Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Mol Cell ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39255795

RESUMEN

Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.

2.
Adv Sci (Weinh) ; : e2404365, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159143

RESUMEN

Ferroptosis is a novel form of cell death caused by the accumulation of lipid peroxides in an iron-dependent manner. However, the precise mechanism underlying the exploitation of ferroptosis by influenza A viruses (IAV) remains unclear. The results demonstrate that IAV promotes its own replication through ferritinophagy by sensitizing cells to ferroptosis, with hemagglutinin identified as a key trigger in this process. Hemagglutinin interacts with autophagic receptors nuclear receptor coactivator 4 (NCOA4) and tax1-binding protein 1 (TAX1BP1), facilitating the formation of ferritin-NCOA4 condensates and inducing ferritinophagy. Further investigation shows that hemagglutinin-induced ferritinophagy causes cellular lipid peroxidation, inhibits aggregation of mitochondrial antiviral signaling protein (MAVS), and suppresses the type I interferon response, thereby contributing to viral replication. Collectively, a novel mechanism by which IAV hemagglutinin induces ferritinophagy resulting in cellular lipid peroxidation, consequently impairing MAVS-mediated antiviral immunity, is revealed.

3.
J Gen Virol ; 105(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39167082

RESUMEN

Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes a highly common but mild infection characterized by distinctive and persistent papular skin lesions. These lesions can persist for long periods without an effective clearance response from the host. MCV, like all poxviruses, encodes multiple known immunosuppressive proteins which target innate immune signalling pathways involved in viral nucleic acid sensing, interferon production and inflammation which should trigger antiviral immunity leading to clearance. Two major families of transcription factors responsible for driving the immune response to viruses are the NF-κB and the interferon regulatory factor (IRF) families. While NF-κB broadly drives pro-inflammatory gene expression and IRFs chiefly drive interferon induction, both collaborate in transactivating many of the same genes in a concerted immune response to viral infection. Here, we report that the MCV protein MC089 specifically inhibits IRF activation from both DNA- and RNA-sensing pathways, making it the first characterized MCV inhibitor to selectively target IRF activation to date. MC089 interacts with proteins required for IRF activation, namely IKKε, TBKBP1 and NAP1. Additionally, MC089 targets RNA sensing by associating with the RNA-sensing adaptor protein mitochondrial antiviral-signalling protein on mitochondria. MC089 displays specificity in its inhibition of IRF3 activation by suppressing immunostimulatory nucleic acid-induced serine 396 phosphorylation without affecting the phosphorylation of serine 386. The selective interaction of MC089 with IRF-regulatory proteins and site-specific inhibition of IRF3 phosphorylation may offer a tool to provide novel insights into the biology of IRF3 regulation.


Asunto(s)
Factor 3 Regulador del Interferón , Virus del Molusco Contagioso , Proteínas Virales , Humanos , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Virus del Molusco Contagioso/inmunología , Virus del Molusco Contagioso/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/inmunología , Transducción de Señal , Inmunidad Innata , Células HEK293 , Interacciones Huésped-Patógeno/inmunología
4.
Proc Natl Acad Sci U S A ; 121(34): e2403392121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39141356

RESUMEN

Cysteine palmitoylation or S-palmitoylation catalyzed by the ZDHHC family of acyltransferases regulates the biological function of numerous mammalian proteins as well as viral proteins. However, understanding of the role of S-palmitoylation in antiviral immunity against RNA viruses remains very limited. The adaptor protein MAVS forms functionally essential prion-like aggregates upon activation by viral RNA-sensing RIG-I-like receptors. Here, we identify that MAVS, a C-terminal tail-anchored mitochondrial outer membrane protein, is S-palmitoylated by ZDHHC7 at Cys508, a residue adjacent to the tail-anchor transmembrane helix. Using superresolution microscopy and other biochemical techniques, we found that the mitochondrial localization of MAVS at resting state mainly depends on its transmembrane tail-anchor, without regulation by Cys508 S-palmitoylation. However, upon viral infection, MAVS S-palmitoylation stabilizes its aggregation on the mitochondrial outer membrane and thus promotes subsequent propagation of antiviral signaling. We further show that inhibition of MAVS S-palmitoylation increases the host susceptibility to RNA virus infection, highlighting the importance of S-palmitoylation in the antiviral innate immunity. Also, our results indicate ZDHHC7 as a potential therapeutic target for MAVS-related autoimmune diseases.


Asunto(s)
Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales , Inmunidad Innata , Lipoilación , Membranas Mitocondriales , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Membranas Mitocondriales/metabolismo , Aciltransferasas/metabolismo , Células HEK293 , Mitocondrias/metabolismo , Animales , Cisteína/metabolismo , Transducción de Señal/inmunología , Agregado de Proteínas
5.
Cell Rep ; 43(8): 114618, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39146181

RESUMEN

Adar null mutant mouse embryos die with aberrant double-stranded RNA (dsRNA)-driven interferon induction, and Adar Mavs double mutants, in which interferon induction is prevented, die soon after birth. Protein kinase R (Pkr) is aberrantly activated in Adar Mavs mouse pup intestines before death, intestinal crypt cells die, and intestinal villi are lost. Adar Mavs Eifak2 (Pkr) triple mutant mice rescue all defects and have long-term survival. Adenosine deaminase acting on RNA 1 (ADAR1) and PKR co-immunoprecipitate from cells, suggesting PKR inhibition by direct interaction. AlphaFold studies on an inhibitory PKR dsRNA binding domain (dsRBD)-kinase domain interaction before dsRNA binding and on an inhibitory ADAR1 dsRBD3-PKR kinase domain interaction on dsRNA provide a testable model of the inhibition. Wild-type or editing-inactive human ADAR1 expressed in A549 cells inhibits activation of endogenous PKR. ADAR1 dsRNA binding is required for, but is not sufficient for, PKR inhibition. Mutating the ADAR1 dsRBD3-PKR contact prevents co-immunoprecipitation, ADAR1 inhibition of PKR activity, and co-localization of ADAR1 and PKR in cells.


Asunto(s)
Adenosina Desaminasa , ARN Bicatenario , Proteínas de Unión al ARN , eIF-2 Quinasa , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , eIF-2 Quinasa/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Animales , Ratones , Unión Proteica , Activación Enzimática , Células A549 , Dominios Proteicos
6.
J Virol ; 98(9): e0103824, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39162481

RESUMEN

PHD1 is a member of the prolyl hydroxylase domain protein (PHD1-4) family, which plays a prominent role in the post-translational modification of its target proteins by hydroxylating proline residues. The best-characterized targets of PHD1 are hypoxia-inducible factor α (HIF-1α and HIF-2α), two master regulators of the hypoxia signaling pathway. In this study, we show that zebrafish phd1 positively regulates mavs-mediated antiviral innate immunity. Overexpression of phd1 enhances the cellular antiviral response. Consistently, zebrafish lacking phd1 are more susceptible to spring viremia of carp virus infection. Further assays indicate that phd1 interacts with mavs through the C-terminal transmembrane domain of mavs and promotes mavs aggregation. In addition, zebrafish phd1 attenuates K48-linked polyubiquitination of mavs, leading to stabilization of mavs. However, the enzymatic activity of phd1 is not required for phd1 to activate mavs. In conclusion, this study reveals a novel function of phd1 in the regulation of antiviral innate immunity.IMPORTANCEPHD1 is a key regulator of the hypoxia signaling pathway, but its role in antiviral innate immunity is largely unknown. In this study, we found that zebrafish phd1 enhances cellular antiviral responses in a hydroxylation-independent manner. Phd1 interacts with mavs through the C-terminal transmembrane domain of mavs and promotes mavs aggregation. In addition, phd1 attenuates K48-linked polyubiquitination of mavs, leading to stabilization of mavs. Zebrafish lacking phd1 are more susceptible to spring viremia of carp virus infection. These findings reveal a novel role for phd1 in the regulation of mavs-mediated antiviral innate immunity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Inmunidad Innata , Infecciones por Rhabdoviridae , Rhabdoviridae , Ubiquitinación , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Infecciones por Rhabdoviridae/inmunología , Hidroxilación , Humanos , Células HEK293 , Transducción de Señal , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Procesamiento Proteico-Postraduccional
7.
Autophagy ; : 1-18, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39193925

RESUMEN

TAX1BP1 is a selective macroautophagy/autophagy receptor that inhibits NFKB and RIGI-like receptor (RLR) signaling to prevent excessive inflammation and maintain homeostasis. Selective autophagy receptors such as SQSTM1/p62 and OPTN are phosphorylated by the kinase TBK1 to stimulate their selective autophagy function. However, it is unknown if TAX1BP1 is regulated by TBK1 or other kinases under basal conditions or during RNA virus infection. Here, we found that TBK1 and IKBKE/IKKi function redundantly to phosphorylate TAX1BP1 and regulate its autophagic turnover through canonical macroautophagy. TAX1BP1 phosphorylation promotes its localization to lysosomes, resulting in its degradation. Additionally, we found that during vesicular stomatitis virus infection, TAX1BP1 is targeted to lysosomes in an ATG8-family protein-independent manner. Furthermore, TAX1BP1 plays a critical role in the clearance of MAVS aggregates, and phosphorylation of TAX1BP1 controls its MAVS aggrephagy function. Together, our data support a model whereby TBK1 and IKBKE license TAX1BP1-selective autophagy function to inhibit MAVS and RLR signaling.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2: calcium binding and coiled-coil domain 2; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; IFN: interferon; IκB: inhibitor of nuclear factor kappa B; IKK: IκB kinase; IRF: interferon regulatory factor; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; NFKB: nuclear factor kappa B; OPTN: optineurin; Poly(I:C): polyinosinic-polycytidylic acid; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SDD-AGE: semi-denaturing detergent-agarose gel electrophoresis; SeV: Sendai virus; SLR: SQSTM1-like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF: TNF receptor associated factor; VSV: vesicular stomatitis virus; ZnF: zinc finger.

8.
Eur J Pharmacol ; 982: 176955, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39209098

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder characterized by fat accumulation in the liver. This leads to aggravated hepatocyte inflammation due to impaired mitochondrial function, mitochondrial double-stranded RNA (mt-dsRNA) release, elevated oxidative stress, and reactive oxygen species (ROS) production. MicroRNA-29a (miR-29a) is used to reduce hepatic fibrosis in cases of cholestatic liver damage and lessen the severity of non-alcoholic steatohepatitis in animal studies by influencing mitochondrial protein balance. However, the effectiveness of miR-29a in diminishing mt-dsRNA-induced exacerbation of NAFLD remains poorly understood, particularly in the context of a Western diet (WD). Our results have found that mice with increased miR-29a levels and fed a WD showed notably decreased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol, and low-density lipoprotein cholesterol levels. They also experienced less weight gain and lower final body and liver weights. In addition, overexpression of miR-29a reduced the severity of fibrosis, alleviated hepatic oxidative stress, misfolded protein aggregates, and the release of mt-dsRNA. Moreover, miR-29a attenuated the innate immune mitochondrial antiviral-signaling protein (MAVS) pathway response. In vitro, the research using HepG2 cells confirmed that miR-29a reduces MAVS expression and decreases the release of mt-dsRNA and superoxide initiated by palmitic acid (PA). Analysis of luciferase activity further established that the specific binding of miR-29a to the 3'UTR of MAVS led to a repression of its expression. In conclusion, these groundbreaking findings underscore the potential of miR-29a in improving the treatment of NAFLD and liver steatofibrosis by inhibiting the MAVS signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Transducción de Señal , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/metabolismo , Hígado/patología , Hígado/metabolismo , Hígado/efectos de los fármacos , Dieta Occidental/efectos adversos , Células Hep G2
9.
J Virol ; : e0104824, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212384

RESUMEN

Pseudorabies virus (PRV) utilizes multiple strategies to inhibit type I interferon (IFN-I) production and signaling to achieve innate immune evasion. Among several other functions, mitochondria serve as a crucial immune hub in the initiation of innate antiviral responses. It is currently unknown whether PRV inhibits innate immune responses by manipulating mitochondria. In this study, we found that PRV infection damages mitochondrial structure and function, as shown by mitochondrial membrane potential depolarization, reduction in mitochondrial numbers, and an imbalance in mitochondrial dynamics. In addition, PRV infection triggered PINK1-Parkin-mediated mitophagy to eliminate the impaired mitochondria, which resulted in a suppression of IFN-I production, thereby promoting viral replication. Furthermore, we found that mitophagy resulted in the degradation of the mitochondrial antiviral signaling protein, which is located on the mitochondrial outer membrane. In conclusion, the data of the current study indicate that PRV-induced mitophagy represents a previously uncharacterized PRV evasion mechanism of the IFN-I response, thereby promoting virus replication.IMPORTANCEPseudorabies virus (PRV), a pathogen that induces different disease symptoms and is often fatal in domestic animals and wildlife, has caused great economic losses to the swine industry. Since 2011, different PRV variant strains have emerged in Asia, against which current commercial vaccines may not always provide optimal protection in pigs. In addition, there are indications that some of these PRV variant strains may sporadically infect people. In the current study, we found that PRV infection causes mitochondria injury. This is associated with the induction of mitophagy to eliminate the damaged mitochondria, which results in suppressed antiviral interferon production and signaling. Hence, our study reveals a novel mechanism that is used by PRV to antagonize the antiviral host immune response, providing a theoretical basis that may contribute to the research toward and development of new vaccines and antiviral drugs.

10.
Cell Rep ; 43(9): 114687, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39213157

RESUMEN

Upon sensing cytosolic viral RNA, retinoic acid-inducible gene-I-like receptors (RLRs) interact with mitochondrial antiviral signaling proteins (MAVSs) to activate IRF3 and nuclear factor κB (NF-κB) signaling, initiating innate immune responses. Thus, RLR activation plays a vital role in the removal of invasive RNA viruses while maintaining immune homeostasis. However, inadequate or excessive activation of immunity can cause harm and can even lead to lethal consequences. In this study, we identify an E3 ligase, ankyrin repeat and IBR domain containing 1 (ANKIB1), which suppresses RLR signaling via MAVS. ANKIB1 binds to MAVS to enhance K48-linked polyubiquitination with K311R, causing proteasomal degradation of MAVS. Deficiency of ANKIB1 significantly increases the RLR-mediated production of type I interferon (IFN) along with pro-inflammatory factors. Consequently, ANKIB1 deficiency remarkably increases antiviral immunity and decreases viral replication in vivo. Therefore, we reveal that ANKIB1 restricts RLR-induced innate immune activation, indicating its potential role as a therapeutic target for viral infections.

11.
Autophagy ; : 1-18, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39189526

RESUMEN

Severe fever with thrombocytopenia syndrome is an emerging viral hemorrhagic fever caused by a tick-borne bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), with a high case fatality. We previously found that SFTSV nucleoprotein (NP) induces macroautophagy/autophagy to facilitate virus replication. However, the role of NP in antagonizing host innate immunity remains unclear. Mitophagy, a selected form of autophagy, eliminates damaged mitochondria to maintain mitochondrial homeostasis. Here, we demonstrate that SFTSV NP triggers mitophagy to degrade MAVS (mitochondrial antiviral signaling protein), thereby blocking MAVS-mediated antiviral signaling to escape the host immune response. Mechanistically, SFTSV NP translocates to mitochondria by interacting with TUFM (Tu translation elongation factor, mitochondrial), and mediates mitochondrial sequestration into phagophores through interacting with LC3, thus inducing mitophagy. Notably, the N-terminal LC3-interacting region (LIR) motif of NP is essential for mitophagy induction. Collectively, our results demonstrated that SFTSV NP serves as a novel virulence factor, inducing TUFM-mediated mitophagy to degrade MAVS and evade the host immune response.Abbreviation: 3-MA: 3-methyladenine; ACTB: actin beta; co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; DMSO: dimethyl sulfoxide; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GFP: green fluorescent protein; HTNV: Hantan virus; IAV: influenza A virus; IFN: interferon; LAMP1: lysosomal associated membraneprotein 1; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule associatedprotein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MOI: multiplicity of infection; MT-CO2/COXII: mitochondrially encoded cytochrome C oxidase II; NP: nucleoprotein; NSs: nonstructural proteins; poly(I:C): polyinosinic:polycytidylic acid; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SFTSV: severe fever withthrombocytopenia syndrome virus; TCID50: 50% tissue culture infectiousdose; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20:translocase of outer mitochondrial membrane 20; TUFM: Tu translation elongationfactor, mitochondrial.

12.
Front Microbiol ; 15: 1428233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957619

RESUMEN

African swine fever virus (ASFV) is notoriously known for evolving strategies to modulate IFN signaling. Despite lots of efforts, the underlying mechanisms have remained incompletely understood. This study concerns the regulatory role of viral inner membrane protein p17. We found that the ASFV p17 shows a preferential interaction with cGAS-STING-IRF3 pathway, but not the RIG-I-MAVS-NF-κB signaling, and can inhibit both poly(I:C)- and poly(A:T)-induced activation of IRF3, leading to attenuation of IFN-ß induction. Mechanistically, p17 interacts with STING and IRF3 and recruits host scaffold protein PR65A, a subunit of cellular phosphatase PP2A, to down-regulate the level of p-IRF3. Also, p17 targets STING for partial degradation via induction of cellular apoptosis that consequently inhibits activation of both p-TBK1 and p-IRF3. Thus, our findings reveal novel regulatory mechanisms for p17 modulation of IFN signaling and shed light on the intricate interplay between ASFV proteins and host immunity.

13.
Virus Res ; 347: 199431, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969013

RESUMEN

Usutu virus (USUV) is an emerging flavivirus that can infect birds and mammals. In humans, in severe cases, it may cause neuroinvasive disease. The innate immune system, and in particular the interferon response, functions as the important first line of defense against invading pathogens such as USUV. Many, if not all, viruses have developed mechanisms to suppress and/or evade the interferon response in order to facilitate their replication. The ability of USUV to antagonize the interferon response has so far remained largely unexplored. Using dual-luciferase reporter assays we observed that multiple of the USUV nonstructural (NS) proteins were involved in suppressing IFN-ß production and signaling. In particular NS4A was very effective at suppressing IFN-ß production. We found that NS4A interacted with the mitochondrial antiviral signaling protein (MAVS) and thereby blocked its interaction with melanoma differentiation-associated protein 5 (MDA5), resulting in reduced IFN-ß production. The TM1 domain of NS4A was found to be essential for binding to MAVS. By screening a panel of flavivirus NS4A proteins we found that the interaction of NS4A with MAVS is conserved among flaviviruses. The increased understanding of the role of NS4A in flavivirus immune evasion could aid the development of vaccines and therapeutic strategies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Flavivirus , Helicasa Inducida por Interferón IFIH1 , Interferón beta , Transducción de Señal , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Flavivirus/inmunología , Flavivirus/genética , Flavivirus/fisiología , Interferón beta/genética , Interferón beta/inmunología , Interferón beta/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/inmunología , Células HEK293 , Evasión Inmune , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/virología , Interacciones Huésped-Patógeno/inmunología , Unión Proteica , Inmunidad Innata , Animales
14.
Vet Res ; 55(1): 84, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965634

RESUMEN

Pseudorabies virus (PRV) has evolved multiple strategies to evade host antiviral responses to benefit virus replication and establish persistent infection. Recently, tripartite motif 26 (TRIM26), a TRIM family protein, has been shown to be involved in a broad range of biological processes involved in innate immunity, especially in regulating viral infection. Herein, we found that the expression of TRIM26 was significantly induced after PRV infection. Surprisingly, the overexpression of TRIM26 promoted PRV production, while the depletion of this protein inhibited virus replication, suggesting that TRIM26 could positively regulate PRV infection. Further analysis revealed that TRIM26 negatively regulates the innate immune response by targeting the RIG-I-triggered type I interferon signalling pathway. TRIM26 was physically associated with MAVS independent of viral infection and reduced MAVS expression. Mechanistically, we found that NDP52 interacted with both TRIM26 and MAVS and that TRIM26-induced MAVS degradation was almost entirely blocked in NDP52-knockdown cells, demonstrating that TRIM26 degrades MAVS through NDP52-mediated selective autophagy. Our results reveal a novel mechanism by which PRV escapes host antiviral innate immunity and provide insights into the crosstalk among virus infection, autophagy, and the innate immune response.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Autofagia , Inmunidad Innata , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Porcinos , Replicación Viral , Humanos , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
15.
Viruses ; 16(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39066323

RESUMEN

Mitochondria are key orchestrators of antiviral responses that serve as platforms for the assembly and activation of innate immune-signaling complexes. In response to viral infection, mitochondria can be triggered to release immune-stimulatory molecules that can boost interferon production. These same molecules can be released by damaged mitochondria to induce pathogenic, antiviral-like immune responses in the absence of infection. This review explores how members of the tripartite motif-containing (TRIM) protein family, which are recognized for their roles in antiviral defense, regulate mitochondria-based innate immune activation. In antiviral defense, TRIMs are essential components of immune signal transduction pathways and function as directly acting viral restriction factors. TRIMs carry out conceptually similar activities when controlling immune activation related to mitochondria. First, they modulate immune-signaling pathways that can be activated by mitochondrial molecules. Second, they co-ordinate the direct removal of mitochondria and associated immune-activating factors through mitophagy. These insights broaden the scope of TRIM actions in innate immunity and may implicate TRIMs in diseases associated with mitochondria-derived inflammation.


Asunto(s)
Inmunidad Innata , Mitocondrias , Transducción de Señal , Proteínas de Motivos Tripartitos , Humanos , Mitocondrias/metabolismo , Mitocondrias/inmunología , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/inmunología , Animales , Virosis/inmunología , Mitofagia
16.
Cells ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38995016

RESUMEN

Classical swine fever (CSF) is caused by the classical swine fever virus (CSFV), which poses a threat to swine production. The activation of host innate immunity through linker proteins such as tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) is crucial for the induction of the NF-κB pathway. Recent research has revealed the involvement of mitochondrial antiviral-signaling protein (MAVS) in the interaction with TRAF2, 3, 5, and 6 to activate both the NF-κB and IRF3 pathways. This study revealed that CSFV infection led to the upregulation of TRAF1 mRNA and protein levels; moreover, TRAF1 overexpression inhibited CSFV replication, while TRAF1 knockdown promoted replication, highlighting its importance in the host response to CSFV infection. Additionally, the expression of RIG-I, MAVS, TRAF1, IRF1, and ISG15 were detected in PK-15 cells infected with CSFV, revealing that TRAF1 plays a role in regulating IRF1 and ISG15 within the RIG-I pathway. Furthermore, Co-IP, GST pull-down, and IFA analyses demonstrated that TRAF1 interacted with MAVS and co-localized in the cytoplasm during CSFV infection. Ultimately, TRAF1 acted as a novel member of the TRAF family, bound to MAVS as a linker molecule, and functioned as a mediator downstream of MAVS in the RIG-I/MAVS pathway against CSFV replication.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Virus de la Fiebre Porcina Clásica , Factor 1 Regulador del Interferón , Factor 1 Asociado a Receptor de TNF , Regulación hacia Arriba , Animales , Virus de la Fiebre Porcina Clásica/fisiología , Factor 1 Asociado a Receptor de TNF/metabolismo , Factor 1 Asociado a Receptor de TNF/genética , Porcinos , Regulación hacia Arriba/genética , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Transducción de Señal , Peste Porcina Clásica/virología , Peste Porcina Clásica/metabolismo , Peste Porcina Clásica/genética , Replicación Viral , Línea Celular , Citocinas/metabolismo , Unión Proteica
17.
Biomimetics (Basel) ; 9(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921193

RESUMEN

Deployable hind wings of beetles led to a bio-inspired idea to design deployable micro aerial vehicles (MAVs) to meet the requirement of miniaturization. In this paper, a bionic deployable wing (BD-W) model is designed based on the folding mechanism and elliptical wing vein structure of the Protaetia brevitarsis hindwing, and its structural static and aerodynamic characteristics are analyzed by using ANSYS Workbench. Finally, the 3D-printed bionic deployable wing was tested in a wind tunnel and compared with simulation experiments to explore the effects of different incoming velocity, flapping frequency, and angle of attack on its aerodynamic characteristics, which resulted in the optimal combination of the tested parameters, among which, the incoming velocity is 3 m/s, the flapping frequency is 10 Hz, the angle of attack is 15°, and the lift-to-drag ratio of this parameter combination is 4.91. The results provide a theoretical basis and technical reference for the further development of bionic flapping wing for MAV applications.

18.
Biomed Pharmacother ; 176: 116846, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850648

RESUMEN

Ubiquitination is a key mechanism for post-translational protein modification, affecting protein localization, metabolism, degradation and various cellular physiological processes. Dysregulation of ubiquitination is associated with the pathogenesis of various diseases, such as tumors and cardiovascular diseases, making it a primary area of interest in biochemical research and drug development endeavors. E3 ubiquitin ligases play a pivotal role in modulating the ubiquitination of substrate proteins through their unique recognition functions. TRIM31, a member of the TRIM family of E3 ubiquitin ligases, is aberrantly expressed in different pathophysiological conditions. The biological function of TRIM31 is associated with the occurrence and development of diverse diseases. TRIM31 has been demonstrated to inhibit inflammation by promoting ubiquitin-proteasome-mediated degradation of the sensing protein NLRP3 in the inflammasome. TRIM31 mediates ubiquitination of MAVS, inducing the formation of prion-like aggregates, and triggering innate antiviral immune responses. TRIM31 is also implicated in tumor pathophysiology through its ability to promote ubiquitination of the tumor suppressor protein p53. These findings indicate that TRIM31 is a potential therapeutic target, and subsequent in-depth research of TRIM31 is anticipated to provide information on its clinical application in therapy.


Asunto(s)
Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Terapia Molecular Dirigida
19.
Front Immunol ; 15: 1401086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903507

RESUMEN

The mitochondrial anti-viral signaling (MAVS) protein is an intermediary adaptor protein of retinoic acid-inducible gene-1 (RIG-I) like receptor (RLR) signaling, which activates the transcription factor interferon (IFN) regulatory factor 3 (IRF3) and NF-kB to produce type I IFNs. MAVS expression has been reported in different fish species, but few studies have shown its functional role in anti-viral responses to fish viruses. In this study, we used the transcription activator-like effector nuclease (TALEN) as a gene editing tool to disrupt the function of MAVS in Chinook salmon (Oncorhynchus tshawytscha) embryonic cells (CHSE) to understand its role in induction of interferon I responses to infections with the (+) RNA virus salmonid alphavirus subtype 3 (SAV-3), and the dsRNA virus infectious pancreatic necrosis virus (IPNV) infection. A MAVS-disrupted CHSE clone with a 7-aa polypeptide (GVFVSRV) deletion mutation at the N-terminal of the CARD domain infected with SAV-3 resulted in significantly lower expression of IRF3, IFNa, and ISGs and increased viral titer (1.5 log10) compared to wild-type. In contrast, the IPNV titer in MAVS-disrupted cells was not different from the wild-type. Furthermore, overexpression of salmon MAVS in MAVS-disrupted CHSE cells rescued the impaired type I IFN-mediated anti-viral effect against SAV-3.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Infecciones por Alphavirus , Alphavirus , Enfermedades de los Peces , Virus de la Necrosis Pancreática Infecciosa , Transducción de Señal , Replicación Viral , Animales , Virus de la Necrosis Pancreática Infecciosa/fisiología , Virus de la Necrosis Pancreática Infecciosa/inmunología , Alphavirus/inmunología , Alphavirus/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/virología , Salmón/virología , Salmón/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/veterinaria , Infecciones por Birnaviridae/virología
20.
Pharmacol Res ; 206: 107271, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906202

RESUMEN

Colorectal cancer is the second most prevalent and deadly cancer worldwide. The emergence of immune checkpoint therapy has provided a revolutionary strategy for the treatment of solid tumors. However, less than 5 % of colorectal cancer patients respond to immune checkpoint therapy. Thus, it is of great scientific significance to develop "potentiators" for immune checkpoint therapy. In this study, we found that knocking down different DNMT and HDAC isoforms could increase the expression of IFNs in colorectal cancer cells, which can enhance the effectiveness of immune checkpoint therapy. Therefore, the combined inhibition of DNMT and HDAC cloud synergistically enhance the effect of immunotherapy. We found that dual DNMT and HDAC inhibitors C02S could inhibit tumor growth in immunocompetent mice but not in immunocompromised nude mice, which indicates that C02S exerts its antitumor effects through the immune system. Mechanistically, C02S could increase the expression of ERVs, which generated the intracellular levels of dsRNA in tumor cells, and then promotes the expression of IFNs through the RIG-I/MDA5-MAVS signaling pathway. Moreover, C02S increased the immune infiltration of DCs and T cells in microenvironment, and enhanced the efficacy of anti-PD-L1 therapy in MC38 and CT26 mice model. These results confirmed that C02S can activate IFNs through the RIG-I/MDA5-MAVS signaling pathway, remodel the tumor immune microenvironment and enhance the efficacy of immune checkpoint therapy, which provides new evidence and solutions for the development of "potentiator" for colorectal cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Inhibidores de Puntos de Control Inmunológico , Microambiente Tumoral , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Humanos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ratones , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones Desnudos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Femenino , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA