Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Int ; 127: 94-102, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30909098

RESUMEN

Hexavalent chromium [Cr(VI)] is a priority heavy metal pollutant causing a series of environmental issues, and bio-reduction of Cr(VI) to trivalent chromium can remarkably decrease the environmental risk of Cr(VI). The reduction and resistance abilities of microorganisms to Cr(VI) can be dramatically improved by acclimatization. In the present study, we collected Shewanella oneidensis MR-1 from a 120-day acclimatization by increasing Cr(VI) concentration in the culture media to investigate its adaptation mechanisms under long-term Cr(VI) stress at the proteome level. Tandem mass tag-based quantitative proteomic analysis was performed to study the differences between 9 collected samples. A total of 2500 proteins were quantified from 2723 identified protein groups. Bioinformatics analysis showed that the differentially expressed proteins after the 120-day Cr(VI) acclimatization were mostly related to flagellar assembly, ribosomes, transport, sulfur metabolism, and energy metabolism. The findings of this study present novel insights into the molecular mechanisms for the reduction and resistance of S. oneidensis MR-1 responding to long-term Cr(VI) stress at the proteome level.


Asunto(s)
Cromo/farmacología , Contaminantes Ambientales/toxicidad , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteoma/metabolismo , Shewanella/efectos de los fármacos , Shewanella/metabolismo , Oxidación-Reducción , Proteómica
2.
AIMS Microbiol ; 4(2): 240-260, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31294213

RESUMEN

BACKGROUND: The deep-sea mussels Bathymodiolus azoricus (Bivalvia: Mytilidae) are the dominant macrofauna subsisting at the hydrothermal vents site Menez Gwen in the Mid-Atlantic Ridge (MAR). Their adaptive success in such challenging environments is largely due to their gill symbiotic association with chemosynthetic bacteria. We examined the response of vent mussels as they adapt to sea-level environmental conditions, through an assessment of the relative abundance of host-symbiont related RNA transcripts to better understand how the gill microbiome may drive host-symbiont interactions in vent mussels during hypothetical venting inactivity. RESULTS: The metatranscriptome of B. azoricus was sequenced from gill tissues sampled at different time-points during a five-week acclimatization experiment, using Next-Generation-Sequencing. After Illumina sequencing, a total of 181,985,262 paired-end reads of 150 bp were generated with an average of 16,544,115 read per sample. Metatranscriptome analysis confirmed that experimental acclimatization in aquaria accounted for global gill transcript variation. Additionally, the analysis of 16S and 18S rRNA sequences data allowed for a comprehensive characterization of host-symbiont interactions, which included the gradual loss of gill endosymbionts and signaling pathways, associated with stress responses and energy metabolism, under experimental acclimatization. Dominant active transcripts were assigned to the following KEGG categories: "Ribosome", "Oxidative phosphorylation" and "Chaperones and folding catalysts" suggesting specific metabolic responses to physiological adaptations in aquarium environment. CONCLUSIONS: Gill metagenomics analyses highlighted microbial diversity shifts and a clear pattern of varying mRNA transcript abundancies and expression during acclimatization to aquarium conditions which indicate change in bacterial community activity. This approach holds potential for the discovery of new host-symbiont associations, evidencing new functional transcripts and a clearer picture of methane metabolism during loss of endosymbionts. Towards the end of acclimatization, we observed trends in three major functional subsystems, as evidenced by an increment of transcripts related to genetic information processes; the decrease of chaperone and folding catalysts and oxidative phosphorylation transcripts; but no change in transcripts of gluconeogenesis and co-factors-vitamins.

3.
Fish Shellfish Immunol ; 42(1): 159-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25462464

RESUMEN

Deep-sea hydrothermal vents are extreme habitats that are distributed worldwide in association with volcanic and tectonic events, resulting thus in the establishment of particular environmental conditions, in which high pressure, steep temperature gradients, and potentially toxic concentrations of sulfur, methane and heavy metals constitute driving factors for the foundation of chemosynthetic-based ecosystems. Of all the different macroorganisms found at deep-sea hydrothermal vents, the mussel Bathymodiolus azoricus is the most abundant species inhabiting the vent ecosystems from the Mid-Atlantic Ridge (MAR). In the present study, the effect of long term acclimatization at atmospheric pressure on host-symbiotic associations were studied in light of the ensuing physiological adaptations from which the immune and endosymbiont gene expressions were concomitantly quantified by means of real-time PCR. The expression of immune genes at 0 h, 12 h, 24 h, 36 h, 48 h, 72 h, 1 week and 3 weeks post-capture acclimatization was investigated and their profiles compared across the samples tested. The gene signal distribution for host immune and bacterial genes followed phasic changes in gene expression at 24 h, 1 week and 3 weeks acclimatization when compared to other time points tested during this temporal expression study. Analyses of the bacterial gene expression also suggested that both bacterial density and activity could contribute to shaping the intricate association between endosymbionts and host immune genes whose expression patterns seem to be concomitant at 1 week acclimatization. Fluorescence in situ hybridization was used to assess the distribution and prevalence of endosymbiont bacteria within gill tissues confirming the gradual loss of sulfur-oxidizing (SOX) and methane-oxidizing (MOX) bacteria during acclimatization. The present study addresses the deep-sea vent mussel B. azoricus as a model organism to study how acclimatization in aquaria and the prevalence of symbiotic bacteria are driving the expression of host immune genes. Tight associations, unseen thus far, suggest that host immune and bacterial gene expression patterns reflect distinct physiological responses over the course of acclimatization under aquarium conditions.


Asunto(s)
Aclimatación/inmunología , Bivalvos/inmunología , Regulación de la Expresión Génica/inmunología , Respiraderos Hidrotermales , Animales , Océano Atlántico , Presión Atmosférica , Bivalvos/genética , Análisis por Conglomerados , Cartilla de ADN/genética , Branquias/inmunología , Branquias/microbiología , Cinética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA