Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Plant Cell Environ ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166350

RESUMEN

The mitogen-activated protein kinase (MAPK) cascade (MAPKKK-MAPKK-MAPK) plays a critical role in biotic and abiotic stress responses and abscisic acid (ABA) signalling. A previous study has shown that the ABA-activated MKK1-MPK1 cascade is essential in regulating ABA response and stress tolerance in rice. However, the specific MAPKKK upstream of the MKK1-MPK1 cascade in ABA signalling remains unknown. Here, we identified that MAPKKK28, a previously uncharacterized member of the rice MEKK family, is involved in regulating ABA responses, including seed germination, root growth, stomatal closure, and the tolerance to oxidative stress and osmotic stress. We found that MAPKKK28 directly interacts with and phosphorylates MKK1. Further analysis indicated that the activation of both MKK1 and MPK1 depends on MAPKKK28 in ABA signalling. Genetic analysis revealed that MAPKKK28 functions upstream of the MKK1-MPK1 cascade to positively regulate ABA responses and enhance tolerance to oxidative and osmotic stress. These results not only reveal a new complete MAPK cascade in plants but also uncover its importance in ABA signalling.

2.
Proc Natl Acad Sci U S A ; 121(28): e2404887121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968100

RESUMEN

The timing of seed germination is controlled by the combination of internal dormancy and external factors. Temperature is a major environmental factor for seed germination. The permissive temperature range for germination is narrow in dormant seeds and expands during after-ripening (AR) (dormancy release). Quantitative trait loci analyses of preharvest sprouting in cereals have revealed that MKK3, a mitogen-activated protein kinase (MAPK) cascade protein, is a negative regulator of grain dormancy. Here, we show that the MAPKKK19/20-MKK3-MPK1/2/7/14 cascade modulates the germination temperature range in Arabidopsis seeds by elevating the germinability of the seeds at sub- and supraoptimal temperatures. The expression of MAPKKK19 and MAPKKK20 is induced around optimal temperature for germination in after-ripened seeds but repressed in dormant seeds. MPK7 activation depends on the expression levels of MAPKKK19/20, with expression occurring under conditions permissive for germination. Abscisic acid (ABA) and gibberellin (GA) are two major phytohormones which are involved in germination control. Activation of the MKK3 cascade represses ABA biosynthesis enzyme gene expression and induces expression of ABA catabolic enzyme and GA biosynthesis enzyme genes, resulting in expansion of the germinable temperature range. Our data demonstrate that the MKK3 cascade integrates temperature and AR signals to phytohormone metabolism and seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 3/genética , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/genética , Transducción de Señal , Temperatura
3.
Mol Biol Rep ; 51(1): 602, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698158

RESUMEN

BACKGROUND: Low-temperature severely limits the growth and development of Camellia oleifera (C. oleifera). The mitogen-activated protein kinase (MAPK) cascade plays a key role in the response to cold stress. METHODS AND RESULTS: Our study aims to identify MAPK cascade genes in C. oleifera and reveal their roles in response to cold stress. In our study, we systematically identified and analyzed the MAPK cascade gene families of C. oleifera, including their physical and chemical properties, conserved motifs, and multiple sequence alignments. In addition, we characterized the interacting networks of MAPKK kinase (MAPKKK)-MAPK kinase (MAPKK)-MAPK in C. oleifera. The molecular mechanism of cold stress resistance of MAPK cascade genes in wild C. oleifera was analyzed by differential gene expression and real-time quantitative reverse transcription-PCR (qRT-PCR). CONCLUSION: In this study, 21 MAPKs, 4 MAPKKs and 55 MAPKKKs genes were identified in the leaf transcriptome of C. oleifera. According to the phylogenetic results, MAPKs were divided into 4 groups (A, B, C and D), MAPKKs were divided into 3 groups (A, B and D), and MAPKKKs were divided into 2 groups (MEKK and Raf). Motif analysis showed that the motifs in each subfamily were conserved, and most of the motifs in the same subfamily were basically the same. The protein interaction network based on Arabidopsis thaliana (A. thaliana) homologs revealed that MAPK, MAPKK, and MAPKKK genes were widely involved in C. oleifera growth and development and in responses to biotic and abiotic stresses. Gene expression analysis revealed that the CoMAPKKK5/CoMAPKKK43/CoMAPKKK49-CoMAPKK4-CoMAPK8 module may play a key role in the cold stress resistance of wild C. oleifera at a high-elevation site in Lu Mountain (LSG). This study can facilitate the mining and utilization of genetic resources of C. oleifera with low-temperature tolerance.


Asunto(s)
Camellia , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Respuesta al Choque por Frío/genética , Camellia/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Frío , Transcriptoma/genética , Familia de Multigenes , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Perfilación de la Expresión Génica/métodos , Hojas de la Planta/genética
4.
J Integr Plant Biol ; 66(7): 1500-1516, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751028

RESUMEN

Tapetum, the innermost layer of the anther wall, provides essential nutrients and materials for pollen development. Timely degradation of anther tapetal cells is a prerequisite for normal pollen development in flowering plants. Tapetal cells facilitate male gametogenesis by providing cellular contents after highly coordinated programmed cell death (PCD). Tapetal development is regulated by a transcriptional network. However, the signaling pathway(s) involved in this process are poorly understood. In this study, we report that a mitogen-activated protein kinase (MAPK) cascade composed of OsYDA1/OsYDA2-OsMKK4-OsMPK6 plays an important role in tapetal development and male gametophyte fertility. Loss of function of this MAPK cascade leads to anther indehiscence, enlarged tapetum, and aborted pollen grains. Tapetal cells in osmkk4 and osmpk6 mutants exhibit an increased presence of lipid body-like structures within the cytoplasm, which is accompanied by a delayed occurrence of PCD. Expression of a constitutively active version of OsMPK6 (CA-OsMPK6) can rescue the pollen defects in osmkk4 mutants, confirming that OsMPK6 functions downstream of OsMKK4 in this pathway. Genetic crosses also demonstrated that the MAPK cascade sporophyticly regulates pollen development. Our study reveals a novel function of rice MAPK cascade in plant male reproductive biology.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos , Oryza , Proteínas de Plantas , Polen , Polen/genética , Polen/crecimiento & desarrollo , Oryza/genética , Oryza/enzimología , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Sistema de Señalización de MAP Quinasas , Fertilidad/fisiología , Fertilidad/genética , Mutación/genética , Flores/genética , Flores/fisiología
5.
Crit Rev Biotechnol ; : 1-18, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797669

RESUMEN

Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.

6.
Mol Brain ; 17(1): 14, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38444039

RESUMEN

Synucleinopathies refer to a group of disorders characterized by SNCA/α-synuclein (α-Syn)-containing cytoplasmic inclusions and neuronal cell loss in the nervous system including the cortex, a common feature being cognitive impairment. Still, the molecular pathogenesis of cognitive decline remains poorly understood, hampering the development of effective treatments. Here, we generated induced pluripotent stem cells (iPSCs) derived from familial Parkinson's disease (PD) patients carrying SNCA A53T mutation, differentiating them into cortical neurons by a direct conversion method. Patient iPSCs-derived cortical neurons harboring mutant α-Syn exhibited increased α-Syn-positive aggregates, shorter neurites, and time-dependent vulnerability. Furthermore, RNA-sequencing analysis, followed by biochemical validation, identified the activation of the ERK1/2 and JNK cascades in cortical neurons with SNCA A53T mutation. This result was consistent with a reverted phenotype of neuronal death in cortical neurons when treated with ERK1/2 and JNK inhibitors, respectively. Our findings emphasize the role of ERK1/2 and JNK cascades in the vulnerability of cortical neurons in synucleinopathies, and they could pave the way toward therapeutic advancements for synucleinopathies.


Asunto(s)
Sinucleinopatías , alfa-Sinucleína , Humanos , Sistema de Señalización de MAP Quinasas , Neuronas , Neuritas
7.
New Phytol ; 241(5): 2158-2175, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38098211

RESUMEN

Rice OsBBX17 encodes a B-box zinc finger transcription factor in which the N-terminal B-box structural domain interacts with OsMPK1. In addition, it directly binds to the G-box of OsHAK2 and OsHAK7 promoters and represses their transcription. Under saline-alkaline conditions, the expression of OsBBX17 was inhibited. Meanwhile, activation of the OsMPK1-mediated mitogen-activated protein kinase cascade pathway caused OsMPK1 to interact with OsBBX17 and phosphorylate OsBBX17 at the Thr-95 site. It reduced OsBBX17 DNA-binding activity and enhanced saline-alkaline tolerance by deregulating transcriptional repression of OsHAK2 and OsHAK7. Genetic assays showed that the osbbx17-KO had an excellent saline-alkaline tolerance, whereas the opposite was in OsBBX17-OE. In addition, overexpression of OsMPK1 significantly improved saline-alkaline tolerance, but knockout of OsMPK1 caused an increased sensitivity. Further overexpression of OsBBX17 in the osmpk1-KO caused extreme saline-alkaline sensitivity, even a quick death. OsBBX17 was validated in saline-alkaline tolerance from two independent aspects, transcriptional level and post-translational protein modification, unveiling a mechanistic framework by which OsMPK1-mediated phosphorylation of OsBBX17 regulates the transcription of OsHAK2 and OsHAK7 to enhance the Na+ /K+ homeostasis, which partially explains light on the molecular mechanisms of rice responds to saline-alkaline stress via B-box transcription factors for the genetic engineering of saline-alkaline tolerant crops.


Asunto(s)
Oryza , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Oryza/metabolismo , Fosforilación , Tolerancia a la Sal/genética , Sistema de Señalización de MAP Quinasas , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069316

RESUMEN

One of the most productive ecosystems in the world, mangroves are susceptible to cold stress. However, there is currently insufficient knowledge of the adaptation mechanisms of mangrove plants in response to chilling stress. This study conducted a comparative analysis of transcriptomics and metabolomics to investigate the adaptive responses of Kandelia obovata (chilling-tolerant) and Avicennia marina (chilling-sensitive) to 5 °C. The transcriptomics results revealed that differentially expressed genes (DEGs) were mostly enriched in signal transduction, photosynthesis-related pathways, and phenylpropanoid biosynthesis. The expression pattern of genes involved in photosynthesis-related pathways in A. marina presented a downregulation of most DEGs, which correlated with the decrease in total chlorophyll content. In the susceptible A. marina, all DEGs encoding mitogen-activated protein kinase were upregulated. Phenylpropanoid-related genes were observed to be highly induced in K. obovata. Additionally, several metabolites, such as 4-aminobutyric acid, exhibited higher levels in K. obovata than in A. marina, suggesting that chilling-tolerant varieties regulated more metabolites in response to chilling. The investigation defined the inherent distinctions between K. obovata and A. marina in terms of signal transduction gene expression, as well as phenylpropanoid and flavonoid biosynthesis, during exposure to low temperatures.


Asunto(s)
Avicennia , Rhizophoraceae , Avicennia/genética , Avicennia/metabolismo , Rhizophoraceae/genética , Plantones/metabolismo , Ecosistema , Perfilación de la Expresión Génica
10.
Plant Signal Behav ; 18(1): 2246228, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37585594

RESUMEN

The mitogen-activated protein kinase (MAPK) cascade pathway is a highly conserved plant cell signaling pathway that plays an important role in plant growth and development and stress response. Currently, MAPK cascade genes have been identified and reported in a variety of plants including Arabidopsis thaliana, Oryza sativa, and Triticum aestivum, but have not been identified in foxtail millet (Setaria italica). In this study, a total of 93 MAPK cascade genes, including 15 SiMAPKs, 10 SiMAPKKs and 68 SiMAPKKKs genes, were identified by genome-wide analysis of foxtail millet, and these genes were distributed on nine chromosomes of foxtail millet. Using phylogenetic analysis, we divided the SiMAPKs and SiMAPKKs into four subgroups, respectively, and the SiMAPKKKs into three subgroups (Raf, ZIK, and MEKK). Whole-genome duplication analysis revealed that there are 14 duplication pairs in the MAPK cascade family in foxtail millet, and they are expanded by segmental replication events. Results from quantitative real-time PCR (qRT-PCR) revealed that the expression levels of most SiMAPKs and SiMAPKKs were changed under both exogenous hormone and abiotic stress treatments, with SiMAPK3 and SiMAPKK4-2 being induced under almost all treatments, while the expression of SiMAPKK5 was repressed. In a nutshell, this study will shed some light on the evolution of MAPK cascade genes and the functional mechanisms underlying MAPK cascade genes in response to hormonal and abiotic stress signaling pathways in foxtail millet (Setaria italica).


Asunto(s)
Arabidopsis , Setaria (Planta) , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Estrés Fisiológico/genética , Familia de Multigenes , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
11.
J Plant Physiol ; 287: 154049, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37423042

RESUMEN

Mycotoxin contamination of foods and feeds is a global problem. Fusaric acid (FA) is a mycotoxin produced by Fusarium species that are phytopathogens of many economically important plant species. FA can cause programmed cell death (PCD) in several plant species. However, the signaling mechanisms of FA-induced cell death in plants are largely unknown. Here we showed that FA induced cell death in the model plant Arabidopsis thaliana, and MPK3/6 phosphorylation was triggered by FA in Arabidopsis. Both the acid nature and the radical of FA are required for its activity in inducing MPK3/6 activation and cell death. Expression of the constitutively active MKK5DD resulted in the activation of MPK3/6 and promoted the FA-induced cell death. Our work demonstrates that the MKK5-MPK3/6 cascade positively regulates FA-induced cell death in Arabidopsis and also provides insight into the mechanisms of how cell death is induced by FA in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Micotoxinas , Arabidopsis/metabolismo , Ácido Fusárico/farmacología , Ácido Fusárico/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Micotoxinas/metabolismo , Muerte Celular
12.
FEBS Open Bio ; 13(7): 1177-1192, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37157227

RESUMEN

The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well-conserved intermediate, the Mitogen-Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the "hourglass conundrum", where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross-pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos , Animales , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Transducción de Señal , Saccharomyces cerevisiae/metabolismo
13.
Plant Cell Environ ; 46(8): 2277-2295, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157977

RESUMEN

The mitogen-activated protein kinase (MAPK) pathway is an important signalling event associated with every aspect of plant growth, development, yield, abiotic and biotic stress adaptation. Being a central metabolic pathway, it is a vital target for manipulation for crop improvement. In this review, we have summarised recent advancements in understanding involvement of MAPK signalling in modulating abiotic and biotic stress tolerance, architecture and yield of plants. MAPK signalling cross talks with reactive oxygen species (ROS) and abscisic acid (ABA) signalling events in bringing about abiotic stress adaptation in plants. The intricate involvement of MAPK pathway with plant's pathogen defence ability has also been identified. Further, recent research findings point towards participation of MAPK signalling in shaping plant architecture and yield. These make MAPK pathway an important target for crop improvement and we discuss here various strategies to tweak MAPK signalling components for designing future crops with improved physiology and phenotypes.


Asunto(s)
Ácido Abscísico , Proteínas Quinasas Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ácido Abscísico/metabolismo , Transducción de Señal , Estrés Fisiológico/genética , Productos Agrícolas/metabolismo
14.
Front Plant Sci ; 14: 1146663, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895874

RESUMEN

Introduction: Cold stress is a global common problem that significantly limits plant development and geographical distribution. Plants respond to low temperature stress by evolving interrelated regulatory pathways to respond and adapt to their environment in a timely manner. Rhodoendron chrysanthum Pall. (R. chrysanthum) is a perennial evergreen dwarf shrub used for adornment and medicine that thrives in the Changbai Mountains at high elevations and subfreezing conditions. Methods: In this study, a comprehensive investigation of cold tolerance (4°C, 12h) in R. chrysanthum leaves under cold using physiological combined with transcriptomic and proteomic approaches. Results: There were 12,261 differentially expressed genes (DEGs) and 360 differentially expressed proteins (DEPs) in the low temperature (LT) and normal treatment (Control). Integrated transcriptomic and proteomic analyses showed that MAPK cascade, ABA biosynthesis and signaling, plant-pathogen interaction, linoleic acid metabolism and glycerophospholipid metabolism were significantly enriched in response to cold stress of R. chrysanthum leaves. Discussion: We analyzed the involvement of ABA biosynthesis and signaling, MAPK cascade, and Ca2+ signaling, that may jointly respond to stomatal closure, chlorophyll degradation, and ROS homeostasis under low temperature stress. These results propose an integrated regulatory network of ABA, MAPK cascade and Ca2+ signaling comodulating the cold stress in R. chrysanthum, which will provide some insights to elucidate the molecular mechanisms of cold tolerance in plants.

15.
Microbiol Spectr ; : e0438122, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927000

RESUMEN

Drought stress has a negative impact on plant growth and production. Arbuscular mycorrhizal (AM) fungi, which establish symbioses with most terrestrial vascular plant species, play important roles in improving host plant mineral nutrient acquisition and resistance to drought. However, the physiological and molecular regulation mechanisms occurring in mycorrhizal Eucalyptus grandis coping with drought stress remain unclear. Here, we studied the physiological changes and mitogen-activated protein kinase (MAPK) cascade gene expression profiles of E. grandis associated with AM fungi under drought stress. The results showed that colonization by AM fungi significantly enhanced plant growth, with higher plant biomass, shoot height, root length, and relative water content (RWC) under drought conditions. Mycorrhizal plants had lower levels of accumulation of proline, malondialdehyde (MDA), H2O2, and O2·- than seedlings not colonized with AM fungi. In addition, mycorrhizal E. grandis also had higher peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities under drought conditions, improving the antioxidant system response. Eighteen MAPK cascade genes were isolated from E. grandis, and the expression levels of the MAPK cascade genes were positively induced by symbiosis with AM fungi, which was correlated with changes in the proline, MDA, H2O2, and O2·- contents and POD, SOD, and CAT activities. In summary, our results showed that AM symbiosis enhances E. grandis drought tolerance by regulating plant antioxidation abilities and MAPK cascade gene expression. IMPORTANCE Arbuscular mycorrhizal (AM) fungi play an important role in improving plant growth and development under drought stress. The MAPK cascade may regulate many physiological and biochemical processes in plants in response to drought stress. Previous studies have shown that there is a complex regulatory network between the plant MAPK cascade and drought stress. However, the relationship between the E. grandis MAPK cascade and AM symbiosis in coping with drought remains to be investigated. Our results suggest that AM fungi could improve plant drought tolerance mainly by improving the antioxidant ability to protect plants from reactive oxygen species (ROS) and alleviate oxidative stress damage. The expression of the MAPK cascade genes was induced in mycorrhizal E. grandis seedlings under drought stress. This study revealed that MAPK cascade regulation is of special significance for improving the drought tolerance of E. grandis. This study provides a reference for improving mycorrhizal seedling cultivation under stress.

16.
Int J Biol Macromol ; 233: 123543, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36740124

RESUMEN

Mitogen-activated protein kinase (MAPK) cascade signaling pathway plays pivotal roles in various plant biological processes. However, systematic study of MAPK cascade gene families is yet to be conducted in lotus. Herein, 198 putative MAPK genes, including 152 MAP3Ks, 15 MKKs, and 31 MPKs genes were identified in Nelumbo. Segmental duplication was identified as the predominant factor driving MAPK cascade gene family expansion in lotus. MAPK cascade genes in N. nucifera and N. lutea shared high degree of sequence homologies, with 84, 9, and 19 homologous MAP3K, MKK, and MPK gene pairs being detected between the two species, respectively, with most genes predominantly undergoing purifying selection. Gene expression profiling indicated that NnMAPK cascade genes were extensively involved in plant development and submergence stress response. Co-expression analysis revealed potential interaction between transcription factors (TFs) and NnMAPK cascade genes in various biological processes. NnMKK showed predicted interactions with multiple NnMAP3K or NnMPK proteins, which suggested that functional diversity of MAPK cascade genes could be as a result of their complex protein interaction mechanisms. This first systematic analysis of MAPK cascade families in lotus provides deeper insights into their evolutionary dynamics and functional properties, which potentially could be crucial for lotus genetic improvement.


Asunto(s)
Nelumbo , Nelumbo/genética , Genoma de Planta/genética , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Familia de Multigenes , Filogenia , Regulación de la Expresión Génica de las Plantas
17.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36678620

RESUMEN

Multiple myeloma is a hematological malignancy characterized by the unrestricted proliferation of plasma cells that secrete monoclonal immunoglobulins in the bone marrow. Alpha-momorcharin (α-MMC) is a type I ribosome-inactivating protein extracted from the seeds of the edible plant Momordica charantia L., which has a variety of biological activities. This study aimed to investigate the inhibitory effect of α-MMC on the proliferation of multiple myeloma MM.1S cells and the molecular mechanism of MM.1S cell death induced through the activation of cell signal transduction pathways. The cell counting kit-8 (CCK-8) assay was used to determine the inhibitory effect of α-MMC on the proliferation of MM.1S cells and its toxic effect on normal human peripheral blood mononuclear cells (PBMCs). The effect of α-MMC on the MM.1S cells' morphology was observed via inverted microscope imaging. The effects of α-MMC on the MM.1S cell cycle, mitochondrial membrane potential (MMP), and apoptosis were explored using propidium iodide, JC-1, annexin V- fluorescein isothiocyanate/propidium iodide fluorescence staining, and flow cytometry (FCM) analysis. Western blot was used to detect the expressions levels of apoptosis-related proteins and MAPK-signaling-pathway-related proteins in MM.1S cells induced by α-MMC. The results of the CCK-8 showed that in the concentration range of no significant toxicity to PBMCs, α-MMC inhibited the proliferation of MM.1S cells in a time-dependent and concentration-dependent manner, and the IC50 value was 13.04 and 7.518 µg/mL for 24 and 48 h, respectively. Through inverted microscope imaging, it was observed that α-MMC induced a typical apoptotic morphology in MM.1S cells. The results of the FCM detection and analysis showed that α-MMC could arrest the MM.1S cells cycle at the G2 phase, decrease the MMP, and induce cell apoptosis. Western blot analysis found that α-MMC upregulated the expression levels of Bax, Bid, cleaved caspase-3, and cleaved PARP, and downregulated the expression levels of Mcl-1. At the same time, α-MMC decreased the expression levels of p-c-Raf, p-MEK1/2, p-ERK1/2, p-MSK1, and p-P90RSK, and increased the expression levels of p-p38, p-SPAK/JNK, p-c-Jun, and p-ATF2. The above results suggest that α-MMC can inhibit the proliferation of multiple myeloma MM.1S cells. MAPK cascade signaling is involved in the growth inhibition effect of α-MMC on MM.1S cells via cycle arrest and mitochondrial-pathway-dependent apoptosis.

18.
J Adv Res ; 51: 13-25, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36414168

RESUMEN

INTRODUCTION: Drought is the principal abiotic stress that severely impacts cotton (Gossypium hirsutum) growth and productivity. Upon sensing drought, plants activate stress-related signal transduction pathways, including ABA signal and mitogen-activated protein kinase (MAPK) cascade. However, as the key components with the fewest members in the MAPK cascade, the function and regulation of GhMKKs need to be elucidated. In addition, the relationship between MAPK module and the ABA core signaling pathway remains incompletely understood. OBJECTIVE: Here we aim to elucidate the molecular mechanism of cotton response to drought, with a focus on mitogen-activated protein kinase (MAPK) cascades activating ABA signaling. METHODS: Biochemical, molecular and genetic analysis were used to study the GhMAP3K62-GhMKK16-GhMPK32-GhEDT1 pathway genes. RESULTS: A nucleus- and membrane-localized MAPK cascade pathway GhMAP3K62-GhMKK16-GhMPK32, which targets and phosphorylates the nuclear-localized transcription factor GhEDT1, to activate downstream GhNCED3 to mediate ABA-induced stomatal closure and drought response was characterized in cotton. Overexpression of GhMKK16 promotes ABA accumulation, and enhances drought tolerance via regulating stomatal closure under drought stress. Conversely, RNAi-mediated knockdown of GhMKK16 expression inhibits ABA accumulation, and reduces drought tolerance. Virus-induced gene silencing (VIGS)-mediated knockdown of either GhMAP3K62, GhMPK32 or GhEDT1 expression represses ABA accumulation and reduces drought tolerance through inhibiting stomatal closure. Expression knockdown of GhMPK32 or GhEDT1 in GhMKK16-overexpressing cotton reinstates ABA content and stomatal opening-dependent drought sensitivity to wild type levels. GhEDT1 could bind to the HD boxes in the promoter of GhNCED3 to activate its expression, resulting in ABA accumulation. We propose that the MAPK cascade GhMAP3K62-GhMKK16-GhMPK32 pathway functions on drought response through ABA-dependent stomatal movement in cotton.


Asunto(s)
Resistencia a la Sequía , Gossypium , Gossypium/genética , Gossypium/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo
19.
J Integr Plant Biol ; 65(3): 825-837, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36250681

RESUMEN

Pattern-triggered immunity (PTI) is an essential strategy used by plants to deploy broad-spectrum resistance against pathogen attacks. Heterotrimeric G proteins have been reported to contribute to PTI. Of the three non-canonical EXTRA-LARGE G PROTEINs (XLGs) in Arabidopsis thaliana, XLG2 and XLG3 were shown to positively regulate immunity, but XLG1 was not considered to function in defense, based on the analysis of a weak xlg1 allele. In this study, we characterized the xlg1 xlg2 xlg3 triple knockout mutants generated from an xlg1 knockout allele. The strong xlg1 xlg2 xlg3 triple mutants compromised pathogen-associated molecular pattern (PAMP)-triggered activation of mitogen-activated protein kinases (MAPKs) and resistance to pathogen infection. The three XLGs interacted with MAPK cascade proteins involved in defense signaling, including the MAPK kinase kinases MAPKKK3 and MAPKKK5, the MAPK kinases MKK4 and MKK5, and the MAPKs MPK3 and MPK6. Expressing a constitutively active form of MKK4 restored MAPK activation and partially recovered the compromised disease resistance seen in the strong xlg1 xlg2 xlg3 triple mutant. Furthermore, mutations of all three XLGs largely restored the phenotype of the autoimmunity mutant bak1-interacting receptor-like kinase 1. Our study reveals that all three XLGs function redundantly in PAMP-triggered MAPK activation and plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al GTP Heterotriméricas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inmunidad de la Planta , Regulación de la Expresión Génica de las Plantas
20.
J Ethnopharmacol ; 300: 115719, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36126781

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Saffron, the dried stigma of Crocus sativus L., has a long history of use in the treatment of depression in traditional Chinese medicine and Islamic medicine. The unique aroma of saffron, primarily derived from its volatile oil, has been widely used by folk to mitigate anxiety and depression via sniffing because the aroma of saffron has a pleasant and invigorating effect. AIM OF THE STUDY: This study aimed to investigate the antidepressant effect and the underlying mechanism of saffron essential oil (SEO) in mice exposed to chronic unpredictable mild stress (CUMS). MATERIALS AND METHODS: In this study, compounds of SEO were identified using gas chromatography-mass spectrometry analysis, while network pharmacology was used to predict potential active compounds, antidepressant targets, and related signaling pathways of SEO. The CUMS depression model was further used to explore the therapeutic effect and possible mechanism of SEO. During the modeling period, mice were regularly administered fluoxetine (3.6 mg/kg, i.g.) or diluted SEO (2%, 4%, and 6% SEO, inhalation). The antidepressant and neuroprotective effects of SEO were evaluated by behavior tests (the open field test, the sucrose preference test, the tail suspension test, and the forced swimming test), hematoxylin-eosin staining, and Nissl staining. The enzyme-linked immunosorbent assay kits were used to measure dopamine (DA), 5-serotonin (5-HT), brain-derived neurotrophic factor (BDNF), and γ-aminobutyric acid (GABA) levels in serum. The relative abundance of Raf1, MEK1, P-ERK1/2/ERK1/2, P-CREB1/CREB1, BDNF, and P-Trk B/Trk B in the hippocampus was determined using western blot (WB). RESULTS: According to the network pharmacology analysis, seven active SEO compounds mediated 113 targets related to depression treatment, most of which were enriched in the 5-HT synapse, calcium signaling pathway, and cAMP signaling pathway. In vivo experiments indicated that fluoxetine and SEO improved depression-like behaviors in depressed mice. The levels of 5-HT, DA, BDNF, and GABA in serum increased significantly. Histopathological examinations revealed that fluoxetine and SEO ameliorated neuronal damage in the hippocampus. WB analysis showed that the relative expressions of Raf1, MEK1, P-ERK1/2/ERK1/2, P-CREB1/CREB1, BDNF, and P-Trk B/Trk B were significantly higher in the fluoxetine and SEO groups than in the CUMS group. CONCLUSION: Overall, these findings suggest that SEO significantly alleviates the depressive symptoms in CUMS exposed mice and partially restores hippocampal neuronal damage. Meanwhile, the best efficacy was observed in 4% SEO. Furthermore, the antidepressant mechanism of SEO is primarily dependent on the regulation of the MAPK-CREB1-BDNF signaling pathway.


Asunto(s)
Crocus , Fármacos Neuroprotectores , Aceites Volátiles , Animales , Antidepresivos/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Crocus/metabolismo , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Fluoxetina/farmacología , Hematoxilina/metabolismo , Hematoxilina/farmacología , Hipocampo , Sistema de Señalización de MAP Quinasas , Ratones , Fármacos Neuroprotectores/farmacología , Aceites Volátiles/metabolismo , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Serotonina/metabolismo , Transducción de Señal , Estrés Fisiológico , Estrés Psicológico/tratamiento farmacológico , Sacarosa/metabolismo , Sacarosa/farmacología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA