Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Radiat Oncol ; 17(1): 184, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384755

RESUMEN

BACKGROUND: Definitive concurrent chemoradiotherapy (CCRT) is the standard treatment for locally advanced non-small cell lung cancer (LANSCLC) patients, but the treatment response and survival outcomes varied among these patients. We aimed to identify pretreatment computed tomography-based radiomics features extracted from tumor and tumor organismal environment (TOE) for long-term survival prediction in these patients treated with CCRT. METHODS: A total of 298 eligible patients were randomly assigned into the training cohort and validation cohort with a ratio 2:1. An integrated feature selection and model training approach using support vector machine combined with genetic algorithm was performed to predict 3-year overall survival (OS). Patients were stratified into the high-risk and low-risk group based on the predicted survival status. Pulmonary function test and blood gas analysis indicators were associated with radiomic features. Dynamic changes of peripheral blood lymphocytes counts before and after CCRT had been documented. RESULTS: Nine features including 5 tumor-related features and 4 pulmonary features were selected in the predictive model. The areas under the receiver operating characteristic curve for the training and validation cohort were 0.965 and 0.869, and were reduced by 0.179 and 0.223 when all pulmonary features were excluded. Based on radiomics-derived stratification, the low-risk group yielded better 3-year OS (68.4% vs. 3.3%, p < 0.001) than the high-risk group. Patients in the low-risk group had better baseline FEV1/FVC% (96.3% vs. 85.9%, p = 0.046), less Grade ≥ 3 lymphopenia during CCRT (63.2% vs. 83.3%, p = 0.031), better recovery of lymphopenia from CCRT (71.4% vs. 27.8%, p < 0.001), lower incidence of Grade ≥ 2 radiation-induced pneumonitis (31.6% vs. 53.3%, p = 0.040), superior tumor remission (84.2% vs. 66.7%, p = 0.003). CONCLUSION: Pretreatment radiomics features from tumor and TOE could boost the long-term survival forecast accuracy in LANSCLC patients, and the predictive results could be utilized as an effective indicator for survival risk stratification. Low-risk patients might benefit more from radical CCRT and further adjuvant immunotherapy. TRIAL REGISTRATION: retrospectively registered.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Linfopenia , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/terapia , Pronóstico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/terapia , Quimioradioterapia/efectos adversos , Quimioradioterapia/métodos , Tomografía Computarizada por Rayos X/métodos
2.
BMC Bioinformatics ; 19(1): 510, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30558539

RESUMEN

BACKGROUND: Predicting prognosis in patients from large-scale genomic data is a fundamentally challenging problem in genomic medicine. However, the prognosis still remains poor in many diseases. The poor prognosis may be caused by high complexity of biological systems, where multiple biological components and their hierarchical relationships are involved. Moreover, it is challenging to develop robust computational solutions with high-dimension, low-sample size data. RESULTS: In this study, we propose a Pathway-Associated Sparse Deep Neural Network (PASNet) that not only predicts patients' prognoses but also describes complex biological processes regarding biological pathways for prognosis. PASNet models a multilayered, hierarchical biological system of genes and pathways to predict clinical outcomes by leveraging deep learning. The sparse solution of PASNet provides the capability of model interpretability that most conventional fully-connected neural networks lack. We applied PASNet for long-term survival prediction in Glioblastoma multiforme (GBM), which is a primary brain cancer that shows poor prognostic performance. The predictive performance of PASNet was evaluated with multiple cross-validation experiments. PASNet showed a higher Area Under the Curve (AUC) and F1-score than previous long-term survival prediction classifiers, and the significance of PASNet's performance was assessed by Wilcoxon signed-rank test. Furthermore, the biological pathways, found in PASNet, were referred to as significant pathways in GBM in previous biology and medicine research. CONCLUSIONS: PASNet can describe the different biological systems of clinical outcomes for prognostic prediction as well as predicting prognosis more accurately than the current state-of-the-art methods. PASNet is the first pathway-based deep neural network that represents hierarchical representations of genes and pathways and their nonlinear effects, to the best of our knowledge. Additionally, PASNet would be promising due to its flexible model representation and interpretability, embodying the strengths of deep learning. The open-source code of PASNet is available at https://github.com/DataX-JieHao/PASNet .


Asunto(s)
Glioblastoma/genética , Glioblastoma/patología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Redes Neurales de la Computación , Programas Informáticos , Área Bajo la Curva , Biomarcadores de Tumor , Glioblastoma/terapia , Humanos , Valor Predictivo de las Pruebas , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA