Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microlife ; 4: uqad003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223744

RESUMEN

Iron-sulfur (Fe-S) clusters are important cofactors conserved in all domains of life, yet their synthesis and stability are compromised in stressful conditions such as iron deprivation or oxidative stress. Two conserved machineries, Isc and Suf, assemble and transfer Fe-S clusters to client proteins. The model bacterium Escherichia coli possesses both Isc and Suf, and in this bacterium utilization of these machineries is under the control of a complex regulatory network. To better understand the dynamics behind Fe-S cluster biogenesis in E. coli, we here built a logical model describing its regulatory network. This model comprises three biological processes: 1) Fe-S cluster biogenesis, containing Isc and Suf, the carriers NfuA and ErpA, and the transcription factor IscR, the main regulator of Fe-S clusters homeostasis; 2) iron homeostasis, containing the free intracellular iron regulated by the iron sensing regulator Fur and the non-coding regulatory RNA RyhB involved in iron sparing; 3) oxidative stress, representing intracellular H2O2 accumulation, which activates OxyR, the regulator of catalases and peroxidases that decompose H2O2 and limit the rate of the Fenton reaction. Analysis of this comprehensive model reveals a modular structure that displays five different types of system behaviors depending on environmental conditions, and provides a better understanding on how oxidative stress and iron homeostasis combine and control Fe-S cluster biogenesis. Using the model, we were able to predict that an iscR mutant would present growth defects in iron starvation due to partial inability to build Fe-S clusters, and we validated this prediction experimentally.

2.
Front Oncol ; 12: 818641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350575

RESUMEN

Bispecific T-cell engaging therapies harness the immune system to elicit an effective anticancer response. Modulating the immune activation avoiding potential adverse effects such as cytokine release syndrome (CRS) is a critical aspect to realizing the full potential of this therapy. The use of suitable exogenous intervention strategies to mitigate the CRS risk without compromising the antitumoral capability of bispecific antibody treatment is crucial. To this end, computational approaches can be instrumental to systematically exploring the effects of combining bispecific antibodies with CRS intervention strategies. Here, we employ a logical model to describe the action of bispecific antibodies and the complex interplay of various immune system components and use it to perform simulation experiments to improve the understanding of the factors affecting CRS. We performed a sensitivity analysis to identify the comedications that could ameliorate CRS without impairing tumor clearance. Our results agree with publicly available experimental data suggesting anti-TNF and anti-IL6 as possible co-treatments. Furthermore, we suggest anti-IFNγ as a suitable candidate for clinical studies.

3.
Biomedicines ; 9(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34829885

RESUMEN

Personalized medicine aims to tailor treatment to patients based on their individual genetic or molecular background. Especially in diseases with a large molecular heterogeneity, such as diffuse large B-cell lymphoma (DLBCL), personalized medicine has the potential to improve outcome and/or to reduce resistance towards treatment. However, integration of patient-specific information into a computational model is challenging and has not been achieved for DLBCL. Here, we developed a computational model describing signaling pathways and expression of critical germinal center markers. The model integrates the regulatory mechanism of the signaling and gene expression network and covers more than 50 components, many carrying genetic lesions common in DLBCL. Using clinical and genomic data of 164 primary DLBCL patients, we implemented mutations, structural variants and copy number alterations as perturbations in the model using the CoLoMoTo notebook. Leveraging patient-specific genotypes and simulation of the expression of marker genes in specific germinal center conditions allows us to predict the consequence of the modeled pathways for each patient. Finally, besides modeling how genetic perturbations alter physiological signaling, we also predicted for each patient model the effect of rational inhibitors, such as Ibrutinib, that are currently discussed as possible DLBCL treatments, showing patient-dependent variations in effectiveness and synergies.

4.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445252

RESUMEN

Gulf War Illness (GWI) is a persistent chronic neuroinflammatory illness exacerbated by external stressors and characterized by fatigue, musculoskeletal pain, cognitive, and neurological problems linked to underlying immunological dysfunction for which there is no known treatment. As the immune system and the brain communicate through several signaling pathways, including the hypothalamic-pituitary-adrenal (HPA) axis, it underlies many of the behavioral and physiological responses to stressors via blood-borne mediators, such as cytokines, chemokines, and hormones. Signaling by these molecules is mediated by the semipermeable blood-brain barrier (BBB) made up of a monocellular layer forming an integral part of the neuroimmune axis. BBB permeability can be altered and even diminished by both external factors (e.g., chemical agents) and internal conditions (e.g., acute or chronic stress, or cross-signaling from the hypothalamic-pituitary-gonadal (HPG) axis). Such a complex network of regulatory interactions that possess feed-forward and feedback connections can have multiple response dynamics that may include several stable homeostatic states beyond normal health. Here we compare immune and hormone measures in the blood of human clinical samples and mouse models of Gulf War Illness (GWI) subtyped by exposure to traumatic stress for subtyping this complex illness. We do this via constructing a detailed logic model of HPA-HPG-Immune regulatory behavior that also considers signaling pathways across the BBB to neuronal-glial interactions within the brain. We apply conditional interactions to model the effects of changes in BBB permeability. Several stable states are identified in the system beyond typical health. Following alignment of the human and mouse blood profiles in the context of the model, mouse brain sample measures were used to infer the neuroinflammatory state in human GWI and perform treatment simulations using a genetic algorithm to optimize the Monte Carlo simulations of the putative treatment strategies aimed at returning the ill system back to health. We identify several ideal multi-intervention strategies and potential drug candidates that may be used to treat chronic neuroinflammation in GWI.


Asunto(s)
Barrera Hematoencefálica/inmunología , Modelos Inmunológicos , Modelos Neurológicos , Neuroinmunomodulación , Síndrome del Golfo Pérsico , Transducción de Señal , Adulto , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Persona de Mediana Edad , Síndrome del Golfo Pérsico/tratamiento farmacológico , Síndrome del Golfo Pérsico/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
5.
J Biol Phys ; 47(1): 31-47, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33735399

RESUMEN

Thymus (T) and natural killer (NK) lymphocytes are important barriers against diseases. Therefore, it is necessary to understand regulatory mechanisms related to the cell fate decisions involved in the production of these cells. Although some individual information related to T and NK lymphocyte cell fate decisions have been revealed, the related network and its dynamical characteristics still have not been well understood. By integrating individual information and comparing with experimental data, we construct a comprehensive regulatory network and a logical model related to T and NK lymphocyte differentiation. We aim to explore possible mechanisms of how each lineage differentiation is realized by systematically screening individual perturbations. When determining the perturbation strategies, the state transition can be used to identify the roles of specific genes in cell type selection and reprogramming. In agreement with experimental observations, the dynamics of the model correctly restates the cell differentiation processes from common lymphoid progenitors to CD4+ T cells, CD8+ T cells, and NK cells. Our analysis reveals that some specific perturbations can give rise to directional cell differentiation or reprogramming. We test our in silico results by using known experimental observations. The integrated network and the logical model presented here might be a good candidate for providing qualitative mechanisms of cell fate specification involved in T and NK lymphocyte cell fate decisions.


Asunto(s)
Células Asesinas Naturales , Linfocitos T , Diferenciación Celular
6.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33378765

RESUMEN

Causal molecular interactions represent key building blocks used in computational modeling, where they facilitate the assembly of regulatory networks. Logical regulatory networks can be used to predict biological and cellular behaviors by system perturbations and in silico simulations. Today, broad sets of causal interactions are available in a variety of biological knowledge resources. However, different visions, based on distinct biological interests, have led to the development of multiple ways to describe and annotate causal molecular interactions. It can therefore be challenging to efficiently explore various resources of causal interaction and maintain an overview of recorded contextual information that ensures valid use of the data. This review lists the different types of public resources with causal interactions, the different views on biological processes that they represent, the various data formats they use for data representation and storage, and the data exchange and conversion procedures that are available to extract and download these interactions. This may further raise awareness among the targeted audience, i.e. logical modelers and other scientists interested in molecular causal interactions, but also database managers and curators, about the abundance and variety of causal molecular interaction data, and the variety of tools and approaches to convert them into one interoperable resource.


Asunto(s)
Simulación por Computador , Bases de Datos Factuales , Modelos Biológicos , Programas Informáticos
7.
Mol Biomed ; 2(1): 9, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35006414

RESUMEN

Interleukins (IL)-17A and F are critical cytokines in anti-microbial immunity but also contribute to auto-immune pathologies. Recent evidence suggests that they may be differentially produced by T-helper (Th) cells, but the underlying mechanisms remain unknown. To address this question, we built a regulatory graph integrating all reported upstream regulators of IL-17A and F, completed by ChIP-seq data analyses. The resulting regulatory graph encompasses 82 components and 136 regulatory links. The graph was then supplemented by logical rules calibrated with original flow cytometry data using naive CD4+ T cells, in conditions inducing IL-17A or IL-17F. The model displays specific stable states corresponding to virtual phenotypes explaining IL-17A and IL-17F differential regulation across eight cytokine stimulatory conditions. Our model analysis points to the transcription factors NFAT2A, STAT5A and SMAD2 as key regulators of the differential expression of IL-17A and IL-17F, with STAT5A controlling IL-17F expression, and an interplay of NFAT2A, STAT5A and SMAD2 controlling IL-17A expression. We experimentally observed that the production of IL-17A was correlated with an increase of SMAD2 transcription, and the expression of IL-17F correlated with an increase of BLIMP-1 transcription, together with an increase of STAT5A expression (mRNA), as predicted by our model. Interestingly, RORγt presumably plays a more determinant role in IL-17A expression as compared to IL-17F expression. In conclusion, we propose the first mechanistic model accounting for the differential expression of IL-17A and F in Th cells, providing a basis to design novel therapeutic interventions in auto-immune and inflammatory diseases.

8.
Front Physiol ; 11: 590479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281620

RESUMEN

As opposed to the standard tolerogenic apoptosis, immunogenic cell death (ICD) constitutes a type of cellular demise that elicits an adaptive immune response. ICD has been characterized in malignant cells following cytotoxic interventions, such as chemotherapy or radiotherapy. Briefly, ICD of cancer cells releases some stress/danger signals that attract and activate dendritic cells (DCs). The latter can then engulf and cross-present tumor antigens to T lymphocytes, thus priming a cancer-specific immunity. This series of reactions works as a positive feedback loop where the antitumor immunity further improves the therapeutic efficacy by targeting cancer cells spared by the cytotoxic agent. However, not all chemotherapeutic drugs currently approved for cancer treatment are able to stimulate bona fide ICD: some commonly used agents, such as cisplatin or 5-fluorouracil, are unable to activate all features of ICD. Therefore, a better characterization of the process could help identify some gene or protein candidates to target pharmacologically and suggest combinations of drugs that would favor/increase antitumor immune response. To this end, we have built a mathematical model of the major cell types that intervene in ICD, namely cancer cells, DCs, CD8+ and CD4+ T cells. Our model not only integrates intracellular mechanisms within each individual cell entity, but also incorporates intercellular communications between them. The resulting cell population model recapitulates key features of the dynamics of ICD after an initial treatment, in particular the time-dependent size of the different cell types. The model is based on a discrete Boolean formalism and is simulated by means of a software tool, UPMaBoSS, which performs stochastic simulations with continuous time, considering the dynamics of the system at the cell population level with appropriate timing of events, and accounting for death and division of each cell type. With this model, the time scales of some of the processes involved in ICD, which are challenging to measure experimentally, have been predicted. In addition, our model analysis led to the identification of actionable targets for boosting ICD-induced antitumor response. All computational analyses and results are compiled in interactive notebooks which cover the presentation of the network structure, model simulations, and parameter sensitivity analyses.

9.
Comput Methods Programs Biomed ; 192: 105473, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32305736

RESUMEN

BACKGROUND AND OBJECTIVE: Male germline stem (GS) cells are responsible for the maintenance of spermatogenesis throughout the adult life of males. Upon appropriate in vitro culture conditions, these GS cells can undergo reprogramming to become germline pluripotent stem (GPS) cells with the loss of spermatogenic potential. In recent years, voluminous data of gene transcripts in GS and GPS cells have become available. However, the mechanism of reprogramming of GS cells into GPS cells remains elusive. This study was designed to develop a Boolean logical model of gene regulatory network (GRN) that might be involved in the reprogramming of GS cells into GPS cells. METHODS: The gene expression profile of GS and GPS cells (GSE ID: GSE11274 and GSE74151) were analyzed using R Bioconductor to identify differentially expressed genes (DEGs) and were functionally annotated with DAVID server. Potential pluripotent genes among the DEGs were then predicted using a combination of machine learning [Support Vector Machine (SVM)] and BLAST search. Protein isoforms were identified by pattern matching with UniProt database with in-house scripts written in C++. Both linear and non-linear interaction maps were generated using the STRING server. CellNet is used to study the relationship of GRNs between the GS and GPS cells. Finally, the GRNs involving all the genes from integrated methods and literature was constructed and qualitative modelling for reprogramming of GS to GPS cells were done by considering the discrete, asynchronous, multivalued logical formalism using the GINsim modeling and simulation tool. RESULTS: Through the use of machine learning and logical modeling, the present study identified 3585 DEGs and 221 novel pluripotent genes including Tet1, Cdh1, Tfap2c, Etv4, Etv5, Prdm14, and Prdm10 in GPS cells. Pathway analysis revealed that important signaling pathways such as core pluripotency network, PI3K-Akt, WNT, GDNF and BMP4 signalling pathways were important for the reprogramming of GS cells to GPS cells. On the other hand, CellNet analysis of GRNs of GS and GPS cells revealed that GS cells were similar to gonads whereas GPS cells were similar to ESCs in gene expression profile. A logical regulatory model was developed, which showed that TGFß negatively regulated the reprogramming of the GS to GPS cells, as confirmed by perturbations studies. CONCLUSION: The study identified novel pluripotent genes involved in the reprogramming of GS cells into GPS cells. A multivalued logical model of cellular reprogramming is proposed, which suggests that reprogramming of GS cells to GPS cells involves signalling pathways namely LIF, GDNF, BMP4, and TGFß along with some novel pluripotency genes.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular , Redes Reguladoras de Genes , Células Germinativas , Células Madre Pluripotentes , Testículo , Expresión Génica , Humanos , Aprendizaje Automático , Masculino , Modelos Estadísticos , Factores de Transcripción
10.
Methods Mol Biol ; 2049: 365-385, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31602622

RESUMEN

Biological functions require a coherent cross talk among multiple layers of regulation within the cell. Computational efforts that aim to understand how these layers are integrated across spatial, temporal, and functional scales represent a challenge in Systems Biology. We have developed a computational, multi-scale framework that couples cell cycle and metabolism networks in the budding yeast cell. Here we describe the methodology at the basis of this framework, which integrates on off-the-shelf logical (Boolean) models of a minimal yeast cell cycle with a constraint-based model of metabolism (i.e., the Yeast 7 metabolic network reconstruction). Models are implemented in Python code using the BooleanNet and COBRApy packages, respectively, and are connected through the Boolean logic. The methodology allows for incorporation of interaction data, and validation through -omics data. Furthermore, evolutionary strategies may be incorporated to explore regulatory structures underlying coherent cross talks among regulatory layers.


Asunto(s)
Ciclo Celular/fisiología , Biología de Sistemas/métodos , Animales , Humanos , Redes y Vías Metabólicas , Modelos Biológicos , Saccharomyces cerevisiae
11.
Front Physiol ; 10: 241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941053

RESUMEN

Enabled by rapid advances in computational sciences, in silico logical modeling of complex and large biological networks is more and more feasible making it an increasingly popular approach among biologists. Automated high-throughput, drug target identification is one of the primary goals of this in silico network biology. Targets identified in this way are then used to mine a library of drug chemical compounds in order to identify appropriate therapies. While identification of drug targets is exhaustively feasible on small networks, it remains computationally difficult on moderate and larger models. Moreover, there are several important constraints such as off-target effects, efficacy and safety that should be integrated into the identification of targets if the intention is translation to the clinical space. Here we introduce numerical constraints whereby efficacy is represented by efficiency in response and robustness of outcome. This paper introduces an algorithm that relies on a Constraint Satisfaction (CS) technique to efficiently compute the Minimal Intervention Sets (MIS) within a set of often complex clinical safety constraints with the aim of identifying the smallest least invasive set of targets pharmacologically accessible for therapy that most efficiently and reliably achieve the desired outcome.

12.
Methods Mol Biol ; 1945: 71-118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30945243

RESUMEN

We present a protocol for building, validating, and simulating models of signal transduction networks. These networks are challenging modeling targets due to the combinatorial complexity and sparse data, which have made it a major challenge even to formalize the current knowledge. To address this, the community has developed methods to model biomolecular reaction networks based on site dynamics. The strength of this approach is that reactions and states can be defined at variable resolution, which makes it possible to adapt the model resolution to the empirical data. This improves both scalability and accuracy, making it possible to formalize large models of signal transduction networks. Here, we present a method to build and validate large models of signal transduction networks. The workflow is based on rxncon, the reaction-contingency language. In a five-step process, we create a mechanistic network model, convert it into an executable Boolean model, use the Boolean model to evaluate and improve the network, and finally export the rxncon model into a rule-based format. We provide an introduction to the rxncon language and an annotated, step-by-step protocol for the workflow. Finally, we create a small model of the insulin signaling pathway to illustrate the protocol, together with some of the challenges-and some of their solutions-in modeling signal transduction.


Asunto(s)
Simulación por Computador , Transducción de Señal/genética , Programas Informáticos , Biología de Sistemas/métodos , Modelos Biológicos
13.
Front Physiol ; 10: 90, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30828302

RESUMEN

Modeling and simulation of molecular systems helps in understanding the behavioral mechanism of biological regulation. Time delays in production and degradation of expressions are important parameters in biological regulation. Constraints on time delays provide insight into the dynamical behavior of a Biological Regulatory Network (BRN). A recently introduced Process Hitting (PH) Framework has been found efficient in static analysis of large BRNs, however, it lacks the inference of time delays and thus determination of their constraints associated with the evolution of the expression levels of biological entities of BRN is not possible. In this paper we propose a Hybrid Process Hitting scheme for introducing time delays in Process Hitting Framework for dynamical modeling and analysis of Large Biological Regulatory Networks. It provides valuable insights into the time delays corresponding to the changes in the expression levels of biological entities thus possibly helping in identification of therapeutic targets. The proposed framework is applied to a well-known BRNs of Bacteriophage λ and ERBB Receptor-regulated G1/S transition involved in the breast cancer to demonstrate the viability of our approach. Using the proposed approach, we are able to perform goal-oriented reduction of the BRN and also determine the constraints on time delays characterizing the evolution (dynamics) of the reduced BRN.

14.
J Theor Biol ; 466: 39-63, 2019 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-30658053

RESUMEN

Bifurcation theory provides a powerful framework to analyze the dynamics of differential systems as a function of specific parameters. Abou-Jaoudé et al. (2009) introduced the concept of logical bifurcation diagrams, an analog of bifurcation diagrams for the logical modeling framework. In this work, we propose a formal definition of this concept. Since logical models are inherently discrete, we use the piecewise differential (PWLD) framework to introduce the underlying bifurcation parameters. Given a regulatory graph, a set of PWLD models is mapped to a set of logical models consistent with this graph, thereby linking continuous changes of bifurcation parameters to sequences of valuations of logical parameters. A logical bifurcation diagram corresponds then to a sequence of valuations of the logical parameters (with their associated set of attractors) consistent with at least one bifurcation diagram of the set of PWLD models. Necessary conditions on logical bifurcation diagrams in the general case, as well as a characterization of these diagrams in the Boolean case, exploiting a partial order between the logical parameters, are provided. We also propose a procedure to determine a logical bifurcation diagram of maximum length, starting from an initial valuation of the logical parameters, in the Boolean case. Finally, we apply our methodology to the analysis of a biological model of the p53-Mdm2 network.


Asunto(s)
Algoritmos , Simulación por Computador , Modelos Genéticos
15.
Front Physiol ; 9: 1335, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364151

RESUMEN

Systems biology studies the structure and dynamics of biological systems using mathematical approaches. Bottom-up approaches create models from prior knowledge but usually cannot cope with uncertainty, whereas top-down approaches infer models directly from data using statistical methods but mostly neglect valuable known information from former studies. Here, we want to present a workflow that includes prior knowledge while allowing for uncertainty in the modeling process. We build not one but all possible models that arise from the uncertainty using logical modeling and subsequently filter for those models in agreement with data in a top-down manner. This approach enables us to investigate new and more complex biological research questions, however, the encoding in such a framework is often not obvious and thus not easily accessible for researcher from life sciences. To mitigate this problem, we formulate a pipeline with specific templates to address some research questions common in signaling network analysis. To illustrate the potential of this approach, we applied the pipeline to growth factor signaling processes in two renal cancer cell lines. These two cell lines originate from similar tissue, but surprisingly showed a very different behavior toward the cancer drug Sorafenib. Thus our aim was to explore differences between these cell lines regarding three sources of uncertainty in one analysis: possible targets of Sorafenib, crosstalk between involved pathways, and the effect of a mutation in mammalian target of Rapamycin (mTOR) in one of the cell lines. We were able to show that the model pools from the cell lines are disjoint, thus the discrepancies in behavior originate from differences in the cellular wiring. Also the mutation in mTOR is not affecting its activity in the pathway. The results on Sorafenib, while not fully clarifying the mechanisms involved, illustrate the potential of this analysis for generating new hypotheses.

16.
Front Cell Neurosci ; 12: 336, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30374291

RESUMEN

Aberrant inflammatory signaling between neuronal and glial cells can develop into a persistent sickness behavior-related disorders, negatively impacting learning, memory, and neurogenesis. While there is an abundance of literature describing these interactions, there still lacks a comprehensive mathematical model describing the complex feed-forward and feedback mechanisms of neural-glial interaction. Here we compile molecular and cellular signaling information from various studies and reviews in the literature to create a logically-consistent, theoretical model of neural-glial interaction in the brain to explore the role of neuron-glia homeostatic regulation in the perpetuation of neuroinflammation. Logic rules are applied to this connectivity diagram to predict the system's homeostatic behavior. We validate our model predicted homeostatic profiles against RNAseq gene expression profiles in a mouse model of stress primed neuroinflammation. A meta-analysis was used to calculate the significance of similarity between the inflammatory profiles of mice exposed to diisopropyl fluorophostphate (DFP) [with and without prior priming by the glucocorticoid stress hormone corticosterone (CORT)], with the equilibrium states predicted by the model, and to provide estimates of the degree of the neuroinflammatory response. Beyond normal homeostatic regulation, our model predicts an alternate self-perpetuating condition consistent with chronic neuroinflammation. RNAseq gene expression profiles from the cortex of mice exposed to DFP and CORT+DFP align with this predicted state of neuroinflammation, whereas the alignment to CORT alone was negligible. Simulations of putative treatment strategies post-exposure were shown to be theoretically capable of returning the system to a state of typically healthy regulation with broad-acting anti-inflammatory agents showing the highest probability of success. The results support a role for the brain's own homeostatic drive in perpetuating the chronic neuroinflammation associated with exposure to the organophosphate DFP, with and without CORT priming. The deviation of illness profiles from exact model predictions suggests the presence of additional factors or of lasting changes to the brain's regulatory circuitry specific to each exposure.

17.
Front Physiol ; 9: 1161, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30245634

RESUMEN

Logical models are well-suited to capture salient dynamical properties of regulatory networks. For networks controlling cell fate decisions, cell fates are associated with model attractors (stable states or cyclic attractors) whose identification and reachability properties are particularly relevant. While synchronous updates assume unlikely instantaneous or identical rates associated with component changes, the consideration of asynchronous updates is more realistic but, for large models, may hinder the analysis of the resulting non-deterministic concurrent dynamics. This complexity hampers the study of asymptotical behaviors, and most existing approaches suffer from efficiency bottlenecks, being generally unable to handle cyclical attractors and quantify attractor reachability. Here, we propose two algorithms providing probability estimates of attractor reachability in asynchronous dynamics. The first algorithm, named Firefront, exhaustively explores the state space from an initial state, and provides quasi-exact evaluations of the reachability probabilities of model attractors. The algorithm progresses in breadth, propagating the probabilities of each encountered state to its successors. Second, Avatar is an adapted Monte Carlo approach, better suited for models with large and intertwined transient and terminal cycles. Avatar iteratively explores the state space by randomly selecting trajectories and by using these random walks to estimate the likelihood of reaching an attractor. Unlike Monte Carlo simulations, Avatar is equipped to avoid getting trapped in transient cycles and to identify cyclic attractors. Firefront and Avatar are validated and compared to related methods, using as test cases logical models of synthetic and biological networks. Both algorithms are implemented as new functionalities of GINsim 3.0, a well-established software tool for logical modeling, providing executable GUI, Java API, and scripting facilities.

18.
Front Physiol ; 9: 1046, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154728

RESUMEN

Logical models offer a simple but powerful means to understand the complex dynamics of biochemical regulation, without the need to estimate kinetic parameters. However, even simple automata components can lead to collective dynamics that are computationally intractable when aggregated into networks. In previous work we demonstrated that automata network models of biochemical regulation are highly canalizing, whereby many variable states and their groupings are redundant (Marques-Pita and Rocha, 2013). The precise charting and measurement of such canalization simplifies these models, making even very large networks amenable to analysis. Moreover, canalization plays an important role in the control, robustness, modularity and criticality of Boolean network dynamics, especially those used to model biochemical regulation (Gates and Rocha, 2016; Gates et al., 2016; Manicka, 2017). Here we describe a new publicly-available Python package that provides the necessary tools to extract, measure, and visualize canalizing redundancy present in Boolean network models. It extracts the pathways most effective in controlling dynamics in these models, including their effective graph and dynamics canalizing map, as well as other tools to uncover minimum sets of control variables.

19.
BMC Syst Biol ; 12(1): 76, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30016990

RESUMEN

BACKGROUND: The hypothalamic-pituitary-adrenal (HPA) axis is a central regulator of stress response and its dysfunction has been associated with a broad range of complex illnesses including Gulf War Illness (GWI) and Chronic Fatigue Syndrome (CFS). Though classical mathematical approaches have been used to model HPA function in isolation, its broad regulatory interactions with immune and central nervous function are such that the biological fidelity of simulations is undermined by the limited availability of reliable parameter estimates. METHOD: Here we introduce and apply a generalized discrete formalism to recover multiple stable regulatory programs of the HPA axis using little more than connectivity between physiological components. This simple discrete model captures cyclic attractors such as the circadian rhythm by applying generic constraints to a minimal parameter set; this is distinct from Ordinary Differential Equation (ODE) models, which require broad and precise parameter sets. Parameter tuning is accomplished by decomposition of the overall regulatory network into isolated sub-networks that support cyclic attractors. Network behavior is simulated using a novel asynchronous updating scheme that enforces priority with memory within and between physiological compartments. RESULTS: Consistent with much more complex conventional models of the HPA axis, this parsimonious framework supports two cyclic attractors, governed by higher and lower levels of cortisol respectively. Importantly, results suggest that stress may remodel the stability landscape of this system, favoring migration from one stable circadian cycle to the other. Access to each regime is dependent on HPA axis tone, captured here by the tunable parameters of the multi-valued logic. Likewise, an idealized glucocorticoid receptor blocker alters the regulatory topology such that maintenance of persistently low cortisol levels is rendered unstable, favoring a return to normal circadian oscillation in both cortisol and glucocorticoid receptor expression. CONCLUSION: These results emphasize the significance of regulatory connectivity alone and how regulatory plasticity may be explored using simple discrete logic and minimal data compared to conventional methods.


Asunto(s)
Glándulas Suprarrenales/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Modelos Biológicos , Procesos Estocásticos
20.
Front Physiol ; 9: 454, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867523

RESUMEN

Dynamical models of biomolecular networks are successfully used to understand the mechanisms underlying complex diseases and to design therapeutic strategies. Network control and its special case of target control, is a promising avenue toward developing disease therapies. In target control it is assumed that a small subset of nodes is most relevant to the system's state and the goal is to drive the target nodes into their desired states. An example of target control would be driving a cell to commit to apoptosis (programmed cell death). From the experimental perspective, gene knockout, pharmacological inhibition of proteins, and providing sustained external signals are among practical intervention techniques. We identify methodologies to use the stabilizing effect of sustained interventions for target control in Boolean network models of biomolecular networks. Specifically, we define the domain of influence (DOI) of a node (in a certain state) to be the nodes (and their corresponding states) that will be ultimately stabilized by the sustained state of this node regardless of the initial state of the system. We also define the related concept of the logical domain of influence (LDOI) of a node, and develop an algorithm for its identification using an auxiliary network that incorporates the regulatory logic. This way a solution to the target control problem is a set of nodes whose DOI can cover the desired target node states. We perform greedy randomized adaptive search in node state space to find such solutions. We apply our strategy to in silico biological network models of real systems to demonstrate its effectiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA