Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(23): 7108-7125, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054745

RESUMEN

Climate change is reorganizing the planet's biodiversity, necessitating proactive management of species and habitats based on spatiotemporal predictions of distributions across climate scenarios. In marine settings, climatic changes will predominantly manifest via warming, ocean acidification, deoxygenation, and changes in hydrodynamics. Lophelia pertusa, the main reef-forming coral present throughout the deep Atlantic Ocean (>200 m), is particularly sensitive to such stressors with stark reductions in suitable habitat predicted to accrue by 2100 in a business-as-usual scenario. However, with new occurrence data for this species along with higher-resolution bathymetry and climate data, it may be possible to locate further climatic refugia. Here, we synthesize new and published biogeographic, geomorphological, and climatic data to build ensemble, multi-scale habitat suitability models for L. pertusa on the continental margin of the southeast United States (SEUS). We then project these models in two timepoints (2050, 2100) and four climate change scenarios to characterize the occurrence probability of this critical cold-water coral (CWC) habitat now and in the future. Our models reveal the extent of reef habitat in the SEUS and corroborate it as the largest currently known essentially continuous CWC reef province on earth, and also predict abundance of L. pertusa to identify key areas, including those outside areas currently protected from bottom-contact fishing. Drastic reductions in L. pertusa climatic suitability index emerged primarily after 2050 and were concentrated at the shallower end (<~550 m) of the regional distribution under the Gulf Stream main axis. Our results thus suggest a depth-driven climate refuge effect where deeper, cooler reef sites experience lesser declines. The strength of this effect increases with climate scenario severity. Taken together, our study has implications for the regional and global management of this species, portending changes in the biodiversity reliant on CWC habitats and the critical ecosystem services they provide.


Asunto(s)
Antozoos , Animales , Refugio de Fauna , Arrecifes de Coral , Ecosistema , Concentración de Iones de Hidrógeno , Agua de Mar , Cambio Climático , Agua , Sudeste de Estados Unidos
2.
Proc Biol Sci ; 288(1965): 20212117, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34905712

RESUMEN

Cold-water corals are threatened by global warming, especially in the Mediterranean Sea where they live close to their upper known thermal limit (i.e. 13°C), yet their response to rising temperatures is not well known. Here, temperature effects on Lophelia pertusa and Madrepora oculata holobionts (i.e. the host and its associated microbiome) were investigated. We found that at warmer seawater temperature (+2°C), L. pertusa showed a modification of its microbiome prior to a change in behaviour, leading to lower energy reserves and skeletal growth, whereas M. oculata was more resilient. At extreme temperature (+4°C), both species quickly lost their specific bacterial signature followed by lower physiological activity prior to death. In addition, our results showing the holobionts' negative response to colder temperatures (-3°C), suggest that Mediterranean corals live close to their thermal optimum. The species-specific response to temperature change highlights that global warming may affect dramatically the main deep-sea reef-builders, which would alter the associated biodiversity and related ecosystem services.


Asunto(s)
Antozoos , Microbiota , Animales , Antozoos/fisiología , Arrecifes de Coral , Mar Mediterráneo , Agua de Mar , Agua
3.
Proc Biol Sci ; 288(1956): 20211260, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34375552

RESUMEN

The occurrence and proliferation of reef-forming corals is of vast importance in terms of the biodiversity they support and the ecosystem services they provide. The complex three-dimensional structures engineered by corals are comprised of both live and dead coral, and the function, growth and stability of these systems will depend on the ratio of both. To model how the ratio of live : dead coral may change, the 'Goldilocks Principle' can be used, where organisms will only flourish if conditions are 'just right'. With data from particle imaging velocimetry and numerical smooth particle hydrodynamic modelling with two simple rules, we demonstrate how this principle can be applied to a model reef system, and how corals are effectively optimizing their own local flow requirements through habitat engineering. Building on advances here, these approaches can be used in conjunction with numerical modelling to investigate the growth and mortality of biodiversity supporting framework in present-day and future coral reef structures.


Asunto(s)
Antozoos , Animales , Biodiversidad , Arrecifes de Coral , Ecosistema , Hidrodinámica
4.
J Microbiol Methods ; 187: 106277, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34237402

RESUMEN

Recently, studies have begun to identify oil-degrading bacteria and host-taxon specific bacterial assemblages associated with the coral holobiont, including deep-sea cold-water corals, which are thought to provide metabolic functions and additional carbon sources to their coral hosts. Here, we describe the identification of Marinobacter on the soft tissue of Lophelia pertusa coral polyps by Catalyzed Reporter Deposition Fluorescence in situ Hybridization (CARD-FISH). L. pertusa samples from three reef sites in the northeast Atlantic (Logachev, Mingulay and Pisces) were collected at depth by vacuum seal to eliminate contamination issues. After decalcification, histological processing and sagittal sectioning of the soft coral polyp tissues, the 16S rRNA-targeted oligonucleotide HRP-labelled probe Mrb-0625-a, and Cyanine 3 (Cy3)-labelled tyramides, were used to identify members of the hydrocarbon-degrading genus Marinobacter. Mrb-0625-a-hybridized bacterial cell signals were detected in different anatomical sites of all polyps collected from each of the three reef sites, suggesting a close, possibly intimate, association between them, but the purpose of which remains unknown. We posit that Marinobacter, and possibly other hydrocarbon-degrading bacteria associated with Lophelia, may confer the coral with the ability to cope with toxic levels of hydrocarbons in regions of natural oil seepage and where there is an active oil and gas industry presence.


Asunto(s)
Antozoos/microbiología , Arrecifes de Coral , Hidrocarburos/metabolismo , Marinobacter/aislamiento & purificación , Marinobacter/metabolismo , Animales , Océano Atlántico , Biodegradación Ambiental , Catálisis , Hibridación Fluorescente in Situ , Simbiosis
5.
Mar Environ Res ; 158: 104996, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32501265

RESUMEN

Fossil fuel drilling operations create sediment plumes and release waste materials into the ocean. These operations sometimes occur close to sensitive marine ecosystems, such as cold-water corals. While there have been several studies on the effects of energy industry activities on adult corals, there is very little information on potential impacts to their early life history stages. Larval stages of many marine organisms, including cold-water corals use cilia as a means of feeding and swimming, and if these structures become clogged with suspended particulates, the larvae may sink and be lost to the system. The objective of this study was to understand the response of Lophelia pertusa larvae to a different drilling waste components, and assess post-exposure recovery. Larvae of two ages (eight and 21 days) were exposed to a range of concentrations of bentonite, barite and drill cuttings. Larval sensitivity was assessed using the concentration at which 50% of the larvae showed behavioral effects (EC50) or lethal effects (LC50). Larvae showed greatest sensitivity to bentonite, followed by barite and drill cuttings, and also showed age-related responses that differed among the test materials. Post exposure recovery was variable across materials, with larvae exposed to bentonite having the lowest recovery rates. Understanding the vulnerability of early life history stages to human activities can help inform management strategies to preserve reproductive capacity of important marine ecosystems.


Asunto(s)
Antozoos , Sulfato de Bario , Bentonita , Animales , Sulfato de Bario/toxicidad , Bentonita/toxicidad , Ecosistema , Sedimentos Geológicos , Larva , Industria del Petróleo y Gas
6.
Front Microbiol ; 11: 275, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153549

RESUMEN

Cold-water coral (CWC) ecosystems provide niches and nurseries for many deep-sea species. Lophelia pertusa and Madrepora oculata, two cosmopolitan species forming three dimensional structures, are found in cold waters under specific hydrological regimes that provide food and reoxygenation. There is now more information about their feeding, their growth and their associated microbiome, however, little is known about the influence of their habitat on their physiology, or on the composition of their bacterial community. The goal of this study was to test if the habitat of L. pertusa and M. oculata influenced the hosts associated bacterial communities, the corals' survival and their skeletal growth along the slope of a submarine canyon. A transplant experiment was used, based on sampling and cross-redeployment of coral fragments at two contrasted sites, one deeper and one shallower. Our results show that M. oculata had significantly higher skeletal growth rates in the shallower site and that it had a specific microbiome that did not change between sites. Inversely, L. pertusa had the same growth rates at both sites, but its bacterial community compositions differed between locations. Additionally, transplanted L. pertusa acquired the microbial signature of the local corals. Thus, our results suggest that M. oculata prefer the shallower habitat.

7.
PeerJ ; 7: e7586, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579574

RESUMEN

Coral reef resilience depends on the balance between carbonate precipitation, leading to reef growth, and carbonate degradation, for example, through bioerosion. Changes in environmental conditions are likely to affect the two processes differently, thereby shifting the balance between reef growth and degradation. In cold-water corals estimates of accretion-erosion processes in their natural habitat are scarce and solely live coral growth rates were studied with regard to future environmental changes in the laboratory so far, limiting our ability to assess the potential of cold-water coral reef ecosystems to cope with environmental changes. In the present study, growth rates of the two predominant colour morphotypes of live Lophelia pertusa as well as bioerosion rates of dead coral framework were assessed in different environmental settings in Norwegian cold-water coral reefs in a 1-year in situ experiment. Net growth (in weight gain and linear extension) of live L. pertusa was in the lower range of previous estimates and did not significantly differ between inshore (fjord) and offshore (open shelf) habitats. However, slightly higher net growth rates were obtained inshore. Bioerosion rates were significantly higher on-reef in the fjord compared to off-reef deployments in- and offshore. Besides, on-reef coral fragments yielded a broader range of individual growth and bioerosion rates, indicating higher turnover in live reef structures than off-reef with regard to accretion-bioerosion processes. Moreover, if the higher variation in growth rates represents a greater variance in (genetic) adaptations to natural environmental variability in the fjord, inshore reefs could possibly benefit under future ocean change compared to offshore reefs. Although not significantly different due to high variances between replicates, growth rates of orange branches were consistently higher at all sites, while mortality was statistically significantly lower, potentially indicating higher stress-resistance than the less pigmented white phenotype. Comparing the here measured rates of net accretion of live corals (regardless of colour morphotype) with net erosion of dead coral framework gives a first estimate of the dimensions of both processes in natural cold-water coral habitats, indicating that calcium carbonate loss through bioerosion amounts to one fifth to one sixth of the production rates by coral calcification (disregarding accretion processes of other organisms and proportion of live and dead coral framework in a reef). With regard to likely accelerating bioerosion and diminishing growth rates of corals under ocean acidification, the balance of reef accretion and degradation may be shifted towards higher biogenic dissolution in the future.

8.
Environ Pollut ; 253: 322-329, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31323615

RESUMEN

Plastic pollution has been identified as a major threat for coastal marine life and ecosystems. Here, we test if the feeding behaviour and growth rate of the two most common cold-water coral species, Lophelia pertusa and Madrepora oculata, are affected by micro- or macroplastic exposures. Low-density polyethylene microplastics impair prey capture and growth rates of L. pertusa after five months of exposure. Macroplastic films, mimicking plastic bags trapped on deep-sea reefs, had however a limited impact on L. pertusa growth. This was due to an avoidance behaviour illustrated by the formation of skeletal 'caps' that changed the polyp orientation and allowed its access to food supply. On the contrary, M. oculata growth and feeding were not affected by plastic exposure. Such a species-specific response has the potential to induce a severe change in coral community composition and the associated biodiversity in deep-sea environments.


Asunto(s)
Antozoos/fisiología , Plásticos/toxicidad , Animales , Biodiversidad , Ecosistema , Estudios Longitudinales , Especificidad de la Especie
9.
Microbiome ; 7(1): 90, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182168

RESUMEN

BACKGROUND: Numerous studies have shown that bacteria form stable associations with host corals and have focused on identifying conserved "core microbiomes" of bacterial associates inferred to be serving key roles in the coral holobiont. Because studies tend to focus on only stony corals (order Scleractinia) or soft corals (order Alcyonacea), it is currently unknown if there are conserved bacteria that are shared by both. A meta-analysis was done of 16S rRNA amplicon data from multiple studies generated via identical methodology to allow direct comparisons of bacterial associates across seven deep-sea corals, including both stony and soft species: Anthothela grandiflora, Anthothela sp., Lateothela grandiflora, Lophelia pertusa, Paramuricea placomus, Primnoa pacifica, and Primnoa resedaeformis. RESULTS: Twenty-three operational taxonomic units (OTUs) were consistently present in greater than 50% of the coral samples. Seven amplicon sequence variants (ASVs), five of which corresponded to a conserved OTU, were consistently present in greater than 30% of the coral samples including five or greater coral species. A majority of the conserved sequences had close matches with previously identified coral-associated bacteria. While known to dominate tropical and temperate coral microbiomes, Endozoicomonas were extremely rare or absent from these deep-sea corals. An Endozoicomonas OTU associated with Lo. pertusa in this study was most similar to those from shallow-water stony corals, while an OTU associated with Anthothela spp. was most similar to those from shallow-water gorgonians. CONCLUSIONS: Bacterial sequences have been identified that are conserved at the level of class Anthozoa (i.e., found in both stony and soft corals, shallow and deep). These bacterial associates are therefore hypothesized to play important symbiotic roles and are highlighted for targeted future study. These conserved bacterial associates include taxa with the potential for nitrogen and sulfur cycling, detoxification, and hydrocarbon degradation. There is also some overlap with kit contaminants that need to be resolved. Rarely detected Endozoicomonas sequences are partitioned by whether the host is a stony coral or a soft coral, and the finer clustering pattern reflects the hosts' phylogeny.


Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , Microbiota , Simbiosis , Animales , Antozoos/clasificación , Biodiversidad , Secuencia Conservada , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
Front Microbiol ; 9: 2565, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30420844

RESUMEN

Microbes play a crucial role in sustaining the coral holobiont's functions and in particular under the pressure of environmental stressors. The effect of a changing environment on coral health is now a major branch of research that relies heavily on aquarium experiments. However, the effect of captivity on the coral microbiome remains poorly known. Here we show that different cold-water corals species have different microbiome responses to captivity. For both the DNA and the RNA fraction, Madrepora oculata bacterial communities were maintained for at least 6 months of aquarium rearing, while Lophelia pertusa bacteria changed within a day. Interestingly, bacteria from the genus Endozoicomonas, a ubiquitous symbiont of numerous marine hosts, were resilient and remained active in M. oculata for several months. Our results demonstrate that a good knowledge of the coral microbiome and an understanding of the ecological strategy of the holobiont is needed before designing aquarium experiments.

11.
PeerJ ; 6: e5276, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30042896

RESUMEN

Deep-sea corals can create a highly complex, three-dimensional structure that facilitates sediment accumulation and influences adjacent sediment environments through altered hydrodynamic regimes. Infaunal communities adjacent to different coral types, including reef-building scleractinian corals and individual colonies of octocorals, are known to exhibit higher macrofaunal densities and distinct community structure when compared to non-coral soft-sediment communities. However, the coral types have different morphologies, which may modify the adjacent sediment communities in discrete ways. Here we address: (1) how infaunal communities and their associated sediment geochemistry compare among deep-sea coral types (Lophelia pertusa, Madrepora oculata, and octocorals) and (2) do infaunal communities adjacent to coral habitats exhibit typical regional and depth-related patterns observed in the Gulf of Mexico (GOM). Sediment push cores were collected to assess diversity, composition, numerical abundance, and functional traits of macrofauna (>300 µm) across 450 kilometers in the GOM at depths ranging from 263-1,095 m. Macrofaunal density was highest in L. pertusa habitats, but similar between M. oculata and octocorals habitats. Density overall exhibited a unimodal relationship with depth, with maximum densities between 600 and 800 m. Diversity and evenness were highest in octocoral habitats; however, there was no relationship between diversity and depth. Infaunal assemblages and functional traits differed among coral habitats, with L. pertusa habitats the most distinct from both M. oculata and octocorals. These patterns could relate to differences in sediment geochemistry as L. pertusa habitats contained high organic carbon content but low proportions of mud compared to both M. oculata and octocoral habitats. Distance-based linear modeling revealed depth, mud content, and organic carbon as the primary factors in driving coral infaunal community structure, while geographic location (longitude) was the primary factor in functional trait composition, highlighting both the location and ecological differences of L. pertusa habitats from other coral habitats. Enhanced habitat structural complexity associated with L. pertusa and differences in localized hydrodynamic flow may contribute to the dissimilarities in the communities found among the coral types. Our results suggest a decoupling for infaunal coral communities from the typical depth-related density and diversity patterns present throughout soft-sediment habitats in the GOM, highlighting the importance of deep-sea corals in structuring unique communities in the nearby benthos.

12.
J Toxicol Environ Health A ; 81(10): 361-382, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29537937

RESUMEN

This study aimed at providing confidence in the predictability of the impacts of drill cuttings (DC) discharge on the cold-water coral Lophelia pertusa. L. pertusa was exposed to DC from offshore exploration in the lab with the goal to assess precautionary thresholds of effects. Two exposure scenarios with DC were tested: a long-term (LT) pulsed exposure (12 weeks, peak concentrations: 2-50 mg/L, mean concentrations: 1-25 mg/L) and a short-term (ST) continuous exposure (2.5 weeks, mean concentrations: 4-42 mg/L). After exposure, a recovery period of 16 and 4 weeks was maintained in LT and ST, respectively. While there was an assumption that DC might result in an increase in respiration, decrease in growth, enhanced mucus production, reduced fatty acid content, only a significant rise was noted in skeleton growth at DC 4 mg/L and a significant increase of mucus particulate organic carbon at 25 mg/L at end of the exposure. DC did not markedly reduce prey capture rate consecutive to DC exposure. However, the effect of DC produced an increase of coral polyp activity during exposure and a return to pre-exposure conditions after cessation of DC, and coenosarc was smothered from DC even after a long recovery period (4 weeks). Overall, a DC concentration of 10 mg/L seems to represent a threshold above which changes in coral conditions were observed however with no apparent physiological consequences for the coral within the experimental time scale.


Asunto(s)
Antozoos/fisiología , Exposición a Riesgos Ambientales , Sedimentos Geológicos/análisis , Animales , Relación Dosis-Respuesta a Droga , Monitoreo del Ambiente/métodos , Reproducibilidad de los Resultados , Medición de Riesgo/métodos , Factores de Tiempo
13.
PeerJ ; 5: e3705, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29018595

RESUMEN

Coral growth patterns result from an interplay of coral biology and environmental conditions. In this study colony size and proportion of live and dead skeletons in the cold-water coral (CWC) Lophelia pertusa (Linnaeus, 1758) were measured using video footage from Remotely Operated Vehicle (ROV) transects conducted at the inshore Mingulay Reef Complex (MRC) and at the offshore PISCES site (Rockall Bank) in the NE Atlantic. The main goal of this paper was to explore the development of a simple method to quantify coral growth and its potential application as an assessment tool of the health of these remote habitats. Eighteen colonies were selected and whole colony and dead/living layer size were measured. Live to dead layer ratios for each colony were then determined and analysed. The age of each colony was estimated using previously published data. Our paper shows that: (1) two distinct morphotypes can be described: at the MRC, colonies displayed a 'cauliflower-shaped' morphotype whereas at the PISCES site, colonies presented a more flattened 'bush-shaped' morphotype; (2) living layer size was positively correlated with whole colony size; (3) live to dead layer ratio was negatively correlated to whole colony size; (4) live to dead layer ratio never exceeded 0.27. These results suggest that as a colony develops and its growth rate slows down, the proportion of living polyps in the colony decreases. Furthermore, at least 73% of L. pertusa colonies are composed of exposed dead coral skeleton, vulnerable to ocean acidification and the associated shallowing of the aragonite saturation horizon, with significant implications for future deep-sea reef framework integrity. The clear visual contrast between white/pale living and grey/dark dead portions of the colonies also gives a new way by which they can be visually monitored over time. The increased use of marine autonomous survey vehicles offers an important new platform from which such a surveying technique could be applied to monitor deep-water marine protected areas in the future.

14.
Coral Reefs ; 36(1): 255-268, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32269410

RESUMEN

Cold-water corals form substantial biogenic habitats on continental shelves and in deep-sea areas with topographic highs, such as banks and seamounts. In the Atlantic, many reef and mound complexes are engineered by Lophelia pertusa, the dominant framework-forming coral. In this study, a variety of mapping approaches were used at a range of scales to map the distribution of both cold-water coral habitats and individual coral colonies at the Mingulay Reef Complex (west Scotland). The new ArcGIS-based British Geological Survey (BGS) seabed mapping toolbox semi-automatically delineated over 500 Lophelia reef 'mini-mounds' from bathymetry data with 2-m resolution. The morphometric and acoustic characteristics of the mini-mounds were also automatically quantified and captured using this toolbox. Coral presence data were derived from high-definition remotely operated vehicle (ROV) records and high-resolution microbathymetry collected by a ROV-mounted multibeam echosounder. With a resolution of 0.35 × 0.35 m, the microbathymetry covers 0.6 km2 in the centre of the study area and allowed identification of individual live coral colonies in acoustic data for the first time. Maximum water depth, maximum rugosity, mean rugosity, bathymetric positioning index and maximum current speed were identified as the environmental variables that contributed most to the prediction of live coral presence. These variables were used to create a predictive map of the likelihood of presence of live cold-water coral colonies in the area of the Mingulay Reef Complex covered by the 2-m resolution data set. Predictive maps of live corals across the reef will be especially valuable for future long-term monitoring surveys, including those needed to understand the impacts of global climate change. This is the first study using the newly developed BGS seabed mapping toolbox and an ROV-based microbathymetric grid to explore the environmental variables that control coral growth on cold-water coral reefs.

15.
BMC Evol Biol ; 16(1): 108, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27193263

RESUMEN

BACKGROUND: In recent years, several types of molecular markers and new microscale skeletal characters have shown potential as powerful tools for phylogenetic reconstructions and higher-level taxonomy of scleractinian corals. Nonetheless, discrimination of closely related taxa is still highly controversial in scleractinian coral research. Here we used newly sequenced complete mitochondrial genomes and 30 microsatellites to define the genetic divergence between two closely related azooxanthellate taxa of the family Caryophylliidae: solitary Desmophyllum dianthus and colonial Lophelia pertusa. RESULTS: In the mitochondrial control region, an astonishing 99.8 % of nucleotides between L. pertusa and D. dianthus were identical. Variability of the mitochondrial genomes of the two species is represented by only 12 non-synonymous out of 19 total nucleotide substitutions. Microsatellite sequence (37 loci) analysis of L. pertusa and D. dianthus showed genetic similarity is about 97 %. Our results also indicated that L. pertusa and D. dianthus show high skeletal plasticity in corallum shape and similarity in skeletal ontogeny, micromorphological (septal and wall granulations) and microstructural characters (arrangement of rapid accretion deposits, thickening deposits). CONCLUSIONS: Molecularly and morphologically, the solitary Desmophyllum and the dendroid Lophelia appear to be significantly more similar to each other than other unambiguous coral genera analysed to date. This consequently leads to ascribe both taxa under the generic name Desmophyllum (priority by date of publication). Findings of this study demonstrate that coloniality may not be a robust taxonomic character in scleractinian corals.


Asunto(s)
Antozoos/clasificación , Antozoos/genética , Animales , Antozoos/fisiología , Genoma Mitocondrial , Repeticiones de Microsatélite , Filogenia , Análisis de Secuencia de ADN
16.
Proc Biol Sci ; 282(1813): 20150990, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26290073

RESUMEN

Cold-water corals, such as Lophelia pertusa, are key habitat-forming organisms found throughout the world's oceans to 3000 m deep. The complex three-dimensional framework made by these vulnerable marine ecosystems support high biodiversity and commercially important species. Given their importance, a key question is how both the living and the dead framework will fare under projected climate change. Here, we demonstrate that over 12 months L. pertusa can physiologically acclimate to increased CO2, showing sustained net calcification. However, their new skeletal structure changes and exhibits decreased crystallographic and molecular-scale bonding organization. Although physiological acclimatization was evident, we also demonstrate that there is a negative correlation between increasing CO2 levels and breaking strength of exposed framework (approx. 20-30% weaker after 12 months), meaning the exposed bases of reefs will be less effective 'load-bearers', and will become more susceptible to bioerosion and mechanical damage by 2100.


Asunto(s)
Antozoos/fisiología , Cambio Climático , Agua de Mar/química , Aclimatación , Animales , Antozoos/crecimiento & desarrollo , Océano Atlántico , Calcificación Fisiológica , Dióxido de Carbono/metabolismo , Arrecifes de Coral , Concentración de Iones de Hidrógeno , Océanos y Mares , Respiración , Escocia , Temperatura
17.
Mar Pollut Bull ; 84(1-2): 236-50, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24908516

RESUMEN

Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites.


Asunto(s)
Antozoos , Ecosistema , Monitoreo del Ambiente/métodos , Industria Procesadora y de Extracción/métodos , Petróleo/análisis , Contaminantes Químicos del Agua/química , Animales , Mar del Norte , Noruega , Contaminación por Petróleo
18.
Mar Pollut Bull ; 74(1): 132-40, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23915980

RESUMEN

In laboratory experiments, the cold-water coral Lophelia pertusa was exposed to settling particles. The effects of reef sediment, petroleum drill cuttings and a mix of both, on the development of anoxia at the coral surface were studied using O2, pH and H2S microsensors and by assessing coral polyp mortality. Due to the branching morphology of L. pertusa and the release of coral mucus, accumulation rates of settling material on coral branches were low. Microsensors detected H2S production in only a few samples, and sulfate reduction rates of natural reef sediment slurries were low (<0.3 nmol S cm(-3) d(-1)). While the exposure to sediment clearly reduced the coral's accessibility to oxygen, L. pertusa tolerated both partial low-oxygen and anoxic conditions without any visible detrimental short-term effect, such as tissue damage or death. However, complete burial of coral branches for >24 h in reef sediment resulted in suffocation.


Asunto(s)
Adaptación Fisiológica , Antozoos/fisiología , Sedimentos Geológicos/análisis , Contaminantes del Agua/análisis , Animales , Biodiversidad , Industria Procesadora y de Extracción , Petróleo
19.
Mar Drugs ; 10(6): 1400-1411, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22822381

RESUMEN

The pigmentation and corresponding in vivo and in vitro absorption characteristics in three different deep-water coral species: white and orange Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, collected from the Trondheimsfjord are described. Pigments were isolated and characterized by High-Performance Liquid Chromatography (HPLC) analysis and High-Performance Liquid Chromatography Time-Of-Flight Mass Spectrometer (LC-TOF MS). The main carotenoids identified for all three coral species were astaxanthin and a canthaxanthin-like carotenoid. Soft tissue and skeleton of orange L. pertusa contained 2 times more astaxanthin g(-1) wet weight compared to white L. pertusa. White and orange L. pertusa were characterized with in vivo absorbance peaks at 409 and 473 nm, respectively. In vivo absorbance maxima for P. arborea and P. resedaeformis was typically at 475 nm. The shapes of the absorbance spectra (400-700 nm) were species-specific, indicated by in vivo, in vitro and the corresponding difference spectra. The results may provide important chemotaxonomic information for pigment when bonded to their proteins in vivo, bio-prospecting, and for in situ identification, mapping and monitoring of corals.


Asunto(s)
Antozoos/química , Cantaxantina/química , Carotenoides/química , Pigmentos Biológicos/química , Agua/química , Animales , Antozoos/metabolismo , Cantaxantina/metabolismo , Carotenoides/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Noruega , Pigmentación , Pigmentos Biológicos/metabolismo , Xantófilas/química , Xantófilas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA