Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Insect Sci ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075757

RESUMEN

Syntaxin 1A (Syx1A) has diverse and indispensable functions in animals. Previous studies have mainly focused on the roles of Syx1A in Drosophila, and so how Syx1A operates during the development of other insects remains poorly understood. This study investigated whether disrupting LmSyx1A using RNA interference (RNAi) affects the growth and development of Locusta migratoria. LmSyx1A was expressed in all tissues tested, with the highest expression observed in the fat body. After 5th-instar nymphs were injected with double-stranded LmSyx1A (dsLmSyx1A), none of the nymphs were able to molt normally and all eventually died. The silencing of LmSyx1A resulted in the cessation of feeding, body weight loss, and atrophy of the midgut and gastric cecum in locusts. Hematoxylin and eosin (H&E) staining showed that the columnar cells in the midgut were severely damaged, with microvilli defects visible in dsLmSyx1A-injected nymphs. Secretory vesicles were observed with transmission electron microscopy (TEM). In addition, reverse transcription quantitative polymerase chain reaction (RT-qPCR) further indicates that silencing LmSyx1A repressed the expression of genes involved in the insulin/mammalian target of rapamycin (mTOR)-associated nutritional pathway. Taken together, these results suggest that LmSyx1A significantly affects the midgut cell layer of locust nymphs, which was partially associated with the downregulation of the insulin/mTOR-associated nutritional pathway. Thus, we argue that LmSyx1A is a suitable target for developing dsRNA-based biological pesticides for managing L. migratoria.

2.
Pestic Biochem Physiol ; 203: 106014, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084805

RESUMEN

Energy metabolism is essential for insect development, reproduction and detoxification. Insects often reallocate energy and resources to manage external stress, balancing the demands of detoxification and reproduction. Glucose transport 4 (Glut4), a glucose transporter, is involved in glucose and lipid metabolism. However, the specific molecular mechanism of Glut4 in insect reproduction, and its role in the response to insecticide-induced oxidative stress remain unclear. In this study, LmGlut4 was identified and analyzed in Locusta migratoria. Silencing of LmGlut4 significantly reduced vitellogenin (Vg) biosynthesis in the fat body and Vg absorption by oocytes, ultimately hindering ovarian development and oocyte maturation. Knockdown of LmGlut4 also inhibited the biosynthesis of key insect hormones, such as juvenile hormone (JH), 20-hydroxyecdysone (20E) and insulin. Furthermore, LmGlut4 knockdown led to reduced triglyceride (TG) and glycogen content in the fat body and ovary, as well as decreased capacity for trehalose biosynthesis in adipocytes. Additionally, dsLmGlut4-treated locusts showed heightened sensitivity to deltamethrin, leading to increased triglyceride depletion during detoxification. This study sheds light on the biological function of LmGlut4 in the ovary and provides potential target genes for exploring biological pest management strategies.


Asunto(s)
Transportador de Glucosa de Tipo 4 , Insecticidas , Locusta migratoria , Nitrilos , Ovario , Piretrinas , Interferencia de ARN , Animales , Piretrinas/farmacología , Femenino , Nitrilos/farmacología , Ovario/metabolismo , Ovario/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Locusta migratoria/genética , Locusta migratoria/efectos de los fármacos , Locusta migratoria/metabolismo , Insecticidas/farmacología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Vitelogeninas/metabolismo , Vitelogeninas/genética , Metabolismo Energético/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/efectos de los fármacos , Hormonas Juveniles/metabolismo , Hormonas Juveniles/farmacología , Oocitos/metabolismo , Oocitos/efectos de los fármacos , Triglicéridos/metabolismo
3.
Cell ; 187(15): 3973-3991.e24, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38897195

RESUMEN

The representation of odors in the locust antennal lobe with its >2,000 glomeruli has long remained a perplexing puzzle. We employed the CRISPR-Cas9 system to generate transgenic locusts expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon functional imaging, we mapped the spatial activation patterns representing a wide range of ecologically relevant odors across all six developmental stages. Our findings reveal a functionally ring-shaped organization of the antennal lobe composed of specific glomerular clusters. This configuration establishes an odor-specific chemotopic representation by encoding different chemical classes and ecologically distinct odors in the form of glomerular rings. The ring-shaped glomerular arrangement, which we confirm by selective targeting of OR70a-expressing sensory neurons, occurs throughout development, and the odor-coding pattern within the glomerular population is consistent across developmental stages. Mechanistically, this unconventional spatial olfactory code reflects the locust-specific and multiplexed glomerular innervation pattern of the antennal lobe.


Asunto(s)
Antenas de Artrópodos , Odorantes , Neuronas Receptoras Olfatorias , Animales , Neuronas Receptoras Olfatorias/metabolismo , Antenas de Artrópodos/fisiología , Olfato/fisiología , Saltamontes/fisiología , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Vías Olfatorias/fisiología , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Locusta migratoria/fisiología , Calcio/metabolismo
4.
mSystems ; 9(7): e0060024, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888356

RESUMEN

Locusta migratoria is an important phytophagous pest, and its gut microbial communities play an important role in cellulose degradation. In this study, the gut microbial and cellulose digestibility dynamics of Locusta migratoria were jointly analyzed using high-throughput sequencing and anthrone colorimetry. The results showed that the gut microbial diversity and cellulose digestibility across life stages were dynamically changing. The species richness of gut bacteria was significantly higher in eggs than in larvae and imago, the species richness and cellulose digestibility of gut bacteria were significantly higher in early larvae (first and second instars) than in late larvae (third to fifth instars), and the diversity of gut bacteria and cellulose digestibility were significantly higher in imago than in late larvae. There is a correlation between the dynamics of gut bacterial communities and cellulose digestibility. Enterobacter, Lactococcus, and Pseudomonas are the most abundant genera throughout all life stages. Six strains of highly efficient cellulolytic bacteria were screened, which were dominant gut bacteria. Carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) experiments revealed that Pseudomonas had the highest cellulase enzyme activity. This study provides a new way for the screening of cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors. IMPORTANCE: Cellulose is the most abundant and cheapest renewable resource in nature, but its degradation is difficult, so finding efficient cellulose degradation methods is an urgent challenge. Locusta migratoria is a large group of agricultural pests, and the large number of microorganisms that inhabit their intestinal tracts play an important role in cellulose degradation. We analyzed the dynamics of Locusta migratoria gut microbial communities and cellulose digestibility using a combination of high-throughput sequencing technology and anthrone colorimetry. The results revealed that the gut microbial diversity and cellulose digestibility were dynamically changed at different life stages. In addition, we explored the intestinal bacterial community of Locusta migratoria across life stages and its correlation with cellulose digestibility. The dominant bacterial genera at different life stages of Locusta migratoria were uncovered and their carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) were determined. This study provides a new avenue for screening cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors.


Asunto(s)
Bacterias , Celulosa , Microbioma Gastrointestinal , Locusta migratoria , Animales , Celulosa/metabolismo , Microbioma Gastrointestinal/fisiología , Locusta migratoria/microbiología , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Larva/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Digestión/fisiología
5.
Pestic Biochem Physiol ; 202: 105934, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879326

RESUMEN

Syntaxin5 (Syx5) belongs to SNAREs family, which play important roles in fusion of vesicles to target membranes. Most of what we know about functions of Syx5 originates from studies in fungal or vertebrate cells, how Syx5 operates during the development of insects is poorly understood. In this study, we investigated the role of LmSyx5 in the gut development of the hemimetabolous insect Locusta migratoria. LmSyx5 was expressed in many tissues, with higher levels in the gut. Knockdown of LmSyx5 by RNA interference (RNAi) considerably suppressed feeding in both nymphs and adults. The dsLmSyx5-injected locusts lost body weight and finally died at a mortality of 100%. Furthermore, hematoxylin-eosin staining indicated that the midgut is deformed in dsLmSyx5-treated nymphs and the brush border in midgut epithelial cells is severely damaged, suggesting that LmSyx5 is involved in morphogenesis of the midgut. TEM further showed that the endoplasmic reticulum of midgut cells have a bloated appearance. Taken together, these results suggest that LmSyx5 is essential for midgut epithelial homeostsis that affects growth and development of L. migratoria. Thus, Syx5 is a promising RNAi target for controlling L. migratoria, and even other pests.


Asunto(s)
Conducta Alimentaria , Proteínas de Insectos , Mucosa Intestinal , Locusta migratoria , Proteínas Qa-SNARE , Locusta migratoria/genética , Locusta migratoria/crecimiento & desarrollo , Locusta migratoria/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Mucosa Intestinal/crecimiento & desarrollo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Conducta Alimentaria/fisiología , Técnicas de Silenciamiento del Gen , Homología de Secuencia de Aminoácido , Distribución Tisular , Peso Corporal/genética , Regulación del Desarrollo de la Expresión Génica
6.
Pestic Biochem Physiol ; 200: 105845, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582577

RESUMEN

7-dehydrocholesterol (7-DHC) is a key intermediate product used for biosynthesis of molting hormone. This is achieved through a series of hydroxylation reactions catalyzed by the Halloween family of cytochrome P450s. Neverland is an enzyme catalyzes the first reaction of the ecdysteroidogenic pathway, which converts dietary cholesterol into 7-DHC. However, research on the physiological function of neverland in orthopteran insects is lacking. In this study, neverland from Locusta migratoria (LmNvd) was cloned and analyzed. LmNvd was mainly expressed in the prothoracic gland and highly expressed on days 6 and 7 of fifth instar nymphs. RNAi-mediated silencing of LmNvd resulted in serious molting delays and abnormal phenotypes, which could be rescued by 7-DHC and 20-hydroxyecdysone supplementation. Hematoxylin and eosin staining results showed that RNAi-mediated silencing of LmNvd disturbed the molting process by both promoting the synthesis of new cuticle and suppressing the degradation of the old cuticle. Quantitative real-time PCR results suggested that the mRNA expression of E75 early gene and chitinase 5 gene decreased and that of chitin synthase 1 gene was markedly upregulated after knockdown of LmNvd. Our results suggest that LmNvd participates in the biosynthesis process of molting hormone, which is involved in regulating chitin synthesis and degradation in molting cycles.


Asunto(s)
Locusta migratoria , Muda , Animales , Muda/genética , Ecdisona/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , Interferencia de ARN , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
7.
J Econ Entomol ; 117(3): 1130-1140, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38579138

RESUMEN

Metarhizium anisopliae is an important class of entomopathogenic fungi used for the biocontrol of insects, but its virulence is affected by insect immunity. We identified a novel FK506 binding protein gene that was differentially expressed between control and Metarhizium-treated Locusta migratoria manilensis. We hypothesized that this protein played an important role in Metarhizium infection of L. migratoria and could provide new insights for developing highly efficient entomopathogenic fungi. We, therefore, cloned the specific gene and obtained its purified protein. The gene was then named FKBP52, and its dsRNA (dsFKBP52) was synthesized and used for gene interference. Bioassay results showed that the mortality of L. migratoria treated with dsFKBP52 + Metarhizium was significantly lower than that of other treatments. Furthermore, immune-related genes (MyD88, Dorsal, Cactus, and Defensin) in L. migratoria treated with dsFKBP52 + Metarhizium showed significant upregulation compared to that treated with Metarhizium only. However, the activities of peroxidase (POD), superoxide dismutase (SOD), and calcineurin (CaN) showed fluctuations. These results suggest that the FKBP52 gene may play a crucial role in the innate immunity of L. migratoria. The effect of its silencing indicated that this immunity-related protein might be a potential target for insect biocontrol.


Asunto(s)
Proteínas de Insectos , Locusta migratoria , Metarhizium , Proteínas de Unión a Tacrolimus , Animales , Locusta migratoria/genética , Locusta migratoria/inmunología , Metarhizium/fisiología , Metarhizium/genética , Proteínas de Unión a Tacrolimus/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Control Biológico de Vectores , Inmunidad Innata , Secuencia de Aminoácidos
8.
Pestic Biochem Physiol ; 201: 105860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685214

RESUMEN

The Osiris gene family is believed to play important roles in insect biology. Previous studies mainly focused on the roles of Osiris in Drorophila, how Osiris operates during the development of other species remains largely unknown. Here, we investigated the role of LmOsi17 in development of the hemimetabolous insect Locusta migratoria. LmOsi17 was highly expressed in the intestinal tract of nymphs. Knockdown of LmOsi17 by RNA interference (RNAi) in nymphs resulted in growth defects. The dsLmOsi17-injected nymphs did not increase in body weight or size and eventually died. Immunohistochemical analysis showed that LmOsi17 was localized to the epithelial cells of the foregut and the gastric caecum. Histological observation and hematoxylin-eosin staining indicate that the foregut and gastric caecum are deformed in dsLmOsi17 treated nymphs, suggesting that LmOsi17 is involved in morphogenesis of foregut and gastric caecum. In addition, we observed a significant reduction in the thickness of the new cuticle in dsLmOsi17-injected nymphs compared to control nymphs. Taken together, these results suggest that LmOsi17 contributes to morphogenesis of intestinal tract that affects growth and development of nymphs in locusts.


Asunto(s)
Proteínas de Insectos , Locusta migratoria , Morfogénesis , Ninfa , Animales , Locusta migratoria/crecimiento & desarrollo , Locusta migratoria/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Ninfa/crecimiento & desarrollo , Interferencia de ARN , Intestinos
9.
Insects ; 15(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38667367

RESUMEN

Fushi-tarazu factor 1 (FTZ-F1) is a class of transcription factors belonging to the nuclear receptor superfamily and an important molting regulator in insects; however, its detailed function in the molting process of Locusta migratoria is still unclear. This study identified two FTZ-F1 transcripts (LmFTZ-F1-X1 and LmFTZ-F1-X2) in L. migratoria. The classical domains of FTZ-F1 were present in their protein sequences and distinguished based on their variable N-terminal domains. Reverse-transcription quantitative polymerase chain reaction analysis revealed that LmFTZ-F1-X1 and LmFTZ-F1-X2 were highly expressed in the integument. RNA interference (RNAi) was used to explore the function of LmFTZ-F1s in the molting of the third-instar nymph. Separate LmFTZ-F1-X1 or LmFTZ-F1-X2 silencing did not affect the normal development of third-instar nymphs; however, the simultaneous RNAi of LmFTZ-F1-X1 and LmFTZ-F1-X2 caused the nymphs to be trapped in the third instar stage and finally die. Furthermore, the hematoxylin-eosin and chitin staining of the cuticle showed that the new cuticles were thickened after silencing the LmFTZ-F1s compared to the controls. RNA-seq analysis showed that genes encoding four cuticle proteins, two chitin synthesis enzymes, and cytochrome P450 303a1 were differentially expressed between dsGFP- and dsLmFTZ-F1s-injected groups. Taken together, LmFTZ-F1-X1 and LmFTZ-F1-X2 are involved in the ecdysis of locusts, possibly by regulating the expression of genes involved in cuticle formation, chitin synthesis, and other key molting processes.

10.
Sci China Life Sci ; 67(6): 1242-1254, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38478296

RESUMEN

RNA N6-methyladenosine (m6A), as the most abundant modification of messenger RNA, can modulate insect behaviors, but its specific roles in aggregation behaviors remain unexplored. Here, we conducted a comprehensive molecular and physiological characterization of the individual components of the methyltransferase and demethylase in the migratory locust Locusta migratoria. Our results demonstrated that METTL3, METTL14 and ALKBH5 were dominantly expressed in the brain and exhibited remarkable responses to crowding or isolation. The individual knockdown of methyltransferases (i.e., METTL3 and METTL14) promoted locust movement and conspecific attraction, whereas ALKBH5 knockdown induced a behavioral shift toward the solitary phase. Furthermore, global transcriptome profiles revealed that m6A modification could regulate the orchestration of gene expression to fine tune the behavioral aggregation of locusts. In summary, our in vivo characterization of the m6A functions in migratory locusts clearly demonstrated the crucial roles of the m6A pathway in effectively modulating aggregation behaviors.


Asunto(s)
Adenosina , Locusta migratoria , Metiltransferasas , Animales , Adenosina/metabolismo , Adenosina/análogos & derivados , Locusta migratoria/genética , Locusta migratoria/fisiología , Locusta migratoria/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Conducta Animal/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Transcriptoma , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Saltamontes/genética , Saltamontes/fisiología , Saltamontes/metabolismo
11.
Int J Biol Macromol ; 266(Pt 2): 131137, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537854

RESUMEN

The coat protein II (COPII) complex consists of five primary soluble proteins, namely the small GTP-binding protein Sar1, the inner coat Sec23/Sec24 heterodimers, and the outer coat Sec13/Sec31 heterotetramers. COPII is essential for cellular protein and lipid trafficking through cargo sorting and vesicle formation at the endoplasmic reticulum. However, the roles of COPII assembly genes remain unknown in insects. In present study, we identified five COPII assembly genes (LmSar1, LmSec23, LmSec24, LmSec13 and LmSec31) in Locusta migratoria. RT-qPCR results revealed that these genes showed different expression patterns in multiple tissues and developmental days of fifth-instar nymphs. Injection of double-stranded RNA against each LmCOPII gene induced a high RNAi efficiency, and considerably suppressed feeding, and increased mortality to 100 %. Results from the micro-sectioning and hematoxylin-eosin staining of midguts showed that the brush border was severely damaged and the number of columnar cells was significantly reduced in dsLmCOPII-injected nymphs, as compared with the control. The dilated endoplasmic reticulum phenotype of columnar cells was observed by transmission electron microscopy. RT-qPCR results further indicated that silencing any of the five genes responsible for COPII complex assembly repressed the expression of genes involved in insulin/mTOR-associated nutritional pathway. Therefore, COPII assembly genes could be promising RNAi targets for insect pest management by disrupting gut and cuticle development.


Asunto(s)
Sistema Digestivo , Tracto Gastrointestinal , Locusta migratoria , Proteínas de Unión al GTP Monoméricas , Control Biológico de Vectores , Interferencia de ARN , Proteínas de Transporte Vesicular , Animales , Sistema Digestivo/crecimiento & desarrollo , Retículo Endoplásmico , Técnicas de Silenciamiento del Gen , Homeostasis , Locusta migratoria/genética , Locusta migratoria/crecimiento & desarrollo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Control Biológico de Vectores/métodos , Multimerización de Proteína , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Masculino , Femenino , Tracto Gastrointestinal/crecimiento & desarrollo
12.
Artículo en Inglés | MEDLINE | ID: mdl-38334049

RESUMEN

BACKGROUND AND OBJECTIVE: With the global population on the rise, edible insects are considered a potential solution to food security, although concerns about risks such as anaphylaxis exist. METHODS: 2,014 participants underwent testing with the Allergy Explorer-ALEX-2 including extracts of three novel foods: Acheta Domesticus (Ad), Locusta migratoria (Lm), and Tenebrio molitor (Tm). The IgE-mediated sensitization status was investigated in participants who had never knowingly consumed these insects. Data was recorded using an electronic database. RESULTS: 195 individuals (9.7% of all participants) were sensitized to insects. Tropomyosin was co-recognized by 34%, and 18.5% were positive for arginine kinases. Reactivity to Sarcoplasmic-CB, Troponin-C, Paramyosin, or Myosin-light-chain was found in less than 5% of the population, whereas 108 individuals (55.4%) did not show any reactivity to invertebrate panallergens. Additionally, 33 individuals (16.9%) exhibited monosensitization exclusively to insects. Multivariate analysis revealed an inverse association between arachnid reactivity and sensitization to insect allergens, while Mollusca, Blattoidea, and tropomyosin reactivity displayed a direct relationship. Furthermore, Myosin-light-chain reactivity correlated with Ad and Lm, and Troponin-C with Ad and Tm sensitization. CONCLUSION: Edible insect extract IgE sensitization was observed in individuals without prior exposure to such foods. Mites showed a low likelihood of being primary sensitizers due to their inverse association with insect reactivity. Conversely, the direct association of insect sensitization with mollusk and cockroach extract reactivity suggests their potential as primary sensitizers in these participants. Tropomyosin consistently exhibited a positive association with reactivity to all studied insects, supporting its role as a primary sensitizer.

13.
Insect Sci ; 31(2): 435-447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37489033

RESUMEN

Locust (Locusta migratoria) has a single striated muscle myosin heavy chain (Mhc) gene, which contains 5 clusters of alternative exclusive exons and 1 differently included penultimate exon. The alternative exons of Mhc gene encode 4 distinct regions in the myosin motor domain, that is, the N-terminal SH3-like domain, one lip of the nucleotide-binding pocket, the relay, and the converter. Here, we investigated the role of the alternative regions on the motor function of locust muscle myosin. Using Sf9-baculovirus protein expression system, we expressed and purified 5 isoforms of the locust muscle myosin heavy meromyosin (HMM), including the major isoform in the thorax dorsal longitudinal flight muscle (FL1) and 4 isoforms expressed in the abdominal intersegmental muscle (AB1 to AB4). Among these 5 HMMs, FL1-HMM displayed the highest level of actin-activated adenosine triphosphatase (ATPase) activity (hereafter referred as ATPase activity). To identify the alternative region(s) responsible for the elevated ATPase activity of FL1-HMM, we produced a number of chimeras of FL1-HMM and AB4-HMM. Substitution with the relay of AB4-HMM (encoded by exon-14c) substantially decreased the ATPase activity of FL1-HMM, and conversely, the relay of FL1-HMM (encoded by exon-14a) enhanced the ATPase activity of AB4-HMM. Mutagenesis showed that the exon-14a-encoded residues Gly474 and Asn509 are responsible for the elevated ATPase activity of FL1-HMM. Those results indicate that the alternative relay encoded by exon-14a/c play a key role in regulating the ATPase activity of FL1-HMM and AB4-HMM.


Asunto(s)
Locusta migratoria , Músculo Estriado , Animales , Locusta migratoria/genética , Locusta migratoria/metabolismo , Secuencia de Aminoácidos , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas/genética , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Músculo Estriado/metabolismo
14.
Pest Manag Sci ; 80(2): 442-451, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37717207

RESUMEN

BACKGROUND: The oriental migratory locust is a major crop pest across eastern and south-eastern Asia. Metarhizium anisopliae is an effective biopesticide agent used for locust control, but its performance is temperature dependent, and thus can be more variable than chemical pesticide performance. To predict biopesticide performance for the control of the oriental migratory locust, we adapted a previous temperature-dependent model and validated it using field trial data. To increase the applicability of this model, we explored the use of readily available temperature variables, as well as our own satellite-derived canopy temperature variable, to run the model. RESULTS: Compared to collected in situ temperature data, our canopy temperature variable most accurately represented the ambient temperature experienced by the locust. When the biopesticide performance model was run using this canopy temperature and compared to field trials results, the model predictions were more accurate than when the model was run with the other temperature variables. The accuracy of the biopesticide performance model was impacted by vegetation cover, but across the areas most associated with locust oviposition, growth and migration, the model predictions were satisfactorily accurate to guide biopesticide operational use. CONCLUSION: We validated the model in six provinces in China, representing the three agro-ecological zones largely representative of the oriental migratory locust problem areas in China, Thailand, Cambodia and Vietnam. Whilst further validation work is needed, this model could be used in these countries to assess, at a fine spatial scale, the appropriateness of M. anisopliae for controlling the oriental migratory locust. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Saltamontes , Locusta migratoria , Animales , Agentes de Control Biológico , Control de Plagas , China , Vietnam
15.
Pestic Biochem Physiol ; 196: 105620, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945256

RESUMEN

Cytochrome P450 monooxygenases (P450s) are a superfamily of multifunctional heme-containing proteins and could function as odorant-degrading enzymes (ODEs) in insect olfactory systems. In our previous study, we identified a P450 gene from the antennal transcriptome of Locusta migratoria, LmCYP6MU1, which could be induced by a variety of volatiles. However, the regulatory mechanisms of this gene in response to volatiles remain unknown. In current study, we investigated the tissues and development stages expression patterns of LmCYP6MU1 and determined its olfactory function in the recognition of the main host plant volatiles which induced LmCYP6MU1 expression. The results showed that LmCYP6MU1 was antenna-rich and highly expressed throughout the antennal developmental stages of locusts. LmCYP6MU1 played important roles in the recognition of trans-2-hexen-1-al and nonanal. Insect CncC regulates the expression of P450 genes. We tested whether LmCncC regulates LmCYP6MU1 expression. It was found that LmCncC knockdown in the antennae resulted in the downregulation of LmCYP6MU1 and repressed the volatiles-mediated induction of LmCYP6MU1. LmCncC knockdown reduced the electroantennogram (EAG) and behavioral responses of locusts to volatiles. These results suggested that LmCncC could regulate the basal and volatiles-mediated inducible expression of LmCYP6MU1 responsible for the recognition of trans-2-hexen-1-al and nonanal. These findings provide an original basis for understanding the regulation mechanisms of LmCncC on LmCYP6MU1 expression and help us better understand the LmCncC-mediated olfactory plasticity.


Asunto(s)
Locusta migratoria , Animales , Locusta migratoria/genética , Locusta migratoria/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Antenas de Artrópodos/metabolismo
16.
Pestic Biochem Physiol ; 196: 105627, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945261

RESUMEN

BACKGROUND: The cap 'n' collar (Cnc) belongs to the Basic Leucine Zipper (bZIP) transcription factor super family. Cap 'n' collar isoform C (CncC) is highly conserved in the animal kingdom. CncC contributes to the regulation of growth, development, and aging and takes part in the maintenance of homeostasis and the defense against endogenous and environmental stress. Insect CncC participates in the regulation of various kinds of stress-responsive genes and is involved in the development of insecticide resistance. RESULTS: In this study, one full-length CncC sequence of Locusta migratoria was identified and characterized. Upon RNAi silencing of LmCncC, insecticide bioassays showed that LmCncC played an essential role in deltamethrin and imidacloprid susceptibility. To fully investigate the downstream genes regulated by LmCncC and further identify the LmCncC-regulated genes involved in deltamethrin and imidacloprid susceptibility, a comparative transcriptome was constructed. Thirty-five up-regulated genes and 73 down-regulated genes were screened from dsLmCncC-knockdown individuals. We selected 22 LmCncC-regulated genes and verified their gene expression levels using RT-qPCR. Finally, six LmCYP450 genes belonging to the CYP6 family were selected as candidate detoxification genes, and LmCYP6FD1 and LmCYP6FE1 were further validated as detoxification genes of insecticides via RNAi, insecticide bioassays, and metabolite identification. CONCLUSIONS: Our data suggest that the locust CncC gene is associated with deltamethrin and imidacloprid susceptibility via the regulation of LmCYP6FD1 and LmCYP6FE1, respectively.


Asunto(s)
Insecticidas , Locusta migratoria , Humanos , Animales , Insecticidas/farmacología , Insecticidas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
17.
Arch Insect Biochem Physiol ; 114(4): e22055, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37786392

RESUMEN

Paranosema locustae is an entomopathogenic microsporidia with promising potential for controlling agricultural pests, including Locusta migratoria manilensis. However, it has the disadvantage of having a slow insecticidal rate, and how P. locustae infection impacts the host immune response is currently unknown. The present study investigated the effect of P. locustae on the natural immune response of L. migratoria and the activities of enzymes that protect against oxidative stress. Infection with P. locustae increased the hemocytes and nodulation number of L. migratoria at the initial stage of infection. The hemocyte-mediated modulation of immune response was also affected by a decrease in the number of hemocytes 12 days postinfection. Superoxide dismutase activity in locusts increased in the early stages of infection but decreased in the later stages, whereas the activities of peroxidase (POD) and catalase (CAT) showed opposite trends may be due to their different mechanisms of action. Furthermore, the transcription levels of mRNA of antimicrobial peptide-related genes and phenoloxidase activity in hemolymph in L. migratoria were suppressed within 15 days of P. locustae infection. Overall, our data suggest that P. locustae create a conducive environment for its own proliferation in the host by disrupting the immune defense against it. These findings provide useful information for the potential application of P. locustae as a biocontrol agent.


Asunto(s)
Locusta migratoria , Microsporidios , Animales , Locusta migratoria/genética , Microsporidios/fisiología , Peroxidasa
18.
Molecules ; 28(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37836800

RESUMEN

(1) Background: Few studies have been carried out to appraise abamectin toxicity toward Locusta migratoria nymphs. (2) Methods: This study aimed to evaluate the cytotoxic effect of abamectin as an insecticide through examining the changes and damage caused by this drug, in both neurosecretory cells and midgut, using L. migratoria nymphs as a model of the cytotoxic effect. Histopathological change in the brain was examined in both normal and abamectin-treated fifth-instar nymphs. Neurosecretory cells (NSCs) were also examined where there were loosely disintegrated cells or vacuolated cytoplasm. (3) Results: The results showed distinct histological changes in the gastrointestinal tract of L. migratoria nymphs treated with abamectin, with significant cellular damage and disorganization, i.e., characteristic symptoms of cell necrosis, a destroyed epithelium, enlarged cells, and reduced nuclei. The observed biochemical changes included an elevation in all measured oxidative stress parameters compared to untreated controls. The malondialdehyde activities (MDAs) of the treated nymphs had a five- to six-fold increase, with a ten-fold increase in superoxide dismutase (SOD), nine-fold increase in glutathione-S-transferase (GST), and four-fold increase in nitric oxide (NO). (4) Conclusions: To further investigate the theoretical method of action, a molecular docking simulation was performed, examining the possibility that abamectin is an inhibitor of the fatty acid-binding protein Lm-FABP (2FLJ) and that it binds with two successive electrostatic hydrogen bonds.


Asunto(s)
Insecticidas , Locusta migratoria , Animales , Simulación del Acoplamiento Molecular , Locusta migratoria/metabolismo , Insecticidas/toxicidad , Insecticidas/metabolismo , Estrés Oxidativo , Proteínas de Insectos/química
19.
Proc Natl Acad Sci U S A ; 120(37): e2306659120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669362

RESUMEN

Chemical signals from conspecifics are essential in insect group formation and maintenance. Migratory locusts use the aggregation pheromone 4-vinylanisole (4VA), specifically released by gregarious locusts, to attract and recruit conspecific individuals, leading to the formation of large-scale swarms. However, how 4VA contributes to the transition from solitary phase to gregarious phase remains unclear. We investigated the occurrence of locust behavioral phase changes in the presence and absence of 4VA perception. The findings indicated that solitary locusts require crowding for 48 and 72 h to adopt partial and analogous gregarious behavior. However, exposure to increased concentrations of 4VA enabled solitary locusts to display behavioral changes within 24 h of crowding. Crowded solitary locusts with RNAi knockdown of Or35, the specific olfactory receptor for 4VA, failed to exhibit gregarious behaviors. Conversely, the knockdown of Or35 in gregarious locusts resulted in the appearance of solitary behavior. Additionally, a multi-individual behavioral assay system was developed to evaluate the interactions among locust individuals, and four behavioral parameters representing the inclination and conduct of social interactions were positively correlated with the process of crowding. Our data indicated that exposure to 4VA accelerated the behavioral transition from solitary phase to gregarious phase by enhancing the propensity toward proximity and body contact among conspecific individuals. These results highlight the crucial roles of 4VA in the behavioral phase transition of locusts. Furthermore, this study offers valuable insights into the mechanisms of behavioral plasticity that promote the formation of locust swarms and suggests the potential for 4VA application in locust control.


Asunto(s)
Saltamontes , Saltamontes/fisiología , Comunicación Animal , Conducta Animal , Receptores Odorantes/metabolismo , Estirenos/metabolismo
20.
Pestic Biochem Physiol ; 195: 105515, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666582

RESUMEN

Locusta migratoria is one of the most destructive pests that threaten crop growth and food production security in China. Metarhizium anisopliae has been widely used to control locusts around the world. Previous laboratory studies have revealed that LmFKBP24 is significantly upregulated after M. anisopliae infection, suggesting that it may play a role in immune regulation, yet the mechanism remains largely unknown. To gain further insight, we conducted an RNA interference (RNAi) study to investigate the function of LmFKBP24 in the regulation of antifungal immunity and analyzed the expression patterns of immune-induced genes. Our research revealed that LmFKBP24 is activated and upregulated when locusts are infected by M. anisopliae, and it inhibits the expression of antimicrobial peptide (AMP) defensin in the downstream of Toll pathway by combining with LmEaster rather than LmCyPA, thus exerting an immunosuppressive effect. To further investigate this, we conducted yeast two-hybrid (Y2H) and pull down assays to identify the proteins interacting with LmFKBP24. Our results provided compelling evidence for revealing the immune mechanism of L. migratoria and uncovered an innovative target for the development of new biological pesticides. Furthermore, our research indicates that LmFKBP24 interacts with LmEaster through its intact structure, providing a strong foundation for further exploration.


Asunto(s)
Locusta migratoria , Animales , Antifúngicos/farmacología , Bioensayo , Agentes de Control Biológico , China , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA