Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 299: 120168, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36876783

RESUMEN

TEMPO-oxidized cellulose nanofibril (CNF) hydrogels or cellulose nanocrystal (CNC) hydrogels can now be obtained at high concentrations (>10 wt%) and used to fabricate biobased materials and structures. Thus, it is required to control and model their rheology in process-induced multiaxial flow conditions using 3D tensorial models. For that purpose, it is necessary to investigate their elongational rheology. Thus, concentrated TEMPO-oxidized CNF and CNC hydrogels were subjected to monotonic and cyclic lubricated compression tests. These tests revealed for the first time that the complex compression rheology of these two electrostatically stabilised hydrogels combines viscoelasticity and viscoplasticity. The effect of their nanofibre content and aspect ratio on their compression response was clearly emphasised and discussed. The ability of a non-linear elasto-viscoplastic model to reproduce the experiments was assessed. Even if some discrepancies were observed at low or high strain rates, the model was consistent with the experiments.

2.
Carbohydr Polym ; 296: 119911, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36088019

RESUMEN

Processing cellulose nanofibril (CNF) hydrogels with a high concentration is a solution to reduce logistics costs and drying energy and to produce CNF-based materials with good dimensional stability. However, the rheology of concentrated and highly concentrated CNF hydrogels is poorly understood due to the difficulties to characterise them using standard shear rheometers. In this study, enzymatic CNF hydrogels in the concentrated and highly concentrated regimes (3-13.6 wt%) were subjected to lubricated compression at various strain rates. At low strains, compression curves exhibited a linear regime. At higher strains and low strain rates, a heterogeneous and marked hardening of stress levels was observed and accompanied with a two-phase flow with significant fluid segregation and network consolidation. At high strain rates, a homogeneous and incompressible one-phase plateau-like regime progressively established. In this regime, a yield stress was measured and compared with literature data, showing a good agreement with them.


Asunto(s)
Celulosa , Hidrogeles , Fenómenos Físicos , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA