolyzing poly-Ub chains on target proteins, and maintain a balance of the cellular Ub pool. In addition, some DUBs prefer to cleave poly-Ub chains not linked through the conventional K48 residue, which often alter the substrate activity instead of its stability. In plants, all seven known DUB subfamilies have been identified, namely Ub-binding protease/Ub-specific protease (UBP/USP), Ub C-terminal hydrolase (UCH), Machado-Joseph domain-containing protease (MJD), ovarian-tumor domain-containing protease (OTU), zinc finger with UFM1-specific peptidase domain protease (ZUFSP), motif interacting with Ub-containing novel DUB family (MINDY), and JAB1/MPN/MOV34 protease (JAMM). This review focuses on recent advances in the structure, activity, and biological functions of plant DUBs, particularly in the model plant Arabidopsis.


Asunto(s)
Procesamiento Proteico-Postraduccional , Ubiquitina , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Proteínas/metabolismo , Endopeptidasas/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo
11.
Acta Pharm Sin B ; 12(4): 1856-1870, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35847510

RESUMEN

In most acute promyelocytic leukemia (APL) cells, promyelocytic leukemia (PML) fuses to retinoic acid receptor α (RARα) due to chromosomal translocation, thus generating PML/RARα oncoprotein, which is a relatively stable oncoprotein for degradation in APL. Elucidating the mechanism regulating the stability of PML/RARα may help to degrade PML/RARα and eradicate APL cells. Here, we describe a deubiquitinase (DUB)-involved regulatory mechanism for the maintenance of PML/RARα stability and develop a novel pharmacological approach to degrading PML/RARα by inhibiting DUB. We utilized a DUB siRNA library to identify the ovarian tumor protease (OTU) family member deubiquitinase YOD1 as a critical DUB of PML/RARα. Suppression of YOD1 promoted the degradation of PML/RARα, thus inhibiting APL cells and prolonging the survival time of APL cell-bearing mice. Subsequent phenotypic screening of small molecules allowed us to identify ubiquitin isopeptidase inhibitor I (G5) as the first YOD1 pharmacological inhibitor. As expected, G5 notably degraded PML/RARα protein and eradicated APL, particularly drug-resistant APL cells. Importantly, G5 also showed a strong killing effect on primary patient-derived APL blasts. Overall, our study not only reveals the DUB-involved regulatory mechanism on PML/RARα stability and validates YOD1 as a potential therapeutic target for APL, but also identifies G5 as a YOD1 inhibitor and a promising candidate for APL, particularly drug-resistant APL treatment.

12.
J Community Genet ; : 1-3, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35873602

RESUMEN

This qualitative study describes how the restrictions imposed by the COVID-19 pandemic impacted on Machado-Joseph disease (MJD) patients and their care, in the island of São Miguel (the Azores, Portugal). In-person semi-structured interviews were conducted with 11 participants, including patients, family members, healthcare professionals, and care providers. Main findings highlighted the key role played by the local association in psychosocial and healthcare for MJD patients and families, and the adverse effects on their care following the onset of the COVID-19 pandemic. In particular, hindered access to the day-care centre increased isolation and had a negative impact on mental health and disease progression. For persons with a progressive and severe neurological disease, there is no "back to normal." Future restrictive measures ensuing need to be accompanied by a careful definition of daily care routines for patients.

13.
Front Aging Neurosci ; 14: 917126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865750

RESUMEN

Objective: The natural history of spinocerebellar ataxia type 3 (SCA3) has been reported in several populations and shows heterogeneity in progression rate and affecting factors. However, it remains unexplored in the population of Mainland China. This study aimed to identify the disease progression rate and its potential affecting factors in patients with SCA3 in Mainland China. Participants and Methods: We enrolled patients with genetically confirmed SCA3 in Mainland China. Patients were seen at three visits, i.e., baseline, 1 year, and 2 years. The primary outcome was the Scale for the Assessment and Rating of Ataxia (SARA), and the secondary outcomes were the Inventory of Non-Ataxia Signs (INAS) as well as the SCA Functional Index (SCAFI). Results: Between 1 October 2015, and 30 September 2016, we enrolled 263 patients with SCA3. We analyzed 247 patients with at least one follow-up visit. The annual progression rate of SARA was 1.49 points per year (SE 0.08, 95% confidence interval [CI] 1.33-1.65, p < 0.0001). The annual progression rates of INAS and SCAFI were 0.56 points per year (SE 0.05, 95% CI 0.47-0.66, p < 0.001) and -0.30 points per year (SE 0.01, 95% CI -0.33∼-0.28, p < 0.001), respectively. Faster progression in SARA was associated with longer length of the expanded allele of ATXN3 (p < 0.0001); faster progression in INAS was associated with lower INAS at baseline (p < 0.0001); faster decline in SCAFI was associated with shorter length of the normal allele of ATXN3 (p = 0.036) and higher SCAFI at baseline (p < 0.0001). Conclusion: Our results provide quantitative data on the disease progression of patients with SCA3 in Mainland China and its corresponding affecting factors, which could facilitate the sample size calculation and patient stratification in future clinical trials. Trial Registration: This study was registered with Chictr.org on 15 September 2015, number ChiCTR-OOC-15007124.

14.
J Community Genet ; 13(4): 459-461, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35851653

RESUMEN

This qualitative study describes how the restrictions imposed by the COVID-19 pandemic impacted on Machado-Joseph disease (MJD) patients and their care, in the island of São Miguel (the Azores, Portugal). In-person semi-structured interviews were conducted with 11 participants, including patients, family members, healthcare professionals, and care providers. Main findings highlighted the key role played by the local association in psychosocial and healthcare for MJD patients and families, and the adverse effects on their care following the onset of the COVID-19 pandemic. In particular, hindered access to the day-care centre increased isolation and had a negative impact on mental health and disease progression. For persons with a progressive and severe neurological disease, there is no "back to normal." Future restrictive measures ensuing need to be accompanied by a careful definition of daily care routines for patients.

15.
Front Immunol ; 13: 870966, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558088

RESUMEN

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease, is a progressive neurodegenerative disorder characterized by loss of neuronal matter due to the expansion of the CAG repeat in the ATXN3/MJD1 gene and subsequent ataxin-3 protein. Although the underlying pathogenic protein expansion has been known for more than 20 years, the complexity of its effects is still under exploration. The ataxin-3 protein in its expanded form is known to aggregate and disrupt cellular processes in neuronal tissue but the role of the protein on populations of immune cells is unknown. Recently, mast cells have emerged as potential key players in neuroinflammation and neurodegeneration. Here, we examined the mast cell-related effects of ataxin-3 expansion in the brain tissues of 304Q ataxin-3 knock-in mice and SCA3 patients. We also established cultures of mast cells from the 304Q knock-in mice and examined the effects of 304Q ataxin-3 knock-in on the immune responses of these cells and on markers involved in mast cell growth, development and function. Specifically, our results point to a role for expanded ataxin-3 in suppression of mast cell marker CD117/c-Kit, pro-inflammatory cytokine TNF-α and NF-κB inhibitor IκBα along with an increased expression of the granulocyte-attracting chemokine CXCL1. These results are the beginning of a more holistic understanding of ataxin-3 and could point to the development of novel therapeutic targets which act on inflammation to mitigate symptoms of SCA3.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Mastocitos/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
16.
Acta Neuropathol Commun ; 10(1): 37, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305685

RESUMEN

Machado-Joseph disease (MJD) or Spinocerebellar ataxia type 3 (SCA3) is the most common form of dominant SCA worldwide. Magnetic Resonance Imaging (MRI) and Proton Magnetic Resonance Spectroscopy (1H-MRS) provide promising non-invasive diagnostic and follow-up tools, also serving to evaluate therapies efficacy. However, pre-clinical studies showing relationship between MRI-MRS based biomarkers and functional performance are missing, which hampers an efficient clinical translation of therapeutics. This study assessed motor behaviour, neurochemical profiles, and morphometry of the cerebellum of MJD transgenic mice and patients aiming at establishing magnetic-resonance-based biomarkers. 1H-MRS and structural MRI measurements of MJD transgenic mice were performed with a 9.4 Tesla scanner, correlated with motor performance on rotarod and compared with data collected from human patients. We found decreased cerebellar white and grey matter and enlargement of the fourth ventricle in both MJD mice and human patients as compared to controls. N-acetylaspartate (NAA), NAA + N-acetylaspartylglutamate (NAA + NAAG), Glutamate, and Taurine, were significantly decreased in MJD mouse cerebellum regardless of age, whereas myo-Inositol (Ins) was increased at early time-points. Lower neurochemical ratios levels (NAA/Ins and NAA/total Choline), previously correlated with worse clinical status in SCAs, were also observed in MJD mice cerebella. NAA, NAA + NAAG, Glutamate, and Taurine were also positively correlated with MJD mice motor performance. Importantly, these 1H-MRS results were largely analogous to those found for MJD in human studies and in our pilot data in human patients. We have established a magnetic resonance-based biomarker approach to monitor novel therapies in preclinical studies and human clinical trials.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Biomarcadores , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Ácido Glutámico , Humanos , Enfermedad de Machado-Joseph/patología , Ratones , Ratones Transgénicos , Taurina
17.
Neurobiol Dis ; 162: 105578, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871736

RESUMEN

Machado-Joseph disease (MJD/SCA3) is a neurodegenerative polyglutamine disorder exhibiting a wide spectrum of phenotypes. The abnormal size of the (CAG)n at ATXN3 explains ~55% of the age at onset variance, suggesting the involvement of other factors, namely genetic modifiers, whose identification remains limited. Our aim was to find novel genetic modifiers, analyse their epistatic effects and identify disease-modifying pathways contributing to MJD variable expressivity. We performed whole-exome sequencing in a discovery sample of four age at onset concordant and four discordant first-degree relative pairs of Azorean patients, to identify candidate variants which genotypes differed for each discordant pair but were shared in each concordant pair. Variants identified by this approach were then tested in an independent multi-origin cohort of 282 MJD patients. Whole-exome sequencing identified 233 candidate variants, from which 82 variants in 53 genes were prioritized for downstream analysis. Eighteen disease-modifying pathways were identified; two of the most enriched pathways were relevant for the nervous system, namely the neuregulin signaling and the agrin interactions at neuromuscular junction. Variants at PARD3, NFKB1, CHD5, ACTG1, CFAP57, DLGAP2, ITGB1, DIDO1 and CERS4 modulate age at onset in MJD, with those identified in CFAP57, ACTG1 and DIDO1 showing consistent effects across cohorts of different geographical origins. Network analyses of the nine novel MJD modifiers highlighted several important molecular interactions, including genes/proteins previously related with MJD pathogenesis, namely between ACTG1/APOE and VCP/ITGB1. We describe novel pathways, modifiers, and their interaction partners, providing a broad molecular portrait of age at onset modulation to be further exploited as new disease-modifying targets for MJD and related diseases.


Asunto(s)
Enfermedad de Machado-Joseph , Edad de Inicio , Alelos , ADN Helicasas/genética , Genotipo , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Proteínas del Tejido Nervioso/genética , Secuenciación del Exoma
18.
J Neurol ; 269(6): 2989-2998, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34783886

RESUMEN

OBJECTIVE: To investigate whether neurite orientation dispersion and density imaging (NODDI) could provide the added value for detecting brain microstructural alterations in the preclinical stage of Machado-Joseph disease/spinocerebellar ataxia type 3 (MJD/SCA3) compared with MRI morphometry and diffusion tensor imaging (DTI). METHODS: Twenty preclinical MJD/SCA3 patients and 21 healthy controls were enrolled. Three b values DWI and 3D T1-weighted images were acquired at 3.0 T. Tract-based spatial statistics (TBSS) approach was used to investigate the white matter (WM) alterations in the DTI metrics and NODDI metrics. Gray matter-based spatial statistics (GBSS) approach was used to investigate the grey matter (GM) alterations in the NODDI metrics. Voxel-based morphometry (VBM) approach was performed on the 3D T1-weighted images. The relationship between the cytosine-adenine-guanine (CAG) repeat length and brain microstructural alterations of preclinical MJD/SCA3 was identified. RESULTS: Compared with healthy controls, the preclinical MJD/SCA3 patients showed decreased FA and NDI as well as increased MD, AD, and RD in the WM of cerebellum and brainstem (corrected P < 0.05), and decreased NDI in the GM of cerebellar vermis (corrected P < 0.05). The CAG repeat length in preclinical MJD/SCA3 patients was negatively correlated with the reduced FA and NDI of the infratentorial WM and the reduced NDI of the cerebellum, and positively with the increased MD and RD of the infratentorial WM. CONCLUSIONS: NOODI can provide novel quantitative microstructural changes in MJD/SCA3 carriers, expanding our understanding of the gray and white matter (axons and dendrites) degeneration in this frequent ataxia syndrome.


Asunto(s)
Enfermedad de Machado-Joseph , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Humanos , Enfermedad de Machado-Joseph/diagnóstico por imagen , Imagen por Resonancia Magnética , Neuritas
19.
Mol Ther Nucleic Acids ; 27: 99-108, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34938609

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients.

20.
Front Mol Neurosci ; 14: 658339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220448

RESUMEN

Spinocerebellar ataxia type 3 (SCA3/MJD) is caused by CAG expansion mutation resulting in a long polyQ domain in mutant ataxin-3. The mutant protein is a special type of protease, deubiquitinase, which may indicate its prominent impact on the regulation of cellular proteins levels and activity. Yet, the global model picture of SCA3 disease progression on the protein level, molecular pathways in the brain, and neurons, is largely unknown. Here, we investigated the molecular SCA3 mechanism using an interdisciplinary research paradigm combining behavioral and molecular aspects of SCA3 in the knock-in ki91 model. We used the behavior, brain magnetic resonance imaging (MRI) and brain tissue examination to correlate the disease stages with brain proteomics, precise axonal proteomics, neuronal energy recordings, and labeling of vesicles. We have demonstrated that altered metabolic and mitochondrial proteins in the brain and the lack of weight gain in Ki91 SCA3/MJD mice is reflected by the failure of energy metabolism recorded in neonatal SCA3 cerebellar neurons. We have determined that further, during disease progression, proteins responsible for metabolism, cytoskeletal architecture, vesicular, and axonal transport are disturbed, revealing axons as one of the essential cell compartments in SCA3 pathogenesis. Therefore we focus on SCA3 pathogenesis in axonal and somatodendritic compartments revealing highly increased axonal localization of protein synthesis machinery, including ribosomes, translation factors, and RNA binding proteins, while the level of proteins responsible for cellular transport and mitochondria was decreased. We demonstrate the accumulation of axonal vesicles in neonatal SCA3 cerebellar neurons and increased phosphorylation of SMI-312 positive adult cerebellar axons, which indicate axonal dysfunction in SCA3. In summary, the SCA3 disease mechanism is based on the broad influence of mutant ataxin-3 on the neuronal proteome. Processes central in our SCA3 model include disturbed localization of proteins between axonal and somatodendritic compartment, early neuronal energy deficit, altered neuronal cytoskeletal structure, an overabundance of various components of protein synthesis machinery in axons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA