RESUMEN
[This corrects the article DOI: 10.3389/fncel.2023.1211486.].
RESUMEN
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that progressively affects motoneurons, causing muscle atrophy and evolving to death. Astrocytes inhibit the expression of MHC-I by neurons, contributing to a degenerative outcome. The present study verified the influence of interferon ß (IFN ß) treatment, a proinflammatory cytokine that upregulates MHC-I expression, in SOD1G93A transgenic mice. For that, 17 days old presymptomatic female mice were subjected to subcutaneous application of IFN ß (250, 1,000, and 10,000 IU) every other day for 20 days. Rotarod motor test, clinical score, and body weight assessment were conducted every third day throughout the treatment period. No significant intergroup variations were observed in such parameters during the pre-symptomatic phase. All mice were then euthanized, and the spinal cords collected for comparative analysis of motoneuron survival, reactive gliosis, synapse coverage, microglia morphology classification, cytokine analysis by flow cytometry, and RT-qPCR quantification of gene transcripts. Additionally, mice underwent Rotarod motor assessment, weight monitoring, and neurological scoring. The results show that IFN ß treatment led to an increase in the expression of MHC-I, which, even at the lowest dose (250 IU), resulted in a significant increase in neuronal survival in the ALS presymptomatic period which lasted until the onset of the disease. The treatment also influenced synaptic preservation by decreasing excitatory inputs and upregulating the expression of AMPA receptors by astrocytes. Microglial reactivity quantified by the integrated density of pixels did not decrease with treatment but showed a less activated morphology, coupled with polarization to an M1 profile. Disease progression upregulated gene transcripts for pro- and anti-inflammatory cytokines, and IFN ß treatment significantly decreased mRNA expression for IL4. Overall, the present results demonstrate that a low dosage of IFN ß shows therapeutic potential by increasing MHC-I expression, resulting in neuroprotection and immunomodulation.
RESUMEN
Leishmaniasis represents a complex of diseases with a broad clinical spectrum and epidemiological diversity, considered a major public health problem. Although there is treatment, there are still no vaccines for cutaneous leishmaniasis. Because Leishmania spp. is an intracellular protozoan with several escape mechanisms, a vaccine must provoke cellular and humoral immune responses. Previously, we identified the Leishmania homolog of receptors for activated C kinase (LACK) and phosphoenolpyruvate carboxykinase (PEPCK) proteins as strong immunogens and candidates for the development of a vaccine strategy. The present work focuses on the in silico prediction and characterization of antigenic epitopes that might interact with mice or human major histocompatibility complex class I. After immunogenicity prediction on the Immune Epitope Database (IEDB) and the Database of MHC Ligands and Peptide Motifs (SYFPEITHI), 26 peptides were selected for interaction assays with infected mouse lymphocytes by flow cytometry and ELISpot. This strategy identified nine antigenic peptides (pL1-H2, pPL3-H2, pL10-HLA, pP13-H2, pP14-H2, pP15-H2, pP16-H2, pP17-H2, pP18-H2, pP26-HLA), which are strong candidates for developing a peptide vaccine against leishmaniasis.
Asunto(s)
Leishmania mexicana , Leishmania , Leishmaniasis Cutánea , Humanos , Animales , Ratones , Epítopos , Antígenos de Histocompatibilidad Clase I , Antígenos HLA , Leishmania/metabolismo , Péptidos/química , Vacunas de Subunidad , Complejo Mayor de HistocompatibilidadRESUMEN
The present study sought to search for the immunodominance related to the N-terminal, Central and C-terminal regions of HTLV-1 Tax using novel, cutting-edge peptide microarray analysis. In addition, in silico predictions were performed to verify the presence of nine amino acid peptides present along Tax restricted to the human leukocyte antigen (HLA)-A2.02*01 haplotype, as well as to verify the ability to induce pro-inflammatory and regulatory cytokines, such as IFN-γ and IL-4, respectively. Our results indicated abundant dose-dependent reactivity for HLA-A*02:01 in all regions (N-terminal, Central and C-terminal), but with specific hotspots. Furthermore, the results of fold-change over the Tax11-19 reactivity obtained at lower concentrations of HLA-A*02:01 reveal that peptides from the three regions contain sequences that react 100 times more than Tax11-19. On the other hand, Tax11-19 has similar or superior HLA-A*02:01 reactivity at higher concentrations of this haplotype. The in silico analysis showed a higher frequency of IFN-γ-inducing peptides in the N-terminal portion, while the C-terminal portion showed a higher frequency of IL-4 inducers. Taken together, these results shed light on the search for new Tax immunodominant epitopes, in addition to the canonic Tax11-19, for the rational design of immunomodulatory strategies for HTLV-1 chronic diseases.
Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Humanos , Virus Linfotrópico T Tipo 1 Humano/genética , Antígeno HLA-A2 , Epítopos Inmunodominantes , Productos del Gen tax/genética , Linfocitos T Citotóxicos , Interleucina-4 , PéptidosRESUMEN
Thimet oligopeptidase (THOP) is a cytosolic metallopeptidase known to regulate the fate of post-proteasomal peptides, protein turnover and peptide selection in the antigen presentation machinery (APM) system. Oxidative stress influences THOP expression and regulates its proteolytic activity, generating variable cytosolic peptide levels, possibly affecting the immune evasion of tumor cells. In the present work, we examined the association between THOP expression/activity and stress oxidative resistance in human leukemia cells using the K562 cell line, a chronic myeloid leukemia (CML), and the multidrug-resistant (MDR) Lucena 1 (K562-derived MDR cell line) as model. The Lucena 1 phenotype was validated under vincristine treatment and the relative THOP1 mRNA levels and protein expression compared to K562 cell line. Our data demonstrated increased THOP1 gene and protein levels in K562 cells in contrast to the oxidative-resistant Lucena 1, even after H2O2 treatment, suggesting an oxidative stress dependence in THOP regulation. Further, it was observed higher basal levels of reactive oxygen species (ROS) in K562 compared to Lucena 1 cell line using DHE fluorescent probe. Since THOP activity is dependent on its oligomeric state, we also compared its proteolytic activity under reducing agent treatment, which demonstrated that its function modulation with respect to changes in redox state. Finally, the mRNA expression and FACS analyses demonstrated a reduced expression of MHC I only in K562 cell line. In conclusion, our results highlight THOP redox modulation, which could influence antigen presentation in multidrug resistant leukemia cells.
Asunto(s)
Peróxido de Hidrógeno , Leucemia , Humanos , Peróxido de Hidrógeno/farmacología , Resistencia a Antineoplásicos/genética , Células K562 , Leucemia/tratamiento farmacológico , Leucemia/genética , Estrés Oxidativo , Péptidos , ARN MensajeroRESUMEN
Introduction: The present work sought to identify MHC-I-restricted peptide signatures for arbovirus using in silico and in vitro peptide microarray tools. Methods: First, an in-silico analysis of immunogenic epitopes restricted to four of the most prevalent human MHC class-I was performed by identification of MHC affinity score. For that, more than 10,000 peptide sequences from 5 Arbovirus and 8 different viral serotypes, namely Zika (ZIKV), Dengue (DENV serotypes 1-4), Chikungunya (CHIKV), Mayaro (MAYV) and Oropouche (OROV) viruses, in addition to YFV were analyzed. Haplotype HLA-A*02.01 was the dominant human MHC for all arboviruses. Over one thousand HLA-A2 immunogenic peptides were employed to build a comprehensive identity matrix. Intending to assess HLAA*02:01 reactivity of peptides in vitro, a peptide microarray was designed and generated using a dimeric protein containing HLA-A*02:01. Results: The comprehensive identity matrix allowed the identification of only three overlapping peptides between two or more flavivirus sequences, suggesting poor overlapping of virus-specific immunogenic peptides amongst arborviruses. Global analysis of the fluorescence intensity for peptide-HLA-A*02:01 binding indicated a dose-dependent effect in the array. Considering all assessed arboviruses, the number of DENV-derived peptides with HLA-A*02:01 reactivity was the highest. Furthermore, a lower number of YFV-17DD overlapping peptides presented reactivity when compared to non-overlapping peptides. In addition, the assessment of HLA-A*02:01-reactive peptides across virus polyproteins highlighted non-structural proteins as "hot-spots". Data analysis supported these findings showing the presence of major hydrophobic sites in the final segment of non-structural protein 1 throughout 2a (Ns2a) and in nonstructural proteins 2b (Ns2b), 4a (Ns4a) and 4b (Ns4b). Discussion: To our knowledge, these results provide the most comprehensive and detailed snapshot of the immunodominant peptide signature for arbovirus with MHC-class I restriction, which may bring insight into the design of future virus-specific vaccines to arboviruses and for vaccination protocols in highly endemic areas.
Asunto(s)
Arbovirus , Infección por el Virus Zika , Virus Zika , Humanos , Epítopos , Antígeno HLA-A2 , Antígenos ViralesRESUMEN
Dendritic cells (DCs) have a specialized endomembrane system capable of presenting exogenous antigens in the context of MHC class I (MHC-I) molecules. This process, named cross-presentation, is crucial to activate CD8+ T lymphocytes and initiate cytotoxic immune responses. In this report, we present an Agent-Based Model in combination with Ordinary Differential Equations with enough complexity to reproduce cross-presentation. The model embraces the secretory and endocytic pathways, in connection with the plasma membrane, the endoplasmic reticulum, and the cytosol. Key molecules required for cross-presentation were included as cargoes. In the simulations, the kinetics of MHC-I uptake and recycling, and cross-presentation accurately reproduced experimental values. The model proved to be a suitable tool to elaborate hypotheses and design experiments. In particular, the model predictions and the experimental results obtained indicate that the rate-limiting step in cross-presentation of soluble ovalbumin is MHC-I loading after proteasomal processing of the antigenic protein.
Asunto(s)
Presentación de Antígeno , Reactividad Cruzada , Cinética , Ovalbúmina , Linfocitos T CD8-positivosRESUMEN
Major histocompatibility complex class I (MHC-I) has been implicated in several types of neuroplasticity phenomena. Interferon beta-1b (IFN-ß) increases MHC-I expression by motoneurons after sciatic nerve crush in mice, improving axonal growth and functional recovery. Additionally, IFN-ß induces glial hypertrophy associated with upregulation of glial fibrillary acidic protein (GFAP) and MHC-I in murine astrocytes in vitro. As knowledge about MHC-I and its role in synaptic plasticity in human astrocytes (HAs) is scarce, we investigated these aspects in mature HAs obtained from the neocortex of patients undergoing surgery due to hippocampal sclerosis. Cells were exposed to media in the absence (0 IU/ml) or presence of IFN-ß for 5 days (500 IU/ml). Beta-2 microglobulin (ß2m), a component of the MHC-I, GFAP and vimentin proteins, was quantified by flow cytometry (FC) and increased by 100%, 60% and 46%, respectively, after IFN-ß exposure. We also performed qRT-PCR gene expression analyses for ß2m, GFAP, vimentin, and pro- and anti-inflammatory cytokines. Our data showed that IFN-ß-treated astrocytes displayed ß2m and GFAP gene upregulation. Additionally, they presented a proinflammatory profile with increase in the IL-6 and IL-1ß genes and a tendency to upregulate TNF-α. Moreover, we evaluated the effect of HAs conditioned medium (CM) on the formation/maintenance of neurites/synapses by the PC12 lineage. Synaptophysin protein expression was quantified by FC. The CM of IFN-ß-activated astrocytes was not harmful to PC12 neurites, and there was no change in synaptophysin protein expression. Therefore, IFN-ß activated HAs by increasing GFAP, vimentin and MHC-I protein expression. Like MHC-I modulation and astrocyte activation may be protective after peripheral nerve damage and in some neurodegenerative conditions, this study opens perspectives on the pathophysiological roles of astroglial MHC-I in the human CNS.
Asunto(s)
Astrocitos , Interferón beta , Humanos , Animales , Ratones , Astrocitos/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo , Sinaptofisina/farmacología , Vimentina/genética , Vimentina/metabolismo , Vimentina/farmacología , Interferón beta/genética , Interferón beta/metabolismo , Interferón beta/farmacología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Complejo Mayor de Histocompatibilidad , FenotipoRESUMEN
Infectious salmon anemia (ISA) can be devastating in farmed Atlantic salmon (Salmo salar). The disease can evolve into epidemics if it is not contained and controlled. ISA epidemics were seen in Norway in the early 1990s and Chile in 2007-2009. Consequently, there is an urgent need to develop a vaccine to prevent or treat the infection. In this study, an immunoinformatic approach was employed to predict 32 lineal B-cell epitopes based on antigenicity and surface accessibility prediction for ISAV fusion (F), hemagglutinin-esterase (HE), and matrix (M) proteins. On the other hand, twelve conformational B-cell epitopes were also predicted. We further identified six antigenic cytotoxic T lymphocyte (CTL) epitopes and investigated the binding interactions with five salmon MHC-I proteins after docking the peptides to the binding groove of the MHC-I proteins. Our results showed that all the predicted epitopes could bind to salmon MHC-I with high negative ΔG values with medium to high binding affinities. Hence, the predicted epitopes have a high potential of being recognized by Atlantic salmon MHC-I to elicit a CD8+ T cell response in salmon. The predicted and analyzed B and T cell antigenic epitopes in this work might present an initial set of peptides for future vaccine development against ISAV. The ability to model and predict these interactions will ultimately lead to the ability to predict potential binding for MHCs and epitopes that were not studied previously. As current knowledge of salmon MHC specificity is limited, studying and modeling interactions in the peptide/MHC complex is a key to resolving unknown epitope specificity.
Asunto(s)
Enfermedades de los Peces , Isavirus , Infecciones por Orthomyxoviridae , Salmo salar , Animales , Epítopos de Linfocito B , Epítopos de Linfocito T , Esterasas , Hemaglutininas , Antígenos de Histocompatibilidad Clase I , Complejo Mayor de HistocompatibilidadRESUMEN
During cross-presentation, exogenous antigens (i.e. intracellular pathogens or tumor cells) are internalized and processed within the endocytic system and also by the proteasome in the cytosol. Then, antigenic peptides are associated with Major Histocompatibility Complex (MHC) class I molecules and these complexes transit to the plasma membrane in order to trigger cytotoxic immune responses through the activation of CD8+ T lymphocytes. Dendritic cells (DCs) are particularly adapted to achieve efficient antigen cross-presentation and their endocytic network displays important roles during this process, including a sophisticated MHC-I transport dependent on recycling compartments. In this study, we show that C. trachomatis, an obligate intracellular pathogen that exhibits multiple strategies to evade the immune system, is able to induce productive infections in the murine DC line JAWS-II. Our results show that when C. trachomatis infects these cells, the bacteria-containing vacuole strongly recruits host cell recycling vesicles, but no other endosomal compartments. Furthermore, we found that chlamydial infection causes significant alterations of MHC-I trafficking in JAWS-II DCs: reduced levels of MHC-I expression at the cell surface, disruption of the perinuclear MHC-I intracellular pool, and impairment of MHC-I endocytic recycling to the plasma membrane. We observed that all these modifications lead to a hampered cross-presentation ability of soluble and particulate antigens by JAWS-II DCs and primary bone marrow-derived DCs. In summary, our findings provide substantial evidence that C. trachomatis hijacks the DC endocytic recycling system, causing detrimental changes on MHC-I intracellular transport, which are relevant for competent antigen cross-presentation.
Asunto(s)
Presentación de Antígeno/inmunología , Chlamydia trachomatis/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Antígenos de Histocompatibilidad Clase I/inmunología , Animales , Células de la Médula Ósea/inmunología , Línea Celular , Chlamydia trachomatis/patogenicidad , Endocitosis , Ratones , Ratones Endogámicos C57BL , Transporte de ProteínasRESUMEN
The HIV-1 accessory protein Nef downregulates the cell surface expression of major histocompatibility complex class I (MHC-I) molecules to facilitate virus spreading. The Nef-induced downregulation of MHC-I molecules such as HLA-A requires the clathrin adaptor protein 1 (AP-1) complex. The cooperative interaction of Nef, AP-1, and the cytosolic tail (CT) of HLA-A leads to a redirection of HLA-A targeting from the trans-Golgi network (TGN) to lysosomes for degradation. Although the γ-adaptin subunit of AP-1 has two distinct isoforms (γ1 and γ2), which may form two AP-1 complex variants, so far, only the importance of AP-1γ1 in MHC-I downregulation by Nef has been investigated. Here, we report that the AP-1γ2 isoform also participates in this process. We found that AP-1γ2 forms a complex with Nef and HLA-A2_CT and that this interaction depends on the Y320 residue in HLA-A2_CT and Nef expression. Moreover, Nef targets AP-1γ1 and AP-1γ2 to different compartments in T cells, and the depletion of either AP-1 variant impairs the Nef-mediated reduction of total endogenous HLA-A levels and rescues HLA-A levels on the cell surface. Finally, immunofluorescence and immunoelectron microscopy analyses reveal that the depletion of γ2 in T cells compromises both the Nef-mediated retention of HLA-A molecules in the TGN and targeting to multivesicular bodies/late endosomes. Altogether, these results show that in addition to AP-1γ1, Nef also requires the AP-1γ2 variant for efficient MHC-I downregulation.IMPORTANCE HIV-1 Nef mediates evasion of the host immune system by inhibiting MHC-I surface presentation of viral antigens. To achieve this goal, Nef modifies the intracellular trafficking of MHC-I molecules in several ways. Despite being the subject of intense study, the molecular details underlying these modifications are not yet fully understood. Adaptor protein 1 (AP-1) plays an essential role in the Nef-mediated downregulation of MHC-I molecules such as HLA-A in different cell types. However, AP-1 has two functionally distinct variants composed of either γ1 or γ2 subunit isoforms. Because previous studies on the role of AP-1 in MHC-I downregulation by Nef focused on AP-1γ1, an important open question is the participation of AP-1γ2 in this process. Here, we show that AP-1γ2 is also essential for Nef-mediated depletion of surface HLA-A molecules in T cells. Our results indicate that Nef hijacks AP-1γ2 to modify HLA-A intracellular transport, redirecting these proteins to lysosomes for degradation.
Asunto(s)
Regulación hacia Abajo , Regulación de la Expresión Génica , Antígeno HLA-A2/metabolismo , Factor de Transcripción AP-1/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Subunidades gamma de Complejo de Proteína Adaptadora/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Endosomas/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Microscopía Inmunoelectrónica , Transporte de Proteínas , Linfocitos T/inmunología , Linfocitos T/virología , Red trans-Golgi/metabolismoRESUMEN
Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1-/-) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.
Asunto(s)
Metaloendopeptidasas/metabolismo , Animales , Conducta Animal , Femenino , Masculino , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FenotipoRESUMEN
During human immunodeficiency virus (HIV) infection, Nef viral protein plays a crucial role in viral pathogenesis and progression of acquired immunodeficiency syndrome. Nef is expressed in the early stages of infection and alters the cellular environment increasing infectivity, viral replication, and the evasion of host immune response through several mechanisms. Nef has numerous functional domains that allow it to interact with a number of proteins, interfering with intracellular traffic. Among these proteins, human peroxisomal thioesterase 8, ACOT8, has been shown to be an important cellular partner of Nef. It has been suggested that this interaction may be involved in Nef-dependent endocytosis and also in the modulation of lipid composition in membrane rafts. However, the actual role of this interaction, as well as the mechanisms involved, has not yet been fully elucidated. In this review, we focused on the interplay between Nef and ACOT8 proteins, highlighting the possible physiological relevance in HIV infection.
Asunto(s)
Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Palmitoil-CoA Hidrolasa/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Biomarcadores , Humanos , Unión ProteicaRESUMEN
Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1-/-) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.
RESUMEN
It is well established that the immune system can identify and destroy neoplastic transformed cells in a process known as immunosurveillance. Most studies have focused on the classical major histocompatibility complex (MHC) class Ia molecules, which are known to play an important role on the presentation of tumor antigens to the immune system in order to activate a response against tumor cells. However, a larger family of non-classical MHC class Ib-related molecules has received less attention. In this mini-review, we discuss the role of class Ib murine Qa-2 and its proposed human HLA-G homolog on immunosurveillance during embryogenesis and cancer. Whereas, both HLA-G and Qa-2 are involved in immune tolerance in pregnancy, the current evidence suggests that they play opposite roles in cancer. HLA-G appears to promote tumor progression while Qa-2 acts as a tumor suppressor awaking the immune system to reject tumor cells, as suggested by studies on different cancer cell models, such as melanoma, lymphoma, lung carcinoma, and our own results in mammary carcinoma.
Asunto(s)
Antígenos HLA-G/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Neoplasias/inmunología , Animales , Autoinmunidad , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Progresión de la Enfermedad , Desarrollo Embrionario/inmunología , Femenino , Antígenos HLA-G/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Tolerancia Inmunológica , Vigilancia Inmunológica , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Neoplasias/patología , Embarazo , Especificidad de la EspecieRESUMEN
The immunoproteasome is a specific proteasome isoform composed of three subunits, termed ß1i, ß2i, and ß5i. Its proteolytic activity enhances the quantity and quality of peptides to be presented by major histocompatibility complex class I (MHC-I) molecules to CD8+ T cells. However, the role of the combined deficiency of the three immunoproteasome subunits in protective immunity against bacterial pathogens has not been investigated. In this study, we addressed the role of the immunoproteasome during infection by Brucella abortus, an intracellular bacterium that requires CD8+ T cell responses for the control of infection. Here, we demonstrate that immunoproteasome triple-knockout (TKO) mice were more susceptible to Brucella infection. This observed susceptibility was accompanied by reduced interferon gamma (IFN-γ) production by mouse CD4+ and CD8+ T lymphocytes. Moreover, the absence of the immunoproteasome had an impact on MHC-I surface expression and antigen presentation by dendritic cells. CD8+ T cell function, which plays a pivotal role in B. abortus immunity, also presented a partial impairment of granzyme B expression and, consequently, reduced cytotoxic activity. In conclusion, these results strongly suggest that immunoproteasome subunits are important components in host resistance to B. abortus infection by impacting both the magnitude and quality of CD8+ T cell responses.
Asunto(s)
Brucella abortus/fisiología , Brucelosis/enzimología , Linfocitos T CD8-positivos/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Animales , Brucella abortus/genética , Brucelosis/genética , Brucelosis/inmunología , Brucelosis/microbiología , Linfocitos T CD8-positivos/microbiología , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunidad , Interferón gamma/inmunología , Isoenzimas/genética , Isoenzimas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/genéticaRESUMEN
MHC-I molecules are involved in the antigenic presentation of cytosol-derived peptides to CD8T lymphocytes. In the nervous system, MHC-I expression is low to absent, occurring only during certain phases of development and aging or after injuries. The involvement of MHC-I in synaptic plasticity has been reported and, following lesion, astrocytes become reactive, limiting tissue damage. Such cells also attempt to restore homeostasis by secreting cytokines and neurotrophic factors. Moreover, astrocytes modulate synapse function, by taking up and releasing neurotransmitters and by limiting the synaptic cleft. Thus, the aim of the present study was to evaluate if astrocyte activation and reactivity are related to MHC I expression and if astrogliosis can be downregulated by silencing MHC-I mRNA synthesis. Given that, we evaluated astrocyte reactivity and synaptogenesis in co-cultures of astrocytes and spinal neurons under MHC-I RNA interference. For that, the MHC-I ß2-microglobulin subunit (ß2m) was knocked-down by siRNA in co-cultures (ß2m expression <60%, p<0.001). As measured by qRT-PCR, silencing of ß2m decreased expression of the astrocytic marker GFAP (<60%, p<0.001), as well as neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (TNF-α, IL-1, IL-6, IL-12 and IL-17). No significant changes in synaptic stability indicate that neuron-neuron interaction was preserved after ß2m silencing. Overall, the present data reinforce the importance of MHC-I expression for generation of astrogliosis, what may, in turn, become a target for future CNS/PNS therapies following injury.
Asunto(s)
Astrocitos/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Técnicas de Cocultivo , Citocinas/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Gliosis , Antígenos de Histocompatibilidad Clase I/genética , Ratones Endogámicos C57BL , Neuronas/metabolismo , Interferencia de ARN , ARN Mensajero/genética , Médula Espinal/citología , Médula Espinal/metabolismo , Sinapsis/fisiología , Microglobulina beta-2/genéticaRESUMEN
Natural killer (NK) cells are lymphocytes of the innate immune system that eliminate virally infected or malignantly transformed cells. NK cell function is regulated by diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 receptors control NK cell cytotoxicity by sensing major histocompatibility complex class I molecules (MHC-I) on target cells. Although crystal structures have been reported for Ly49/MHC-I complexes, the underlying binding mechanism has not been elucidated. Accordingly, we carried out thermodynamic and kinetic experiments on the interaction of four NK Ly49 receptors (Ly49G, Ly49H, Ly49I and Ly49P) with two MHC-I ligands (H-2Dd and H-2Dk). These Ly49s embrace the structural and functional diversity of the highly polymorphic Ly49 family. Combining surface plasmon resonance, fluorescence anisotropy and far-UV circular dichroism (CD), we determined that the best model to describe both inhibitory and activating Ly49/MHC-I interactions is one in which the two MHC-I binding sites of the Ly49 homodimer present similar binding constants for the two sites (â¼106â M-1) with a slightly positive co-operativity in some cases, and without far-UV CD observable conformational changes. Furthermore, Ly49/MHC-I interactions are diffusion-controlled and enthalpy-driven. These features stand in marked contrast with the activation-controlled and entropy-driven interaction of Ly49s with the viral immunoevasin m157, which is characterized by strong positive co-operativity and conformational selection. These differences are explained by the distinct structures of Ly49/MHC-I and Ly49/m157 complexes. Moreover, they reflect the opposing roles of NK cells to rapidly scan for virally infected cells and of viruses to escape detection using immunoevasins such as m157.
Asunto(s)
Antígeno de Histocompatibilidad H-2D/química , Complejos Multiproteicos/química , Subfamilia A de Receptores Similares a Lectina de Células NK/química , Animales , Antígeno de Histocompatibilidad H-2D/genética , Antígeno de Histocompatibilidad H-2D/inmunología , Cinética , Ratones , Ratones Endogámicos BALB C , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Subfamilia A de Receptores Similares a Lectina de Células NK/genética , Subfamilia A de Receptores Similares a Lectina de Células NK/inmunología , Resonancia por Plasmón de Superficie , TermodinámicaRESUMEN
Astrocytes are multifunctional glial cells that actively participate in synaptic plasticity in health and disease. Little is known about molecular interactions between neurons and glial cells that result in synaptic stability or elimination. In this sense, the main histocompatibility complex of class I (MHC I) has been shown to play a role in the synaptic plasticity process during development and after lesion of the CNS. MHC I levels in neurons appear to be influenced by astrocyte secreted molecules, which may generate endoplasmic reticulum stress. In vitro studies are of relevance since cell contact can be avoided by the use of astrocyte conditioned medium, allowing investigation of soluble factors isolated from cell direct interaction. Thus, we investigated synaptic preservation by synaptophysin and MHC I immunolabeling in PC12 neuron-like cells exposed to NG97 astroglioma conditioned medium (CM). For that, PC12 cells were cultured and differentiated into neuron-like profile with nerve growth factor. MHC I was induced with interferon beta treatment (IFN), and the effects were compared to PC12 exposure to NG97 CM. Overall, the results show that NG97 CM increases, more than IFN alone, the expression of MHC I, negatively influencing synaptic stability. This indicates that glial soluble factors influence synapse elimination, compatible to in vivo synaptic stripping process, in a cell contact independent fashion. In turn, our results indicate that deleterious effects of astroglioma are not only restricted to rapid growth ratio of the tumor, but also correlated with secretion of stress-related molecules that directly affect neuronal networks.
Asunto(s)
Astrocitos/metabolismo , Astrocitoma/química , Factores Biológicos/metabolismo , Medios de Cultivo Condicionados/química , Antígenos de Histocompatibilidad Clase I/metabolismo , Neuronas/metabolismo , Sinapsis/fisiología , Animales , Astrocitos/química , Factores Biológicos/química , Recuento de Células , Interferón beta/farmacología , Plasticidad Neuronal , Células PC12 , Ratas , Sinaptofisina/metabolismo , Regulación hacia ArribaRESUMEN
The Nef protein of the human immunodeficiency virus is a crucial determinant of viral pathogenesis and disease progression. Nef is abundantly expressed early in infection and is thought to optimize the cellular environment for viral replication. Nef controls expression levels of various cell surface molecules that play important roles in immunity and virus life cycle, by directly interfering with the itinerary of these proteins within the endocytic and late secretory pathways. To exert these functions, Nef physically interacts with host proteins that regulate protein trafficking. In recent years, considerable progress was made in identifying host-cell-interacting partners for Nef, and the molecular machinery used by Nef to interfere with protein trafficking has started to be unraveled. Here, we briefly review the knowledge gained and discuss new findings regarding the mechanisms by which Nef modifies the intracellular trafficking pathways to prevent antigen presentation, facilitate viral particle release and enhance the infectivity of HIV-1 virions.