RESUMEN
RATIONALE: The use of electrical stimulation therapy to treat epilepsy is currently being studied in experimental animals and patients. Our study was designed to evaluate the effects of electrical stimulation applied in the thalamic reticular nucleus (TRN) on the development of pentylentetrazole-induced seizures. MATERIALS AND METHODS: Experiments were performed using male Wistar rats with electrodes stereotaxically implanted in the left TRN. Epidural EEG recording screws were implanted in the motor cortex for EEG recording. The rats were classified in seven groups: one sham group, four groups receiving either high- or low-frequency preemptive stimulation for either 10 or 60 minutes, and two groups receiving either high- or low-frequency responsive stimulation for ten minutes. All animals received a single dose of pentylentetrazole throughout five days. EEG recordings were obtained from the cortex and were evaluated to assess ictal behavior more than 45 to 90 minutes. RESULTS: Ten minutes of preemptive high-frequency stimulation in the TRN induced a significant decrease in seizure severity compared to 60 minutes of preemptive stimulation and ten minutes of responsive stimulation. Additionally, ten minutes of preemptive high-frequency stimulation protected against death as aftereffect of status epilepticus. The spike-wave complex frequency was not modified. CONCLUSIONS: These data could contribute to the characterization of the TRN in mediating the initiation and spreading of seizure activity and provide preclinical support for optimal parameters to use to obtain beneficial effects against convulsive activity.
Asunto(s)
Estimulación Encefálica Profunda/métodos , Pentilenotetrazol/toxicidad , Convulsiones/inducido químicamente , Convulsiones/terapia , Núcleos Talámicos , Animales , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar , Convulsiones/fisiopatología , Núcleos Talámicos/fisiopatología , Resultado del TratamientoRESUMEN
The induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission entails pre- and postsynaptic Ca2+ signals, which represent transient increments in cytoplasmic free Ca2+ concentration. In diverse synapse types, Ca2+ release from intracellular stores contributes to amplify the Ca2+ signals initially generated by activation of neuronal Ca2+ entry pathways. Here, we used hippocampal slices from young male rats to evaluate whether pharmacological activation or inhibition of Ca2+ release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels modifies LTD induction at Schaffer collateral-CA1 synapses. Pre-incubation of slices with ryanodine (1 µM, 1 h) or caffeine (1 mM, 30 min) to promote RyR-mediated Ca2+ release facilitated LTD induction by low frequency stimulation (LFS), but did not affect the amplitude of synaptic transmission, the profiles of field excitatory postsynaptic potentials (fEPSP) or the paired-pulse (PP) responses. Conversely, treatment with inhibitory ryanodine (20 µM, 1 h) to suppress RyR-mediated Ca2+ release prevented LTD induction, but did not affect baseline synaptic transmission or PP responses. Previous literature reports indicate that LTD induction requires presynaptic CaMKII activity. We found that 1 h after applying the LTD induction protocol, slices displayed a significant increase in CaMKII phosphorylation relative to the levels exhibited by un-stimulated (naïve) slices. In addition, LTD induction (1 h) enhanced the phosphorylation of the presynaptic protein Synapsin I at a CaMKII-dependent phosphorylation site, indicating that LTD induction stimulates presynaptic CaMKII activity. Pre-incubation of slices with 20 µM ryanodine abolished the increased CaMKII and Synapsin I phosphorylation induced by LTD, whereas naïve slices pre-incubated with inhibitory ryanodine displayed similar CaMKII and Synapsin I phosphorylation levels as naïve control slices. We posit that inhibitory ryanodine suppressed LTD-induced presynaptic CaMKII activity, as evidenced by the suppression of Synapsin I phosphorylation induced by LTD. Accordingly, we propose that presynaptic RyR-mediated Ca2+ signals contribute to LTD induction at Schaffer collateral-CA1 synapses.