Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cells ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273013

RESUMEN

Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.


Asunto(s)
Encéfalo , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Encéfalo/patología , Encéfalo/metabolismo , Animales , Lisosomas/metabolismo , Lisosomas/enzimología , Encefalopatías/genética , Encefalopatías/metabolismo , Encefalopatías/enzimología , Encefalopatías/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo
2.
Biometals ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212870

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease in the older adults. The main pathological change in PD is the degenerative death of dopamine (DA) neurons in the midbrain substantia nigra, which causes a significant decrease in the DA content of the striatum. However, the exact etiology of this pathological change remains unclear. Genetic factors, environmental factors, aging, and oxidative stress may be involved in the degenerative death of dopaminergic neurons in PD. Pharmacological treatment using levodopa (L-DOPA) remains the main treatment for PD. Most patients with PD consuming L-DOPA for a long time usually develop levodopa-induced dyskinesia (LID) after 6.5 years of use, and LID seriously affects the quality of life and increases the risk of disability. Recently, studies have revealed that cerebral iron deposition may be involved in LID development and that iron deposition has neurotoxic effects and accelerates disease onset. However, the relationship between cerebral iron deposition and LID remains unclear. Herein, we reviewed the mechanisms by which iron deposition may be associated with LID development, which are mainly related to oxidative stress, neuroinflammation, and mitochondrial and lysosomal dysfunction. Using iron as an important target, the search and development of safe and effective brain iron scavengers, and thus the alleviation and treatment of LID, has a very important scientific and clinical value, as well as a good application prospect.

3.
J Transl Med ; 22(1): 449, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741129

RESUMEN

Inherited deficiency of thymidine phosphorylase (TP), encoded by TYMP, leads to a rare disease with multiple mitochondrial DNA (mtDNA) abnormalities, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the impact of TP deficiency on lysosomes remains unclear, which are important for mitochondrial quality control and nucleic acid metabolism. Muscle biopsy tissue and skin fibroblasts from MNGIE patients, patients with m.3243 A > G mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and healthy controls (HC) were collected to perform mitochondrial and lysosomal functional analyses. In addition to mtDNA abnormalities, compared to controls distinctively reduced expression of LAMP1 and increased mitochondrial content were detected in the muscle tissue of MNGIE patients. Skin fibroblasts from MNGIE patients showed decreased expression of LAMP2, lowered lysosomal acidity, reduced enzyme activity and impaired protein degradation ability. TYMP knockout or TP inhibition in cells can also induce the similar lysosomal dysfunction. Using lysosome immunoprecipitation (Lyso- IP), increased mitochondrial proteins, decreased vesicular proteins and V-ATPase enzymes, and accumulation of various nucleosides were detected in lysosomes with TP deficiency. Treatment of cells with high concentrations of dThd and dUrd also triggers lysosomal dysfunction and disruption of mitochondrial homeostasis. Therefore, the results provided evidence that TP deficiency leads to nucleoside accumulation in lysosomes and lysosomal dysfunction, revealing the widespread disruption of organelles underlying MNGIE.


Asunto(s)
ADN Mitocondrial , Fibroblastos , Lisosomas , Mitocondrias , Encefalomiopatías Mitocondriales , Nucleósidos , Timidina Fosforilasa , Humanos , Lisosomas/metabolismo , Timidina Fosforilasa/metabolismo , Timidina Fosforilasa/deficiencia , Timidina Fosforilasa/genética , Encefalomiopatías Mitocondriales/metabolismo , Encefalomiopatías Mitocondriales/patología , Encefalomiopatías Mitocondriales/genética , Fibroblastos/metabolismo , Fibroblastos/patología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Nucleósidos/metabolismo , Seudoobstrucción Intestinal/metabolismo , Seudoobstrucción Intestinal/patología , Seudoobstrucción Intestinal/enzimología , Seudoobstrucción Intestinal/genética , Oftalmoplejía/metabolismo , Oftalmoplejía/patología , Oftalmoplejía/congénito , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patología , Masculino , Femenino , Piel/patología , Piel/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo
4.
Immunopharmacol Immunotoxicol ; 46(3): 378-384, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38478010

RESUMEN

INTRODUCTION: Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by immune cell dysregulation, synovial hyperplasia, and progressive cartilage destruction. The loss of immunological self-tolerance against autoantigens is the crucial insult responsible for the pathogenesis of RA. These immune abnormalities are experienced many years before the onset of clinical arthritis. OBJECTIVE: This review aims to discuss the metabolic status of T-cells in RA and focuses mainly on mitochondrial and lysosomal dysfunctions involved in altering the T-cell metabolism. DISCUSSION: T-cells are identified as the primary initiators of immunological abnormalities in RA. These RA T-cells show a distinct metabolic pattern compared to the healthy individuals. Dampened glycolytic flux, poor ATP production, and shifting of glucose to the pentose phosphate pathway resulting in increased NADPH and decreased ROS levels are the common metabolic patterns observed in RA T-cells. Defective mtDNA due to lack of MRE11A gene, a key molecular actor for resection, and inefficient lysosomal function due to misplacement of AMPK on the lysosomal surface were found to be responsible for mitochondrial and lysosome dysfunction in RA. Targeting this mechanism in RA can alleviate aggressive T-cell phenotype and may control the severity of RA.


Asunto(s)
Artritis Reumatoide , Lisosomas , Mitocondrias , Linfocitos T , Humanos , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Lisosomas/inmunología , Lisosomas/metabolismo , Mitocondrias/inmunología , Mitocondrias/metabolismo , Mitocondrias/patología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220387, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38368936

RESUMEN

Over the past two decades, increased research has highlighted the connection between endosomal trafficking defects and neurodegeneration. The endo-lysosomal network is an important, complex cellular system specialized in the transport of proteins, lipids, and other metabolites, essential for cell homeostasis. Disruption of this pathway is linked to a wide range of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and frontotemporal dementia. Furthermore, there is strong evidence that defects in this pathway create opportunities for diagnostic and therapeutic intervention. In this Opinion piece, we concisely address the role of endo-lysosomal dysfunction in five neurodegenerative diseases and discuss how future research can investigate this intracellular pathway, including extracellular vesicles with a specific focus on exosomes for the identification of novel disease biomarkers. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Asunto(s)
Enfermedad de Alzheimer , Exosomas , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/diagnóstico , Lisosomas/metabolismo , Biomarcadores/metabolismo
6.
Stem Cell Res Ther ; 15(1): 12, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38185703

RESUMEN

BACKGROUND: Adipose-derived stem cells (ADSCs) have been extensively used in preclinical and clinical trials for treating various diseases. However, the differences between ADSCs from lean individuals (L-ADSCs) and those from obese individuals (O-ADSCs) have not been thoroughly investigated, particularly regarding their mitochondrial and lysosomal functions. Therefore, this study aims to evaluate the differences between L-ADSCs and O-ADSCs in terms of cell biological activity, mitochondria, and lysosomes. METHODS: We first isolated and cultured L-ADSCs and O-ADSCs. We then compared the differences between the two groups in terms of biological activity, including cell proliferation, differentiation potential, and their effect on the polarization of macrophages. Additionally, we observed the mitochondrial and lysosomal morphology of ADSCs using an electronic microscope, MitoTracker Red, and lysotracker Red dyes. We assessed mitochondrial function by examining mitochondrial membrane potential and membrane fluidity, antioxidative ability, and cell energy metabolism. Lysosomal function was evaluated by measuring autophagy and phagocytosis. Finally, we performed transcriptome analysis of the ADSCs using RNA sequencing. RESULTS: The biological activities of O-ADSCs were decreased, including cell immunophenotypic profiles, cell proliferation, and differentiation potential. Furthermore, compared to L-ADSCs, O-ADSCs promoted M1-type macrophage polarization and inhibited M2-type macrophage polarization. Additionally, the mitochondrial morphology of O-ADSCs was altered, with the size of the cells becoming smaller and mitochondrial fragments increasing. O-ADSCs also exhibited decreased mitochondrial membrane potential and membrane fluidity, antioxidative ability, and energy metabolism. With respect to lysosomes, O-ADSCs contained ungraded materials in their lysosomes, enhanced lysosomal permeability, and reduced autophagy and phagocytosis ability. RNA sequence analysis indicated that the signalling pathways related to cell senescence, cancer, and inflammation were upregulated, whereas the signalling pathways associated with stemness, cell differentiation, metabolism, and response to stress and stimuli were downregulated. CONCLUSIONS: This study indicates that ADSCs from individuals (BMI > 30 kg/m2) exhibit impaired mitochondrial and lysosomal function with decreased biological activity.


Asunto(s)
Lisosomas , Obesidad , Humanos , Obesidad/terapia , Fagocitosis , Adiposidad , Antioxidantes , Células Madre
7.
Trends Pharmacol Sci ; 45(1): 81-101, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102020

RESUMEN

Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Autofagia , Inflamación/metabolismo , Lisosomas/metabolismo , Lisosomas/patología
8.
J Transl Med ; 21(1): 730, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848935

RESUMEN

BACKGROUND: Lysosomes are closely linked to autophagic activity, which plays a vital role in pancreatic ductal adenocarcinoma (PDAC) biology. The survival of PDAC patients is still poor, and the identification of novel genetic factors for prognosis and treatment is highly required to prevent PDAC-related deaths. This study investigated the germline variants related to lysosomal dysfunction in patients with PDAC and to analyze whether they contribute to the development of PDAC. METHODS: The germline putative pathogenic variants (PPV) in genes involved in lysosomal storage disease (LSD) was compared between patients with PDAC (n = 418) and healthy controls (n = 845) using targeted panel and whole-exome sequencing. Furthermore, pancreatic organoids from wild-type and KrasG12D mice were used to evaluate the effect of lysosomal dysfunction on PDAC development. RNA sequencing (RNA-seq) analysis was performed with established PDAC patient-derived organoids (PDOs) according to the PPV status. RESULTS: The PPV in LSD-related genes was higher in patients with PDAC than in healthy controls (8.13 vs. 4.26%, Log2 OR = 1.65, P = 3.08 × 10-3). The PPV carriers of LSD-related genes with PDAC were significantly younger than the non-carriers (mean age 61.5 vs. 65.3 years, P = 0.031). We further studied a variant of the lysosomal enzyme, galactosylceramidase (GALC), which was the most frequently detected LSD variant in our cohort. Autophagolysosomal activity was hampered when GALC was downregulated, which was accompanied by paradoxically elevated autophagic flux. Furthermore, the number of proliferating Ki-67+ cells increased significantly in pancreatic organoids derived from Galc knockout KrasG12D mice. Moreover, GALC PPV carriers tended to show drug resistance in both PDAC cell line and PDAC PDO, and RNA-seq analysis revealed that various metabolism and gene repair pathways were upregulated in PDAC PDOs harboring a GALC variant. CONCLUSIONS: Genetically defined lysosomal dysfunction is frequently observed in patients with young-onset PDAC. This might contribute to PDAC development by altering metabolism and impairing autophagolysosomal activity, which could be potentially implicated in therapeutic applications for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Persona de Mediana Edad , Proteínas Proto-Oncogénicas p21(ras) , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Células Germinativas/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Neoplasias Pancreáticas
9.
Transl Neurodegener ; 12(1): 40, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37620916

RESUMEN

BACKGROUND: The accumulation of α-synuclein (α-syn), an essential step in PD development and progression, is observed not only in neurons but also in glia, including astrocytes. The mechanisms regulating astrocytic α-syn level and aggregation remain unclear. More recently, it has been demonstrated that a part of α-syn spreading occurs through extracellular vesicles (EVs), although it is unknown whether this process is involved in astrocytes of PD. It is known, however, that EVs derived from the central nervous system exist in the blood and are extensively explored as biomarkers for PD and other neurodegenerative disorders. METHODS: Primary astrocytes were transfected with A53T α-syn plasmid or exposed to α-syn aggregates. The level of astrocyte-derived EVs (AEVs) was assessed by nanoparticle tracking analysis and immunofluorescence. The lysosomal function was evaluated by Cathepsin assays, immunofluorescence for levels of Lamp1 and Lamp2, and LysoTracker Red staining. The Apogee assays were optimized to measure the GLT-1+ AEVs in clinical cohorts of 106 PD, 47 multiple system atrophy (MSA), and 103 healthy control (HC) to test the potential of plasma AEVs as a biomarker to differentiate PD from other forms of parkinsonism. RESULTS: The number of AEVs significantly increased in primary astrocytes with α-syn deposition. The mechanism of increased AEVs was partially attributed to lysosomal dysfunction. The number of α-syn-carrying AEVs was significantly higher in patients with PD than in HC and MSA. The integrative model combining AEVs with total and aggregated α-syn exhibited efficient diagnostic power in differentiating PD from HC with an AUC of 0.915, and from MSA with an AUC of 0.877. CONCLUSIONS: Pathological α-syn deposition could increase the astrocytic secretion of EVs, possibly through α-syn-induced lysosomal dysfunction. The α-syn-containing AEVs in the peripheral blood may be an effective biomarker for clinical diagnosis or differential diagnosis of PD.


Asunto(s)
Vesículas Extracelulares , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , Astrocitos , Enfermedad de Parkinson/diagnóstico
10.
Front Mol Neurosci ; 16: 1209760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448958

RESUMEN

Objective: To investigate the pathogenesis of three novel de novo CACNA1C variants (p.E411D, p.V622G, and p.A272V) in causing neurodevelopmental disorders and arrhythmia. Methods: Several molecular experiments were carried out on transfected human embryonic kidney 293 (HEK 293) and Chinese hamster ovary (CHO) cells to explore the effects of p.E411D, p.V622G, and p.A272V variants on electrophysiology, mitochondrial and lysosomal functions. Electrophysiological studies, RT-qPCR, western blot, apoptosis assay, mito-tracker fluorescence intensity, lyso-tracker fluorescence intensity, mitochondrial calcium concentration test, and cell viability assay were performed. Besides, reactive oxygen species (ROS) levels, ATP levels, mitochondrial copy numbers, mitochondrial complex I, II, and cytochrome c functions were measured. Results: The p.E411D variant was found in a patient with attention deficit-hyperactive disorder (ADHD), and moderate intellectual disability (ID). This mutant demonstrated reduced calcium current density, mRNA, and protein expression, and it was localized in the nucleus, cytoplasm, lysosome, and mitochondria. It exhibited an accelerated apoptosis rate, impaired autophagy, and mitophagy. It also demonstrated compromised mitochondrial cytochrome c oxidase, complex I, and II enzymes, abnormal mitochondrial copy numbers, low ATP levels, abnormal mitochondria fluorescence intensity, impaired mitochondrial fusion and fission, and elevated mitochondrial calcium ions. The p.V622G variant was identified in a patient who presented with West syndrome and moderate global developmental delay. The p.A272V variant was found in a patient who presented with epilepsy and mild ID. Both mutants (p.V622G and p.A272V) exhibited reduced calcium current densities, decreased mRNA and protein expressions, and they were localized in the nucleus, cytoplasm, lysosome, and mitochondria. They exhibited accelerated apoptosis and proliferation rates, impaired autophagy, and mitophagy. They also exhibited abnormal mitochondrial cytochrome c oxidase, complex I and II enzymes, abnormal mitochondrial copy numbers, low ATP, high ROS levels, abnormal mitochondria fluorescence intensity, impaired mitochondrial fusion and fission, as well as elevated mitochondrial calcium ions. Conclusion: The p.E411D, p.V622G and p.A272V mutations of human CACNA1C reduce the expression level of CACNA1C proteins, and impair mitochondrial and lysosomal functions. These effects induced by CACNA1C variants may contribute to the pathogenesis of CACNA1C-related disorders.

11.
Adv Exp Med Biol ; 1415: 319-325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440051

RESUMEN

Transcription factor EB (TFEB) plays a very important role in the maintenance of cellular homeostasis. TFEB is a transcription factor that regulates the expression of several genes in the Coordinated Lysosomal Expression and Regulation (CLEAR) network. The CLEAR network genes are known to regulate many processes associated with the autophagy pathway and lysosome biogenesis. Lysosomes, which are degradative organelles in the cell, are associated with several cellular mechanisms, such as autophagy and phagocytosis. Recent studies have shown that TFEB dysregulation and lysosomal dysfunction are associated with several degenerative diseases. Thus, enhancing TFEB activity and accompanied induction of lysosomal function and autophagy can have tremendous therapeutic potential for the treatment of several degenerative diseases including age-related macular degeneration (AMD). In this chapter, we briefly illustrate the expression and regulation of TFEB in response to several cellular stressors and discuss the effects of TFEB overexpression to induce cellular clearance functions.


Asunto(s)
Regulación de la Expresión Génica , Lisosomas , Lisosomas/metabolismo , Factores de Transcripción/metabolismo , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/farmacología
12.
Theranostics ; 13(9): 2825-2842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284455

RESUMEN

Rationale: Nicotine has been reported to be a strong risk factor for atherosclerosis. However, the underlying mechanism by which nicotine controls atherosclerotic plaque stability remain largely unknown. Objective: The aim of this study was to evaluate the impact of lysosomal dysfunction mediated NLRP3 inflammasome activation in vascular smooth muscle cell (VSMC) on atherosclerotic plaque formation and stability in advanced atherosclerosis at the brachiocephalic arteries (BA). Methods and Results: Features of atherosclerotic plaque stability and the markers for NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome were monitored in the BA from nicotine or vehicle-treated apolipoprotein E deficient (Apoe-/-) mice fed with Western-type diet (WD). Nicotine treatment for 6 weeks accelerated atherosclerotic plaque formation and enhanced the hallmarks of plaque instability in BA of Apoe-/- mice. Moreover, nicotine elevated interleukin 1 beta (IL-1ß) in serum and aorta and was preferred to activate NLRP3 inflammasome in aortic vascular smooth muscle cells (VSMC). Importantly, pharmacological inhibition of Caspase1, a key downstream target of NLRP3 inflammasome complex, and genetic inactivation of NLRP3 significantly restrained nicotine-elevated IL-1ß in serum and aorta, as well as nicotine-stimulated atherosclerotic plaque formation and plaque destabilization in BA. We further confirmed the role of VSMC-derived NLRP3 inflammasome in nicotine-induced plaque instability by using VSMC specific TXNIP (upstream regulator of NLRP3 inflammasome) deletion mice. Mechanistic study further showed that nicotine induced lysosomal dysfunction resulted in cathepsin B cytoplasmic release. Inhibition or knockdown of cathepsin B blocked nicotine-dependent inflammasome activation. Conclusions: Nicotine promotes atherosclerotic plaque instability by lysosomal dysfunction-mediated NLRP3 inflammasome activation in vascular smooth muscle cells.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Catepsina B , Nicotina/efectos adversos , Músculo Liso Vascular , Aterosclerosis/genética , Apolipoproteínas E/genética
13.
Environ Toxicol ; 38(9): 2100-2110, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37209385

RESUMEN

Diallyl sulfide (DAS), as a major component of garlic extracts, has been shown to inhibit growth of hepatocellular carcinoma cells (HCC), but the underlying mechanism is still elusive. In this study, we aimed to explore the involvement of autophagy in DAS-induced growth inhibition of HepG2 and Huh7 hepatocellular carcinoma cells. We studied growth of DAS-treated HepG2 and Huh7 cells using the MTS and clonogenic assays. Autophagic flux was examined by immunofluorescence and confocal microscopy. The expression levels of autophagy-related proteins AMPK, mTOR, p62, LC3-II, LAMP1, and cathepsin D in the HepG2 and Huh7 cells treated with DAS as well as the tumors formed by HepG2 cells in the nude mice in the presence or absence of DAS were examined using western blotting and immunohistochemistry analysis. We found that DAS treatment induced activation of AMPK/mTOR, and accumulation of LC3-II and p62 both in vivo and in vitro. DAS inhibited autophagic flux through blocking the fusion of autophagosomes with lysosomes. Furthermore, DAS induced an increase in lysosomal pH and inhibition of Cathepsin D maturation. Co-treatment with an autophagy inhibitor (Chloroquine, CQ) further enhanced the growth inhibitory activity of DAS in HCC cells. Thus, our findings indicate that autophagy is involved in DAS-mediated growth inhibition of HCC cells both in vitro and in vivo.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Catepsina D/metabolismo , Ratones Desnudos , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Serina-Treonina Quinasas TOR/metabolismo , Lisosomas/metabolismo
14.
Life Sci ; 320: 121508, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36858315

RESUMEN

AIMS: Elevated iron levels in the affected areas of brain are linked to several neurodegenerative diseases including Parkinson's disease (PD). This study investigated the influence of peripheral iron overload in peripheral tissues, as well as its entry into the brain regions on lysosomal functions. The survival of dopaminergic neurons in the nigrostriatal system and motor coordination were also investigated. MAIN METHODS: An intraperitoneal injection of iron dextran (FeDx) mouse model was established. Western blot was used to detect iron deposition and lysosomal functions in the liver, spleen, hippocampal (HC), striatum (STR), substantia nigra (SN) and olfactory bulb (OB). Iron in serum and cerebrospinal fluid (CSF) was determined by an iron assay kit. Immunofluorescence and immunohistochemical staining were applied to detect dopaminergic neurons and fibers. Motor behavior was evaluated by gait analysis. KEY FINDINGS: Iron was deposited consistently in the liver and spleen, and serum iron was elevated. While iron deposition occurred late in the HC, STR and SN, without apparently affecting CSF iron levels. Although cathepsin B (CTSB), cathepsin D (CTSD), glucocerebrosidase (GCase) and lysosome integrated membrane protein 2 (LIMP-2) protein levels were dramatically up-regulated in the liver and spleen, they were almost unchanged in the brain regions. However, CTSB was up-regulated in acute iron-overloaded OB and primary cultured astrocytes. The number of dopaminergic neurons in the SN remained unchanged, and mice did not exhibit significant motor incoordination. SIGNIFICANCE: Intraperitoneal injection of FeDx in mice induces largely peripheral iron overload while not necessarily sufficient to cause severe disruption of the nigrostriatal system.


Asunto(s)
Dextranos , Sobrecarga de Hierro , Ratones , Animales , Dextranos/metabolismo , Inyecciones Intraperitoneales , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Complejo Hierro-Dextran/toxicidad , Complejo Hierro-Dextran/metabolismo , Hierro/metabolismo , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sobrecarga de Hierro/inducido químicamente , Sobrecarga de Hierro/metabolismo
15.
Cell Biol Toxicol ; 39(1): 183-199, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34523043

RESUMEN

The autophagy-mediated lysosomal pathway plays an important role in conferring stress tolerance to tumor cells during cellular stress such as increased metabolic demands. Thus, targeted disruption of this function and inducing lysosomal cell death have been proved to be a useful cancer therapeutic approach. In this study, we reported that octyl syringate (OS), a novel phenolic derivate, was preferentially cytotoxic to various cancer cells but was significantly less cytotoxic to non-transformed cells. Treatment with OS resulted in non-apoptotic cell death in a caspase-independent manner. Notably, OS not only enhanced accumulation of autophagic substrates, including lapidated LC3 and sequestosome-1, but also inhibited their degradation via an autophagic flux. In addition, OS destabilized the lysosomal function, followed by the intracellular accumulation of the non-digestive autophagic substrates such as bovine serum albumin and stress granules. Furthermore, OS triggered the release of lysosomal enzymes into the cytoplasm that contributed to OS-induced non-apoptotic cell death. Finally, we demonstrated that OS was well tolerated and reduced tumor growth in mouse xenograft models. Taken together, our study identifies OS as a novel anticancer agent that induces lysosomal destabilization and subsequently inhibits autophagic flux and further supports development of OS as a lysosome-targeting compound in cancer therapy. • Octyl syringate, a phenolic derivate, is preferentially cytotoxic to various cancer cells. • Octyl syringate destabilizes the lysosomal function. • Octyl syringate blocks the autophagic flux. • Octyl syringate is a potential candidate compound for cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Ratones , Animales , Humanos , Apoptosis , Antineoplásicos/farmacología , Muerte Celular , Autofagia , Lisosomas/metabolismo , Neoplasias/metabolismo
16.
Biochim Biophys Acta Gen Subj ; 1867(2): 130269, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36379399

RESUMEN

Pseudomonas quinolone signal (PQS) is a quorum-sensing molecule associated with Pseudomonas aeruginosa that regulates quorum sensing, extracellular vesicle biogenesis, iron acquisition, and the secretion of virulence factors. PQS has been shown to have immunomodulatory effects on the host. It induces oxidative stress, modulates cytokine levels, and activates regulated cell death in the host. In this study, we investigated the effects of PQS (10 µM) on host organelle dynamics and dysfunction in human macrophages at the interphase of endoplasmic reticulum (ER), mitochondria, and lysosome. This study showed that PQS increases cytosolic Ca+2 levels and elevates ER stress, as evidenced by increased expression of BiP and activation of the PERK-CHOP axis of unfolded protein response (UPR). Moreover, PQS also negatively affects mitochondria by disrupting mitochondrial membrane potential and increasing mitochondrial ROS generation (mROS). Additionally, PQS stimulation decreased the number of acridine orange-positive lysosomes, indicating lysosomal destabilization. Furthermore, PQS-induced lysosomal destabilization also induces overexpression of the lysosomal stress-responsive gene TFEB. Besides organelle dysfunction, PQS dysregulates inflammation-related genes by upregulating NLRC4, TMS1, and Caspase 1 while downregulating NLRP3 and IL-1ß. Also, PQS increases gene expression of pro-inflammatory cytokines (IL-6, TNF-α, and IFN-γ). In conclusion, our findings suggest that PQS negatively affects human macrophages by interfering with organelle function and dysregulating inflammatory response. Consequently, this study provides crucial insight into PQS-driven macrophage dysfunction and may contribute to a better understanding of Pseudomonas aeruginosa-associated infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Orgánulos , Macrófagos , Inflamación
17.
Autophagy ; 19(6): 1874-1875, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36286607

RESUMEN

Newly emerging transformed epithelial cells are recognized and apically removed by surrounding normal cells through a biological event termed "cell competition". However, little is known about the mechanisms underlying this process. In a recent study, we describe that RASG12V/RasV12-transformed cells surrounded by normal cells exhibit decreased lysosomal activity accompanied with accumulation of autophagosomes. Restoration of low lysosomal activity or inhibition of autophagosome formation significantly antagonizes apical extrusion of RASG12V cells, suggesting that non-degradable autophagosomes are required for cell competition. Notably, analysis of a cell competition mouse model demonstrates that macroautophagy/autophagy-ablated RASG12V cells are less readily eliminated by cell competition, and remaining transformed cells destroy ductal integrity, leading to chronic pancreatitis. Thus, our findings illuminate a critical role for non-degradable autophagosomes in cell competition and reveal a homeostasis-preserving role of autophagy upon emergence of transformed cells.


Asunto(s)
Autofagia , Células Epiteliales , Ratones , Animales , Autofagosomas , Macroautofagia , Lisosomas
18.
Autophagy ; 19(3): 886-903, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35982578

RESUMEN

Dysfunction in the macrophage lysosomal system including reduced acidity and diminished degradative capacity is a hallmark of atherosclerosis, leading to blunted clearance of excess cellular debris and lipids in plaques and contributing to lesion progression. Devising strategies to rescue this macrophage lysosomal dysfunction is a novel therapeutic measure. Nanoparticles have emerged as an effective platform to both target specific tissues and serve as drug delivery vehicles. In most cases, administered nanoparticles are taken up non-selectively by the mononuclear phagocyte system including monocytes/macrophages leading to the undesirable degradation of cargo in lysosomes. We took advantage of this default route to target macrophage lysosomes to rectify their acidity in disease states such as atherosclerosis. Herein, we develop and test two commonly used acidic nanoparticles, poly-lactide-co-glycolic acid (PLGA) and polylactic acid (PLA), both in vitro and in vivo. Our results in cultured macrophages indicate that the PLGA-based nanoparticles are the most effective at trafficking to and enhancing acidification of lysosomes. PLGA nanoparticles also provide functional benefits including enhanced lysosomal degradation, promotion of macroautophagy/autophagy and protein aggregate removal, and reduced apoptosis and inflammasome activation. We demonstrate the utility of this system in vivo, showing nanoparticle accumulation in, and lysosomal acidification of, macrophages in atherosclerotic plaques. Long-term administration of PLGA nanoparticles results in significant reductions in surrogates of plaque complexity with reduced apoptosis, necrotic core formation, and cytotoxic protein aggregates and increased fibrous cap formation. Taken together, our data support the use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in the treatment of atherosclerosis.Abbreviations: BCA: brachiocephalic arteries; FACS: fluorescence activated cell sorting; FITC: fluorescein-5-isothiocyanatel; IL1B: interleukin 1 beta; LAMP: lysosomal associated membrane protein; LIPA/LAL: lipase A, lysosomal acid type; LSDs: lysosomal storage disorders; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: mean fluorescence intensity; MPS: mononuclear phagocyte system; PEGHDE: polyethylene glycol hexadecyl ether; PLA: polylactic acid; PLGA: poly-lactide-co-glycolic acid; SQSTM1/p62: sequestosome 1.


Asunto(s)
Aterosclerosis , Nanopartículas , Placa Aterosclerótica , Humanos , Autofagia , Aterosclerosis/patología , Macrófagos/metabolismo , Placa Aterosclerótica/patología , Lisosomas/metabolismo , Ácidos/metabolismo , Poliésteres/metabolismo
19.
Pharmaceutics ; 14(11)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36365106

RESUMEN

Natural molecules with favorable safety profile and broad pharmacological activities have shown great promise in the treatment of various neurodegenerative diseases (NDDs). Current studies applying natural molecules against NDDs mainly focus on well-recognized conventional pathogenesis, such as toxic protein aggregation, oxidative stress, and neuroinflammation. However, accumulating evidence reveals that some underlying pathogenic mechanisms are involved earlier and more deeply in the occurrence and development of NDDs, such as ferroptosis, energy metabolism disorders, autophagy-lysosomal dysfunction, endoplasmic reticulum stress, and gut dysbiosis. Therefore, determining whether natural molecules can play therapeutic roles in these emerging pathogenic mechanisms will help clarify the actual targets of natural molecules and their future clinical translation. Furthermore, how to overcome the inability of most poorly water-soluble natural molecules to cross the blood-brain barrier is also critical for effective NDD treatment. This review summarizes emerging pathogenic mechanisms targeted by natural molecules for NDD treatment, proposes nanocarrier-based drug delivery and intranasal administration to enhance the intracerebral bioavailability of natural molecules, and summarizes the current state of clinical research on natural product-based therapeutics.

20.
Ecotoxicol Environ Saf ; 248: 114333, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36446170

RESUMEN

PM2.5 exposure can be associated with the onset of neurodegenerative diseases, with oxidative stress-induced cellular homeostasis disruption and cell death as one of the main mechanisms. However, the exact cellular and molecular processes are still rarely investigated. Autophagy and KEAP1-NRF2 (Kelch-like ECH-Associating protein 1-nuclear factor erythroid 2 related factor 2) signaling pathway are two main cellular defense systems for maintaining cellular homeostasis and resisting oxidative stress. In this study, we primarily investigated the role of autophagy and KEAP1-NRF2 in regulating cell death resulting from PM2.5 exposure in mouse neuroblastoma N2a cells. Our results showed that PM2.5 exposure disrupted autophagic flux by impairing lysosomal function, including lysosomal alkalinization, increased lysosome membrane permeabilization (LMP), and Cathepsin B release. Furthermore, dysregulated autophagy enhances NRF2 activity in a p62-dependent manner, which then initiates the expression of a series of antioxidant genes and increases cellular insensitivity to ferroptosis. Meanwhile, autophagy dysfunction impairs the intracellular degradation of ferroptosis related proteins such as GPX4 and ferritin. As these proteins accumulate, cells also become less sensitive to ferroptosis. LMP-associated cell death may be the main mechanism of PM2.5-induced N2a cytotoxicity. Our results may provide insights into the mechanisms of PM2.5-induced neurotoxicity and predict effective prevention and treatment strategies.


Asunto(s)
Ferroptosis , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/genética , Lisosomas , Muerte Celular , Autofagia , Material Particulado/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA