Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 23(6): 1167-1178, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38717721

RESUMEN

Temperature up-shift and UV-A radiation effects on growth, lipid damage, fatty acid (FA) composition and expression of desaturase genes desA and desB were investigated in the cyanobacteria Microcystis aeruginosa. Although UV-A damaging effect has been well documented, reports on the interactive effects of UV radiation exposure and warming on cyanobacteria are scarce. Temperature and UV-A doses were selected based on the physiological responses previously obtained by studies with the same M. aeruginosa strain used in this study. Cells pre-grown at 26 °C were incubated at the same temperature or 29 °C and exposed to UV-A + PAR and only PAR for 9 days. Growth rate was significantly affected by UV-A radiation independently of the temperature throughout the experiment. High temperature produced lipid damage significantly higher throughout the experiment, decreasing at day 9 as compared to 26 °C. In addition, the cells grown at 29 °C under UV-A displayed a decrease in polyunsaturated FA (PUFA) levels, with ω3 PUFA being mostly affected at the end of exposure. Previously, we reported that UV-A-induced lipid damage affects differentially ω3 and ω6 PUFAs. We report that UV-A radiation leads to an upregulation of desA, possibly due to lipid damage. In addition, the temperature up-shift upregulates desA and desB regardless of the radiation. The lack of lipid damage for UV-A on ω3 could explain the lack of transcription induction of desB. The significant ω6 decrease at 26 °C in cells exposed to UV-A could be due to the lack of upregulation of desA.


Asunto(s)
Ácido Graso Desaturasas , Ácidos Grasos , Microcystis , Temperatura , Rayos Ultravioleta , Microcystis/efectos de la radiación , Ácidos Grasos/metabolismo , Ácido Graso Desaturasas/metabolismo , Ácido Graso Desaturasas/genética , Aclimatación , Estrés Fisiológico
2.
Environ Res ; 248: 118251, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38278506

RESUMEN

Over the years, algae have proved to be a water pollutant due to global warming, climate change, and the unregulated addition of organic compounds in water bodies from diffused resources. Harmful algal blooms (HABs) are severely affecting the health of humans and aquatic ecosystems. Among available anti-blooming technologies, semiconductor photocatalysis has come forth as an effective alternative. In the recent past, literature has been modified extensively with a decisive knowledge regarding algal invasion, desired preparation of nanomaterials with enhanced visible light absorption capacity and mechanisms for algal cell denaturation. The motivation behind this review article was to gather algal inactivation data in a systematic way based on various research studies, including the construction of nanoparticles and purposely to test their anti-algal activities under visible irradiation. Additionally, this article mentions variety of starting materials employed for preparation of various nano-powders with focus on their synthesis routes, analytical techniques as well as proposed mechanisms for lost cellular integrity in context of reduced chlorophyll' a' level, cell rapture, cell leakage and damages to other physiological constituents; credited to oxidative damage initiated by reactive oxidation species (ROS). Various floating and recyclable composited catalysts Ag2CO3-N: GO, Ag/AgCl@ZIF-8, Ag2CrO4-g-C3N4-TiO2/mEP proved to be game-changers owing to their enhanced VL absorption, adsorption, stability, separation and reusability. An outlook for the generalized limitations of published reports, cost estimations for practical implementation, issues and challenges faced by nano-photocatalysts and possible opportunities for future studies are also proposed. This review will be able to provide vast insights for coherent fabrication of catalysts, breakthroughs in experimental methodologies and help in elaboration of damage mechanisms.


Asunto(s)
Cianobacterias , Nanopartículas , Humanos , Ecosistema , Luz , Floraciones de Algas Nocivas
3.
Chemosphere ; 339: 139710, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37532199

RESUMEN

Zero-valent nano-iron particles (nZVI) are increasingly present in freshwater aquatic environments due to their numerous applications in environmental remediation. However, despite the broad benefits associated with the use and development of nZVI nanoparticles, the potential risks of introducing them into the aquatic environment need to be considered. Special attention should be focused on primary producer organisms, the basal trophic level, whose impact affects the rest of the food web. Although there are numerous acute studies on the acute effects of these nanoparticles on photosynthetic primary producers, few studies focus on long-term exposures. The present study aimed at assessing the effects of nZVI on growth rate, photosynthesis activity, and reactive oxygen activity (ROS) on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa. Moreover, microcystin production was also evaluated. These parameters were assessed on both organisms singly exposed to 72 h-effective nZVI concentration for 10% maximal response for 28 days. The results showed that the cell growth rate of S. armatus was initially significantly altered and progressively reached control-like values at 28 days post-exposure, while M. aeruginosa did not show any significant difference concerning control values at any time. In both strains dark respiration (R) increased, unlike net photosynthesis (Pn), while gross photosynthesis (Pg) only slightly increased at 7 days of exposure and then became equal to control values at 28 days of exposure. The nZVI nanoparticles generated ROS progressively during the 28 days of exposure in both strains, although their formation was significantly higher on green algae than on cyanobacteria. These data can provide additional information to further investigate the potential risks of nZVI and ultimately help decision-makers make better informed decisions regarding the use of nZVI for environmental remediation.


Asunto(s)
Cianobacterias , Microcystis , Nanopartículas , Scenedesmus , Fitoplancton , Hierro/toxicidad , Especies Reactivas de Oxígeno/farmacología , Nanopartículas/toxicidad , Agua Dulce
4.
Environ Sci Technol ; 57(20): 7800-7808, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37163388

RESUMEN

Harmful cyanobacterial blooms and the released microcystins (MCs) caused serious environmental and public health concerns to drinking water safety. Photo-oxidation is an appealing treatment option and alternative to conventional flocculation and microbial antagonists, but the performances of current photosensitizers (either inorganic or organic) are unsatisfactory. Here, a polythiophene photosensitizer (PT10) with both high yield of reactive oxygen species (ROS) production (mainly 1O2, ΦΔ = 0.51, > 8 h continuous generation) and moderate photostability was used as a powerful algaecide to inhibit Microcystis aeruginosa. Due to the positive charge of PT10, the algal cells were quickly flocculated, followed by efficient inactivation in 4 h under white light irradiation (96.7%, 10 mW/cm2). Meanwhile, PT10 was self-immolated in about 6 h. Upon biosafety evaluation with adult zebrafish, the low toxicity of PT10 and the degradation products of PT10 and algae (early logarithmic growth stage) were confirmed. In addition, microcystin-LR (MC-LR), a toxic microcystin that will be released during the destruction of the algal cells, was also degraded. Therefore, PT10-based photoinactivation of M. aeruginosa featured both high performance and low secondary pollution. In real-world aquatic systems, PT10 was confirmed to be capable of sunlight-assisted inactivation of M. aeruginosa and prevent algal blooms, thus making it appealing for environmental remediation.


Asunto(s)
Cianobacterias , Microcystis , Animales , Luz Solar , Pez Cebra , Cianobacterias/metabolismo , Microcystis/metabolismo , Microcistinas/metabolismo , Floraciones de Algas Nocivas
5.
Environ Pollut ; 330: 121801, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37169240

RESUMEN

Little information is available on how nano-Fe2O3 substituted iron ions as a possible iron source impacting on algal growth and arsenate (As(V)) metabolism under dissolved organic phosphorus (DOP) (D-glucose-6-phosphate (GP)) conditions. We investigated the growth of Microcystis aeruginosa and As(V) metabolism together with their metabolites in As(V) aquatic environments with nano-Fe2O3 and GP as the sole iron and P sources, respectively. Results showed that nano-Fe2O3 showed inhibitory effects on M. aeruginosa growth and microcystin (MCs) release under GP conditions in As(V) polluted water. There was little influence on As species changes in GP media under different nano-Fe2O3 concentrations except for obvious total As (TAs) removal in 100.0 mg L-1 nano-Fe2O3 levels. As(V) metabolism dominated with As(V) biotransformation in algal cells was facilitated and arsenite (As(III)) releasing risk was relieved clearly by nano-Fe2O3 under GP conditions. The dissolved organic matter (DOM) in media exhibited more fatty acid analogs containing -CO, -CH2 =CH2, and -CH functional groups with increasing nano-Fe2O3 concentrations, but the fluorescent analogs were relatively reduced especially for the fluorescent DOM dominated by aromatic protein-like tryptophan which was significantly inhibited by nano-Fe2O3. Thus, As methylation that was facilitated in M. aeruginosa by nano-Fe2O3 in GP environments also caused more organic substances to release that absorb infrared spectra while reducing the release risks of As(III) and MCs as well as protein-containing tryptophan fractions. From 1H-NMR analysis, this might be caused by the increased metabolites of aromatic compounds, organic acid/amino acid, and carbohydrates/glucose in algal cells. The findings are vital for a better understanding of nano-Fe2O3 role-playing in As bioremediation by microalgae and the subsequent potential aquatic ecological risks.


Asunto(s)
Arsenitos , Microcystis , Arseniatos/toxicidad , Arseniatos/metabolismo , Microcystis/metabolismo , Materia Orgánica Disuelta , Microcistinas/metabolismo , Arsenitos/metabolismo , Triptófano/metabolismo , Fósforo/metabolismo
6.
Microbiol Spectr ; 11(1): e0288822, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36602358

RESUMEN

The genomic traits of cyanophages and their potential for metabolic reprogramming of the host cell remain unknown due to the limited number of studies on cyanophage isolates. In the present study, a lytic Microcystis cyanophage, MaMV-DH01, was isolated and identified. MaMV-DH01 has an icosahedral head approximately 100 nm in diameter and a tail 260 nm in length. Its burst size is large, with approximately 145 phage particles/infected cell; it has a latent period of 2 days, and it shows high stability under pH and temperature stresses. Multiple infection (multiplicity of infection [MOI] 0.0001 to 100) results showed that when the MOI was 0.0001, MaMV-DH01 needed a longer time to lyse host cells. Cyanophage MaMV-DH01 has a double-stranded DNA genome of 182,372 bp, with a GC content of 45.35% and 210 predicted open reading frames (ORFs). These ORFs are related to DNA metabolism, structural proteins, lysis, host-derived metabolic genes, and DNA packaging. Phylogenetic trees based on the whole genome and two conserved genes (TerL and capsid) indicate that MaMV-DH01 is clustered with Ma-LMM01 and MaMV-DC, which are independent of other cyanophages. Collinearity analysis showed that the complete genome of MaMV-DH01 was longer than those of Ma-LMM01 and MaMV-DC, with lengths of 20,263 bp and 13,139 bp, respectively. We verified the authenticity of these excess DNA fragments and found that they are involved to various degrees in the MaMV-DH01 transcription process. Map overlays of environmental virus macrogenomic reads onto the MaMV-DH01 genome revealed that viral sequences similar to that of MaMV-DH01 are widespread in the environment. IMPORTANCE A novel freshwater Myoviridae cyanophage strain, MaMV-DH01, was isolated; this strain infects Microcystis aeruginosa FACHB-524, and the biological and genomic characteristics of MaMV-DH01 provide new insights for understanding the mechanism by which cyanophages infect cyanobacterial blooms.


Asunto(s)
Bacteriófagos , Myoviridae , Myoviridae/genética , Filogenia , Agua Dulce/microbiología , ADN , Genoma Viral , Genómica , Sistemas de Lectura Abierta
7.
J Environ Manage ; 320: 115837, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35933879

RESUMEN

Algicidal bacteria is considered as an efficient and environmentally friendly approach to suppress Microcystis aeruginosa (M. aeruginosa). However, algicidal bacteria in natural water is limited during the practical application due to the interference of external factors and the low reuse capability. In this study, a bio-degradation capsule for M. aeruginosa is prepared by bio-compatible sodium alginate (SA) compositing with eco-friendly ethyl cellulose (EC) to improve the property and reuse capability of algicidal bacteria. Bacterial strain HL was well immobilized and the capsule was obtained with 2% of SA, 3% of calcium chloride (CaCl2) and 3% of EC. It has been proved that capsules immobilizing bacteria HL shows considerable advantage over traditional bio-treatment systems (free-living bacteria) and good reusable performance. A better algicidal rate of 77.67% ± 1.14% at 7th day was obtained with the use of capsule embedding 50 mL of algicidal bacteria, enhanced by 11.05% comparing with same amount of free-living bacteria. Moreover, the algicidal rate of M. aeruginosa still reached 68.57% ± 2.88% after three times repetitive use. The effect of capsules on the fluorescence and antioxidant system of M. aeruginosa indicated that the photosystems were irreversibly damaged and the antioxidant response of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly induced. Overall, capsules prepared in this study can provide a desirable environment for algicidal bacteria HL and ensure algicidal bacteria to in-situ work well in inhibiting booms of algae.


Asunto(s)
Bacillus , Microcystis , Antioxidantes/farmacología , Microcystis/fisiología , Solubilidad
8.
Environ Pollut ; 313: 119997, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35995295

RESUMEN

Colony formation is an essential stage of cyanobacterial blooms. High calcium concentration can promote Microcystis aeruginosa aggregation behavior, but the mechanism of colony formation caused by calcium has rarely been reported. In this study, high calcium-induced colony formation was identified as a shift from cell adhesion to cell division, rather than only cell adhesion as previously thought. Algae responded to this calcium-induced environmental pressure by aggregating and forming colonies. Algal cells initially secreted large quantities of extracellular polysaccharides (EPS) and rapidly aggregated by cell adhesion. The highest aggregation proportion was up to 68.93%. However, high calcium concentrations cannot completely inhibit algal cell growth, but only delay the algae into the rapid growth phase. With adaption to calcium and existing high EPS content, the daughter cells reduced EPS synthesis and the aggregation proportion decreased. The increasing growth rate was also responsible for the decreased xylose content in EPS. The mechanism of colony formation changed to cell division. The downregulation of genes related to EPS secretion also supported this hypothesis. Overall, these results can benefit for our understanding of cyanobacterial bloom formation.


Asunto(s)
Cianobacterias , Microcystis , Calcio , Adhesión Celular , División Celular , Xilosa
9.
Chemosphere ; 298: 134245, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35278451

RESUMEN

The unique and efficient characteristics of allelopathy in submerged plants make it an environmentally friendly method to control harmful algal blooms. Increased research focus has been placed on the improved allelochemical extraction methods of submerged plants because of their cost-utility relationships. In this study, the growth inhibition effect of Vallisneria extract on Microcystis aeruginosa (M. aeruginosa) cells through the combination of enzyme and ultrasonic-assisted extraction method was analyzed. By establishing a co-cultivation experiment, the growth indicators, photosynthetic system, and oxidative stress system of M. aeruginosa were determined. The reactive oxygen species (ROS) and superoxide dismutase (SOD) activity, as well as the catalase (CAT) and Malondialdehyde (MDA) levels of algal cells were found to have increased significantly after co-cultivation, which indicated that the Vallisneria ultrasonic-cellulase extract could induce oxidative stress in Microcystis aeruginosa cells. The Vallisneria extract could promote at low concentrations and inhibit at high concentrations on the growth of Microcystis aeruginosa. The effective suppression of growth of algae cells with the extract was observed at 5 g/L (fresh weight). The results showed that the Vallisneria ultrasonic-cellulase extract had a significant inhibitory effect on M. aeruginosa, making the effective ingredients a useful reference for algae inhibitors.


Asunto(s)
Celulasa , Hydrocharitaceae , Microcystis , Alelopatía , Extractos Vegetales/farmacología , Ultrasonido
10.
Water Res ; 214: 118207, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217491

RESUMEN

Cyanobacterial blooms are always treated in exponential phase, which demands high dosages of algicides (e.g., CuSO4). Actually, cyanobacterial blooms in late lag phase exhibit low cell-density and specific physiological/biochemical characteristics, implying the possibility of controlling blooms in a more efficient and economical way with CuSO4 treatment if cyanobacterial cells in late lag phase can be treated. In this study, the outbreakof a Microcystis bloom was simulated, and Microcystis samples in late lag and exponential phases were treated with CuSO4. The results showed that M. aeruginosa in late lag phase had a higher ratio of dividing-cells, Fv/Fm and intracellular total organic carbon content (TOC) than that in exponential phase, indicating that its metabolic activity was vigorous. M. aeruginosa in late lag phase could more easily be blocked, since a higher decrease in chlorophyll-a, Fv/Fm and membrane integrity occurred under the same dosages of CuSO4 exposure compared to M. aeruginosa in exponential phase. Meanwhile, microcystin release in late lag phase was less than that in exponential phase. Moreover, higher sensitivity in late lag phase was confirmed at the individual level, as the photosynthesis related genes psaB and rbcL were more down-regulated than those in exponential phase. In general, cyanobacteria in late lag phase exhibited higher sensitivity to CuSO4, indicating that CuSO4 treatments in late lag phase can achieve a higher control efficiency and fewer release of microcystin with low-dosages algicide. Hence, it is a more environmentally friendly strategy to control cyanobacterial blooms than the traditional strategy applied in exponential phase.

11.
Sci Total Environ ; 815: 152769, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34990666

RESUMEN

In this study, the simultaneous removal effects of electrochemical oxidation with boron-doped diamond anodes at different current densities were tested on Microcystis aeruginosa and sulfamethoxazole. Flow cytometry and non-invasive micro-test technology were applied to study the physiological states of M. aeruginosa and Vallisneria spiralis leaf cells. As the current density increased, the degradation effect of electrochemical oxidation on sulfamethoxazole and microcystin-LR increased and exceeded 60% within 6 h. In addition, population density of M. aeruginosa, fluorescence response of chlorophyll a, and cytoplasmic membrane integrity decreased, whereas the proportion of cells with excessive accumulation of intracellular reactive oxygen species (ROS) increased. The effect of electrochemical oxidation on the cell population of M. aeruginosa continued after the power was turned off. The physiological state of V. spiralis leaf cells was not severely affected at 10 mA/cm2 for 24 h. Higher current intensity and longer electrolysis time would induce apoptosis or necrosis. In order to achieve a higher target pollutant removal effect and simultaneously avoid damage to the lake ecosystem, the current intensity of the electrochemical oxidation device should not exceed 10 mA/cm2, and a single electrolysis treatment should range from 6 h to 24 h.


Asunto(s)
Microcystis , Clorofila A , Diamante , Ecosistema , Electrodos , Oxidación-Reducción , Sulfametoxazol
12.
Environ Sci Pollut Res Int ; 28(16): 20762-20771, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33410059

RESUMEN

The wide range existence of M. aeruginosa FACHB 905 strains in the aquatic environment becomes a great threat for the health of humans and animals; it also poses a great obstacle in the ecological ecosystem. Therefore, an effective, efficient, and environmentally friendly method of treatment is needed. In this work Cu2(OH)PO4 nanoparticles were successively synthesized from a mixture of Cu (NO3)2 and Na2HPO4 according to the results from Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), ultraviolet/visible/near-infrared in diffuse reflectance spectroscopy (UV/Vis/NIR DRS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) tests. Furthermore, Cu2(OH)PO4 was used to mitigate the growth of M. aeruginosa FACHB 905 strains on a lab-scale, and the investigation on the growth of the harmful algal bloom (HAB) causing M. aeruginosa FACHB 905 strains was worked on. The Cu2(OH)PO4 is effective in inhibiting the growth of the strain by more than 97% at a concentration of 0.032 mg mL-1. Furthermore, analysis of the chlorophyll a content and polysaccharide asserted that a remarkable decrease from 9.40 mg L-1 and 37.66 mg L-1 for the control to 0.07 mg L-1 and 10.21 mg L-1 for the treatment media with 0.032 mg mL-1 Cu2(OH)PO4 has been achieved. The results affirm the effectiveness of the Cu2(OH)PO4 as suitable candidates for preventing HABs caused by the M. aeruginosa FACHB 905 cyanobacterium and other similar strains.


Asunto(s)
Microcystis , Nanopartículas , Animales , Clorofila A , Ecosistema , Floraciones de Algas Nocivas , Humanos , Espectroscopía Infrarroja por Transformada de Fourier
13.
Chemosphere ; 264(Pt 2): 128501, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33039692

RESUMEN

Removals of extracellular organic matter (EOM) derived from cyanobacterium M. aeruginosa and humic acid (HA) in single-component and bi-component systems and the interactions during the coagulation-ultrafiltration (C-UF) process were investigated in this study. In a single-component system, only 23% EOM could be removed by alum at dose as high as 6 mg/L, which induced serious membrane fouling in the following UF process. Interestingly, higher EOM removal efficiency was achieved (increase by about 20%) with the existence of HA and EOM-HA achieved less decline of permeate flux compared with individual EOM C-UF process. Zeta potential and Fourier transform infrared spectroscopy analysis indicated that the interactions of HA and EOM can strengthen charge neutralization and reduce CH2 chemical bonds, which had a positive effect on the coagulation process. In addition, EOM-HA floc had a more open and looser structure than EOM floc, which was more favorable in the UF process. The extended Derjaguin-Landau-Verwey-Overbeek theory indicated that the acid-base interaction energy was mainly reduced, thereby alleviating membrane fouling. The study showed this beneficial interaction between the HA and EOM would enhance the EOM removal efficacy by coagulation and release the membrane fouling caused by EOM.


Asunto(s)
Ultrafiltración , Purificación del Agua , Sustancias Húmicas , Membranas Artificiales , Compuestos Orgánicos
14.
Environ Sci Pollut Res Int ; 27(34): 42304-42312, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32577973

RESUMEN

Cyanobacterial blooms caused by Microcystis have become a menace to public health and water quality in the global freshwater ecosystem. Alkaline phosphatases (APases) produced by microorganisms play an important role in the mineralization of dissolved organic phosphorus (DOP) into orthophosphate (Pi) to promote cyanobacterial blooms. However, the response of extracellular and intracellular alkaline phosphatase activity (APA) of Microcystis to different DOP sources is poorly understood. In this study, we compared the growth of M. aeruginosa on two DOP substrates (ß-glycerol-phosphate (ß-GP) and lecithin (LEC)) and monitored the changes of P fractions and the extra- and intracellular APA under different P sources and concentrations. M. aeruginosa can utilize both ß-GP and LEC to sustain its growth, and the bioavailability of LEC was greater than ß-GP. For the ß-GP treatment, there was no significant difference in the algal growth at different concentrations (P > 0.05), while the algal growth in the LEC treatment groups was significantly affected by concentrations (P < 0.05). The results showed that intracellular APA of M. aeruginosa could be detected in all DOP treatment groups and generally higher than extracellular APA. In addition, the intracellular APA per cell increased first and then decreased in all DOP treatment groups. Compared with the ß-GP treatment, M. aeruginosa in the LEC groups could secret more extracellular APA.


Asunto(s)
Cianobacterias , Microcystis , Fosfatasa Alcalina , Ecosistema , Fósforo
15.
Chemosphere ; 259: 127430, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32593822

RESUMEN

The frequent outbreaks of cyanobacterial blooms which caused serious societal and economic loss have become a worldwide problem. Interactions between toxic cyanobacteria and heterotrophic bacteria competitors play a pivotal role in the formation of toxic cyanobacterial bloom, but the underlying mechanisms of interactions between them await further research. The antagonist activity of Pseudomonas grimontii (P.grimontii) was confirmed by reduction in chlorophyll a concentration of Microcystis aeruginosa (M. aeruginosa) in an infected culture for a 7d period. The initial concentration of P.grimontii affected the M. aeruginosa activity significantly. When the 10% (V/V) concentration of P.grimontii A01 and P.grimontii A14 cultures were infected, the reduction of M. aeruginosa reached to 91.81% and 78.25% after 7 days, respectively. While a 0.1% (v/v) concentration of P.grimontii A01 and P.grimontii A14 cultures were infected, the M. aeruginosa increased 31.13% and 16.67% occurred, respectively. The content of reactive oxygen species (ROS) and malondialdehyde (MDA) increased with increasing of P.grimontii fermentation liquid, indicating the M. aeruginosa underwent oxidative stress. Using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry (IMS) profiling of co-cultures of M. aeruginosa and its antagonist P.grimontii, we revealed novel interspecies allelopathic interactions and compete molecule. We showed the spatial secondary metabolites may mediate the interactions in which P.grimontii inhibits growth of M. aeruginosa. Additionally, we revealed how M. aeruginosa feedback to the P.grimontii, which stimulates secondary metabolites such as [D-Asp3]-microcystin-LR released by M. aeruginosa. IMS method highlights the significance of allelopathic interactions between a widely distributed toxic cyanobacteria and its bacteria competitors.


Asunto(s)
Microcystis/fisiología , Alelopatía , Clorofila A , Cianobacterias , Malondialdehído , Toxinas Marinas , Espectrometría de Masas , Microcistinas , Microcystis/efectos de los fármacos , Microcystis/crecimiento & desarrollo , Estrés Oxidativo , Pseudomonas , Especies Reactivas de Oxígeno
16.
J Environ Sci (China) ; 94: 171-178, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32563481

RESUMEN

Phosphine (PH3) is an important factor driving the outbreak of cyanobacterial blooms that produce toxic microcystin threating human health. To clarify the physiological and biochemical responses of cyanobacteria to PH3 under elevated CO2 concentration, Microcystis aeruginosa was used in the coupling treatment of 1000 ppmv CO2 and PH3 at different concentrations respectively. The chlorophyll a (Chl-a), carotenoid, net photosynthetic rate and total protein of M. aeruginosa exhibited evidently increasing tendency under the coupling treatment of 1000 ppmv CO2 and PH3 at different concentrations (7.51 × 10-3, 2.48 × 10-2, 7.51 × 10-2 mg/L). The coupling treatments resulted in the higher concentrations of Chl-a and carotenoid of M. aeruginosa, compared to those in the control and the treatment with CO2 alone, and their enhancement increased with the increase in PH3 concentrations. The total antioxidant capacity (T-AOC) in the coupling treatment with CO2 and PH3 of 2.48 × 10-2 mg/L and 7.51 × 10-3 mg/L showed increasing tendency, compared to the treatment with PH3 alone. Additionally, the coupling treatment with 1000 ppmv CO2 and PH3 also altered the pH and DO level in the culture medium. In this regard, the coupling treatment with CO2 and PH3 at an appropriate concentration can enhance the resistance of M. aeruginosa to PH3 toxicity and is beneficial to the reproduction of M. aeruginosa, presumably resulting in potential for the outbreak of cyanobacteria bloom. Given the concern about global warming and the increase in atmospheric CO2 level, our research laid a foundation for the scientific understanding of the correlation between PH3 and cyanobacteria blooms.


Asunto(s)
Microcystis , Dióxido de Carbono , Clorofila A , Concentración de Iones de Hidrógeno , Microcistinas , Fosfinas
17.
Artículo en Inglés | MEDLINE | ID: mdl-34035564

RESUMEN

Harmful algal and cyanobacterial blooms pose threats to human and ecological health due to their release of hazardous toxins. Microcystin-LR (MC-LR), a potent hepatotoxin, is the most prevalent cyanotoxin found in freshwater blooms. Although produced by many species of cyanobacteria, Microcystis aeruginosa is most commonly associated with MC-LR production. These blooms are increasing in occurrence in lakes, ponds, and other surface waters and, therefore, require efficient treatment methods to be removed from water supplies. Ionizing radiation technologies offer promising approaches for the removal of organic pollutants in water, including cyanotoxins and cyanobacteria. Gamma irradiation for the degradation of cyano-bacteria and toxins is effective for overall MC-LR degradation as well as reducing cell concentrations. However, gamma irradiation technology involves use of radioactive isotopes and, therefore, may not feasible commercially from a security perspective. Electron beam (eBeam) irradiation technology, which relies on regular electricity to generate highly energetic electrons, is able to achieve the same results without the confounding challenges of radioactive isotopes and related security issues. In this critical review, the current state of the science concerning the remediation of MC-LR and M. aeruginosa with ionizing radiation technologies is presented and future necessary research is discussed.

18.
Toxicon ; 170: 51-59, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31526809

RESUMEN

Cu2+ and Zn2+, two ubiquitous metals in water environments, can widely trigger algae blooms at favourable environmental conditions. This paper elucidates the roles of Cu2+ and Zn2+ in the proliferation of Microcystis aeruginosa (M. aeruginosa) and synthesis of Microcystins (MCs). Findings indicate significant influences of increasing Cu2+ and Zn2+ concentrations on cell proliferation at limited available phosphorus concentrations of less than 0.1 mg/L. By contrast, Cu2+ and Zn2+ notably affected MCs production at all the inoculated phosphorus concentrations. The critical concentrations of 1 µg/L and 5 µg/L for Cu2+ and Zn2+, respectively, are determined to trigger rapid cell proliferation and MCs production. Furthermore, the impacts of Cu2+ and Zn2+ on nitrogen absorption and, subsequently, on amino acids (AAs) formation in cells, is likely key in MCs synthesis. The two AAs Alanine (Ala) and glutamic acid (Glu) demonstrate the most notable variations with the concentrations of Cu2+ & Zn2+.


Asunto(s)
Cobre , Microcistinas/metabolismo , Microcystis/efectos de los fármacos , Zinc , Aminoácidos/biosíntesis , Microcystis/metabolismo , Nitrógeno/química , Fósforo/química
19.
Ecotoxicology ; 28(7): 834-842, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31352571

RESUMEN

Although microcystins (MCs) are the most commonly studied cyanotoxins, their significance to the producing organisms remains unclear. MCs are known as endotoxins, but they can be found in the surrounding environment due to cell lysis, designated as extracellular MCs. In the present study, the interactions between MC producing and the non-producing strains of Microcystis aeruginosa, PCC 7806 and PCC 7005, respectively, and a green alga, Desmodesmus subspicatus, were studied to better understand the probable ecological importance of MCs at the collapse phase of cyanobacterial blooms. We applied a dialysis co-cultivation system where M. aeruginosa was grown inside dialysis tubing for one month. Then, D. subspicatus was added to the culture system on the outside of the membrane. Consequently, the growth of D. subspicatus and MC contents were measured over a 14-day co-exposure period. The results showed that Microcystis negatively affected the green alga as the growth of D. subspicatus was significantly inhibited in co-cultivation with both the MC-producing and -deficient strains. However, the inhibitory effect of the MC-producing strain was greater and observed earlier compared to the MC-deficient strain. Thus, MCs might be considered as an assistant factor that, in combination with other secondary metabolites of Microcystis, reinforce the ability to outcompete co-existing species.


Asunto(s)
Chlorophyta/efectos de los fármacos , Microcistinas/efectos adversos , Microcystis/química , Chlorophyta/crecimiento & desarrollo , Eutrofización
20.
Environ Int ; 131: 105052, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31357091

RESUMEN

In lakes, cyanobacterial blooms are frequently associated with green algae and dominate the phytoplankton community in successive waves. In the present study, the interactions between Microcystis aeruginosa PCC 7806 and Desmodesmus subspicatus were studied to clarify the probable ecological significance of algal secondary metabolites; focusing on the role of cyanotoxin 'microcystin-LR' (MC-LR). A dialysis co-cultivation technique was applied where M. aeruginosa was grown inside and D. subspicatus was cultured outside of the dialysis tubing. The concentration of the intra- and extracellular MC-LR and the growth of two species were measured at different time points over a period of one month. Additionally, the growth of the two species in the culture filtrate of one another and the effect of the purified MC-LR on the growth of the green alga were studied. The results indicated that the co-existing species could affect each other depending on the growth phases. Despite the early dominance of D. subspicatus during the logarithmic phase, M. aeruginosa suppressed the growth of the green alga at the stationary phase, which coincided with increased MC production and release. However, the inhibitory effects of Microcystis might be related to its other extracellular metabolites rather than, or possibly in addition to, MC.


Asunto(s)
Chlorophyceae , Ecosistema , Microcystis , Chlorophyceae/crecimiento & desarrollo , Chlorophyceae/microbiología , Chlorophyceae/fisiología , Técnicas de Cocultivo , Microcystis/crecimiento & desarrollo , Microcystis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA