Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros











Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202412425, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292963

RESUMEN

Ferromagnetic metal Fe3GeTe2 (FGT), whose structure exhibits weak van-der-Waals interactions between 5-atom thick layers, was subjected to liquid-phase exfoliation (LPE) in N-methyl pyrrolidone (NMP) to yield a suspension of nanosheets that were separated into several fractions by successive centrifugation at different speeds. Electron microscopy confirmed successful exfoliation of bulk FGT to nanosheets as thin as 6 nm. The ferromagnetic ordering temperature for the nanosheets gradually decreased with the increase in the centrifugation speed used to isolate the 2D material. These nanosheets were resuspended in NMP and treated with an organic acceptor, 7,7,8,8-tetracyano-quinodimethane (TCNQ), which led to precipitation of FGT-TCNQ composite. The formation of the composite material is accompanied by charge transfer from the FGT nanosheets to TCNQ molecules, generating TCNQ•- radical anions, as revealed by experimental vibrational spectra and supported by first principles calculations. Remarkably, a substantial increase in magnetic anisotropy was observed, as manifested by the increase in the coercive field from nearly zero in bulk FGT to 1.0 kOe in the exfoliated nanosheets and then to 5.4 kOe in the FGT-TCNQ composite. The dramatic increase in coercivity of the composite suggests that functionalization with redox-active molecules provides an appealing pathway to enhancing magnetic properties of 2D materials.

2.
Adv Mater ; : e2404756, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119851

RESUMEN

Traditionally, the acquisition of 2D materials involved the exfoliation of layered crystals. However, the anisotropic bonding arrangements within 3D crystals indicate they are mechanically reminiscent of 2D counterparts and could also be exfoliated into nanosheets. This report delineates the preparation of 2D nanosheets from six representative 3D metal-organic frameworks (MOFs) through liquid-phase exfoliation. Notably, the cleavage planes of exfoliated nanosheets align perpendicular to the direction of the minimum elastic modulus (Emin) within the pristine 3D frameworks. The findings suggest that the in-plane and out-of-plane bonding forces of the exfoliated nanosheets can be correlated with the maximum elastic modulus (Emax) and Emin of the 3D frameworks, respectively. Emax influences the ease of cleaving adjacent layers, while Emin governs the ability to resist cracking of layers. Hence, a combination of large Emax and small Emin indicates an efficient exfoliation process, and vice versa. The ratio of Emax/Emin, denoted as Amax/min, is adopted as a universal index to quantify the ease of mechanical exfoliation for 3D MOFs. This ratio, readily accessible through mechanical experiments and computation, serves as a valuable metric for selecting appropriate exfoliation methods to produce surfactant-free 2D nanosheets from various 3D materials.

3.
Materials (Basel) ; 17(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39203065

RESUMEN

An X-ray analysis of exfoliated MoS2, produced by means of microwave-assisted liquid-phase exfoliation (LPE) from bulk powder in 1-methyl-2-pyrrolidone (NMP) or acetonitrile (ACN) + 1-methyl-2-pyrrolidone (NMP) solvents, has revealed distinct structural differences between the bulk powder and the microwave-exfoliated samples. Specifically, we performed X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements to identify the elements of our exfoliated sample deposited on a Si substrate by drop-casting, as well as their chemical state and its structural crystalline phase. In the exfoliated sample, the peaks pattern only partially resemble the theoretical Miller indices for MoS2. In contrast, the bulk powder's spectrum shows the characteristic peaks of the 2H polytype of MoS2, but with some broadening. Notable is the retention of partial crystallinity in the post-exfoliation phases, specifically in the normal-to-plane orientation, thus demonstrating the effectiveness of microwave-assisted techniques in producing 2D MoS2 and attaining desirable properties for the material. XPS measurements confirm the success of the exfoliation procedure and that the exfoliated sample retains its original structure. The exfoliation process has been optimized to maintain the structural integrity of MoS2 while enhancing its surface area and electrochemical performance, thereby making it a promising material for advanced electronic and optoelectronic applications ranging from energy storage to sensing devices under ambient conditions.

4.
ACS Appl Mater Interfaces ; 16(27): 35463-35473, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38946100

RESUMEN

Solution-based processing of van der Waals (vdW) one- (1D) and two-dimensional (2D) materials is an effective strategy to obtain high-quality molecular chains or atomic sheets in a large area with scalability. In this work, quasi-1D vdW Ta2Pt3Se8 was exfoliated via liquid phase exfoliation (LPE) to produce a stably dispersed Ta2Pt3Se8 nanowire solution. In order to screen the optimal exfoliation solvent, nine different solvents were employed with different total surface tensions and polar/dispersive (P/D) component (P/D) ratios. The LPE behavior of Ta2Pt3Se8 was elucidated by matching the P/D ratios between Ta2Pt3Se8 and the applied solvent, resulting in N-methyl-2-pyrrolidone (NMP) as an optimal solvent owing to the well-matched total surface tension and P/D ratio. Subsequently, Ta2Pt3Se8 nanowire thin films are manufactured via vacuum filtration using a Ta2Pt3Se8/NMP dispersion. Then, gas sensing devices are fabricated onto the Ta2Pt3Se8 nanowire thin films, and gas sensing property toward NO2 is evaluated at various thin-film thicknesses. A 50 nm thick Ta2Pt3Se8 thin-film device exhibited a percent response of 25.9% at room temperature and 32.4% at 100 °C, respectively. In addition, the device showed complete recovery within 14.1 min at room temperature and 3.5 min at 100 °C, respectively.

5.
Turk J Chem ; 48(2): 289-298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050494

RESUMEN

The fabrication of few-layer borophene (BP) from bulk boron (b-B) is of great importance and still a scientific challenge due to the complex structure and crystallinity of b-B. Herein, we propose a novel technique to prepare a few-layer BP on a large scale with a large lateral size in a well-controlled manner. For this, we employed the Hummers' method-assisted liquid-phase exfoliation. In the first step, the chemical exfoliation of the b-B as a precursor was performed by the modified Hummers' method. After chemical exfoliation, mechanical delamination was employed by using an immersion sonicator. Finally, BP sheets were collected with dimensions ranging from several hundred nanometers to a few micrometers and an average thickness of 4.2 nm. We envision that the proposed low-cost, flexible, and large-scale production method will provide unique advantages for the application of few-layer BP in the realization of high-performance electronics, optoelectronics, flexible devices, sensing systems, energy conversion, and storage devices.

6.
ACS Nano ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038184

RESUMEN

Here, we demonstrate the production of 2D nanosheets of arsenic disulfide (As2S3) via liquid-phase exfoliation of the naturally occurring mineral, orpiment. The resultant nanosheets had mean lateral dimensions and thicknesses of 400 and 10 nm, and had structures indistinguishable from the bulk. The nanosheets were solution mixed with carbon nanotubes and cast into nanocomposite films for use as anodes in potassium-ion batteries. These anodes exhibited outstanding electrochemical performance, demonstrating an impressive discharge capacity of 619 mAh/g at a current density of 50 mA/g. Even after 1000 cycles at 500 mA/g, the anodes retained an impressive 94% of their capacity. Quantitative analysis of the rate performance yielded a capacity at a very low rate of 838 mAh/g, about two-thirds of the theoretical capacity of As2S3 (1305 mAh/g). However, this analysis also implied As2S3 to have a very small solid-state diffusion coefficient (∼10-17 m2/s), somewhat limiting its potential for high-rate applications.

7.
ACS Appl Mater Interfaces ; 16(27): 34913-34922, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38924489

RESUMEN

Lithium-ion batteries are the leading energy storage technology for portable electronics and vehicle electrification. However, demands for enhanced energy density, safety, and scalability necessitate solid-state alternatives to traditional liquid electrolytes. Moreover, the rapidly increasing utilization of lithium-ion batteries further requires that next-generation electrolytes are derived from earth-abundant raw materials in order to minimize supply chain and environmental concerns. Toward these ends, clay-based nanocomposite electrolytes hold significant promise since they utilize earth-abundant materials that possess superlative mechanical, thermal, and electrochemical stability, which suggests their compatibility with energy-dense lithium metal anodes. Despite these advantages, nanocomposite electrolytes rarely employ kaolinite, the most abundant variety of clay, due to strong interlayer interactions that have historically precluded efficient exfoliation of kaolinite. Overcoming this limitation, here we demonstrate a scalable liquid-phase exfoliation process that produces kaolinite nanoplatelets (KNPs) with high gravimetric surface area, thus enabling the formation of mechanically robust nanocomposites. In particular, KNPs are combined with a succinonitrile (SN) liquid electrolyte to form a nanocomposite gel electrolyte with high room-temperature ionic conductivity (1 mS cm-1), stiff storage modulus (>10 MPa), wide electrochemical stability window (4.5 V vs Li/Li+), and excellent thermal stability (>100 °C). The resulting KNP-SN nanocomposite gel electrolyte is shown to be suitable for high-rate rechargeable lithium metal batteries that employ high-voltage LiNi0.8Co0.15Al0.05O2 (NCA) cathodes. While the primary focus here is on solid-state batteries, our strategy for kaolinite liquid-phase exfoliation can serve as a scalable manufacturing platform for a wide variety of other kaolinite-based nanocomposite applications.

8.
Adv Healthc Mater ; : e2400297, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877613

RESUMEN

The close relationship between bacteria and tumors has recently attracted increasing attention, and an increasing number of resources are being invested in the research and development of biomedical materials designed for the treatment of both. In this study, prefabricated TiN nanodots (NDs) and Fe(CO)5 nanoparticles are combined into sodium alginate (ALG) hydrogels to create a biomedical material for the topical treatment of breast cancer and subcutaneous abscesses, and a pseudocatalytic hydrogel with intrinsic photothermal and antibacterial activities is synthesized. TiN+Fe(CO)5+ALG hydrogels are used to determine the ability of Fe(CO)5 to promote CO production. Moreover, TiN NDs catalyze the production of reactive oxygen species (ROS) from hydrogen peroxide in tumor microenvironments and exhibit excellent photothermal conversion properties. After local injection of the TiN+Fe(CO)5+ALG hydrogel into subcutaneous tumors and subcutaneous abscesses, and two-zone near-infrared (NIR-II) irradiation, tumor cells and methicillin-resistant Staphylococcus aureus are effectively removed by the hydrogel, the mouse epidermis exhibiting complete recovery within 8 d, indicating that this hydrogel exhibits better antibacterial efficacy than the small-molecule antibiotic penicillin. This study demonstrates the potential of novel hydrogels for antitumor and antimicrobial combination therapy and aims to provide design ideas for the research and development of multifunctional antitumor and antimicrobial drug combinations.

9.
ACS Nano ; 18(26): 16947-16957, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38870404

RESUMEN

Two-dimensional (2D) wide bandgap materials are gaining significant interest for next-generation optoelectronic devices. However, fabricating electronic-grade 2D nanosheets from non-van der Waals (n-vdW) oxide semiconductors poses a great challenge due to their stronger interlayer coupling compared with vdW crystals. This strong coupling typically introduces defects during exfoliation, impairing the optoelectronic properties. Herein, we report the liquid-phase exfoliation of few-atomic-layer thin, defect-free, free-standing ZnO nanosheets. These micron-sized, ultrathin ZnO structures exhibit three different orientations aligned along both the polar c-plane as well as the nonpolar a- and m-planes. The superior crystalline quality of the ZnO nanosheets is validated through comprehensive characterization techniques. This result is supported by density functional theory (DFT) calculations, which reveals that the formation of oxygen vacancies is energetically less favorable in 2D ZnO and that the c-plane loses its polarity upon exfoliation. Unlike bulk ZnO, which is typically dominated by defect-induced emission, the exfoliated nanosheets exhibit a strong, ambient-stable excitonic UV emission. We further demonstrate the utility of solution processing of ZnO nanosheets by their hybrid integration with organic components to produce stable light emitting diodes (LEDs) for display applications.

10.
Nanomaterials (Basel) ; 14(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786790

RESUMEN

The value of two-dimensional (2D) materials in printed electronics has been gradually explored, and the rheological properties of 2D material dispersions are very different for various printing technologies. Understanding the rheological properties of 2D material dispersions plays a vital role in selecting the optimal manufacturing technology. Inkjet printing is suitable for small nanosheet sizes and low solution viscosity, and it has a significant advantage in developing nanosheet inks because of its masklessness, high efficiency, and high precision. In this work, we selected 2D Ti0.8Co0.2O2 nanosheets, which can be synthesized in large quantities by the liquid phase exfoliation technique; investigated the effects of nanosheet particle size, solution concentration on the rheological properties of the dispersion; and obtained the optimal printing processing method of the dispersion as inkjet printing. The ultrathin Ti0.8Co0.2O2 nanosheet films were prepared by inkjet printing, and their magnetic characteristics were compared with those of Ti0.8Co0.2O2 powder. The films prepared by inkjet printing exhibited long-range ordering, maintaining the nanosheet powders' paramagnetic characteristics. Our work underscored the potential of inkjet printing as a promising method for fabricating precisely controlled thin films using 2D materials, with applications spanning electronics, sensors, and catalysis.

11.
Ultrason Sonochem ; 105: 106863, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579571

RESUMEN

Ultrasonic Liquid Phase Exfoliation (LPE) has gathered attention from both scientific and industrial communities for its accessibility and cost-effectiveness in producing graphene. However, this technique has faced challenges such as low yield and long production time. In this study, we developed a cyclic ultrasonication system to exfoliate expanded graphite (EG) by applying static pressure to a flow chamber to address these challenges. Using deionized water (DIW) as solvent and polyvinylpyrrolidone (PVP) as dispersion, we obtained graphene slurries with an average lateral size of 7 µm and averaged number of layers of 3.5 layers, after 40 min of ultrasonication. After centrifugation, the yield of single and bilayer graphene was approximately 16 %. The findings showed that regulating hydrostatic pressure can effectively affect the lateral size and number of layers of few-layer graphene. The proposed method is of good potential for scaled-up production of few-layer graphene.

12.
Small ; 20(33): e2309579, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38530067

RESUMEN

Liquid phase exfoliation (LPE) of graphene is a potentially scalable method to produce conductive graphene inks for printed electronic applications. Among LPE methods, wet jet milling (WJM) is an emerging approach that uses high-speed, turbulent flow to exfoliate graphene nanoplatelets from graphite in a continuous flow manner. Unlike prior WJM work based on toxic, high-boiling-point solvents such as n-methyl-2-pyrollidone (NMP), this study uses the environmentally friendly solvent ethanol and the polymer stabilizer ethyl cellulose (EC). Bayesian optimization and iterative batch sampling are employed to guide the exploration of the experimental phase space (namely, concentrations of graphite and EC in ethanol) in order to identify the Pareto frontier that simultaneously optimizes three performance criteria (graphene yield, conversion rate, and film conductivity). This data-driven strategy identifies vastly different optimal WJM conditions compared to literature precedent, including an optimal loading of 15 wt% graphite in ethanol compared to 1 wt% graphite in NMP. These WJM conditions provide superlative graphene production rates of 3.2 g hr-1 with the resulting graphene nanoplatelets being suitable for screen-printed micro-supercapacitors. Finally, life cycle assessment reveals that ethanol-based WJM graphene exfoliation presents distinct environmental sustainability advantages for greenhouse gas emissions, fossil fuel consumption, and toxicity.

13.
Adv Mater ; 36(24): e2310999, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38457626

RESUMEN

2D materials (2DMs), such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have been proposed for different types of bioapplications, owing to their unique physicochemical, electrical, optical, and mechanical properties. Liquid phase exfoliation (LPE), as one of the most effective up-scalable and size-controllable methods, is becoming the standard process to produce high quantities of various 2DM types as it can benefit from the use of green and biocompatible conditions. The resulting exfoliated layered materials have garnered significant attention because of their biocompatibility and their potential use in biomedicine as new multimodal therapeutics, antimicrobials, and biosensors. This review focuses on the production of LPE-assisted 2DMs in aqueous solutions with or without the aid of surfactants, bioactive, or non-natural molecules, providing insights into the possibilities of applications of such materials in the biological and biomedical fields.

14.
ACS Appl Mater Interfaces ; 16(6): 8158-8168, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38301155

RESUMEN

Layered semiconductors of the V-VI group have attracted considerable attention in optoelectronic applications owing to their atomically thin structures. They offer thickness-dependent optical and electronic properties, promising ultrafast response time, and high sensitivity. Compared to the bulk, 2D bismuth selenide (Bi2Se3) is recently considered a highly promising material. In this study, 2D nanosheets are synthesized by prolonged sonication in two different solvents, such as N-methyl-2-pyrrolidone (NMP) and chitosan-acetic acid solution (CS-HAc), using the liquid-phase exfoliation (LPE) method. X-ray diffraction confirms the amorphous nature of exfoliated 2D nanosheets with maximum peak intensity at the same position (015) crystal plane as that obtained in its bulk counterpart. SEM confirms the thin 2D nanosheet-like morphology. Successful exfoliation of Bi2Se3 nanosheets up to five layers is achieved using CS-HAc solvent. The as-synthesized 2D nanosheets in different solvents are employed to fabricate the photodetector. At minimum selected power density, the photodetector fabricated using exfoliated ultrathin 2D nanosheets exhibits the highest range of responsivity, varying from 15 to 2.5 mA/W, and detectivity ranging from 2.83 × 109 to 6.37 × 107. Ultrathin 2D Bi2Se3 nanosheets have fast rise and fall times, ranging from 0.01 to 0.12 and 0.01 to 0.06 s, respectively, at different wavelengths. Ultrathin Bi2Se3 nanosheets have improved photodetection parameters as compared to multilayered nanosheets due to the high surface to volume ratio, reduced recombination and trapping of charge carrier, improved carrier confinement, and faster carrier transport due to the thin layer.

15.
Chempluschem ; 89(6): e202300758, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38314614

RESUMEN

We investigate the molecular mechanism underlying the liquid-phase exfoliation of graphene in aqueous/N-methyl-2-pyrrolidone (NMP) solvent mixtures and calculate the associated free energies, considering different NMP concentrations and exfoliation temperatures. We employ steered molecular dynamics to establish a path for the exfoliation of a graphene sheet from graphite within each solvent environment. Then, we conduct umbrella sampling simulations throughout the created paths to compute the potential of mean force (PMF) of the graphene sheet. As the exfoliated nanosheet disperses into the liquid, it becomes fully covered by an adsorbed solvent monolayer. We analyze the composition of the monolayer by measuring the direct contacts of either NMP or water molecules with the carbon surface. The carbon surface exhibits a preference for adsorbing NMP over water. The NMP molecules form a hydrophobic compact monolayer structure, effectively protecting the carbon interface from unfavorable interactions with water. The creation of the hydrophobic monolayer is a key factor in the exfoliation process, as it effectively inhibits the restacking of exfoliated nanosheets. An adequate level of graphene solubility is achieved through the addition of 20 % to 30 % water by weight to the NMP solvent. This finding holds significant importance for improving production efficiency and reducing dependence on organic solvents in the industrial manufacturing of graphene.

16.
Adv Mater ; 36(18): e2312621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38168037

RESUMEN

Wearable humidity sensors are attracting strong attention as they allow for real-time and continuous monitoring of important physiological information by enabling activity tracking as well as air quality assessment. Amongst 2Dimensional (2D) materials, graphene oxide (GO) is very attractive for humidity sensing due to its tuneable surface chemistry, high surface area, processability in water, and easy integration onto flexible substrates. However, strong hysteresis, low sensitivity, and cross-sensitivity issues limit the use of GO in practical applications, where continuous monitoring is preferred. Herein, a wearable and wireless impedance-based humidity sensor made with pyrene-functionalized hexagonal boron nitride (h-BN) nanosheets is demonstrated. The device shows enhanced sensitivity towards relative humidity (RH) (>1010 Ohms/%RH in the range from 5% to 100% RH), fast response (0.1 ms), no appreciable hysteresis, and no cross-sensitivity with temperature in the range of 25-60 °C. The h-BN-based sensor is able to monitor the whole breathing cycle process of exhaling and inhaling, hence enabling to record in real-time the subtlest changes of respiratory signals associated with different daily activities as well as various symptoms of flu, without requiring any direct contact with the individual.

17.
Environ Technol ; 45(10): 2022-2033, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36576790

RESUMEN

TiO2/C nanocomposite films were applied on water treatment. Expanded graphite nanosheets (EG) were obtained by UVC-assisted liquid-phase exfoliation technique, without the addition of acids, surfactants, or aggressive oxidizing agents, which characterizes the process as an eco-friendly method. The carbon nanosheets were synthesized directly from graphite bulk at different times and deposited on TiO2 films surface by airbrush spray coating method, forming a TiO2/C heterojunction. The increase in the exfoliation time promoted a more efficient photocatalytic dye removal under visible light. Morphological modifications, changes in the electronic structure, and wide range of light absorption were observed from the TiO2/C heterojunction formation. The results showed that hybrid TiO2/C supported photocatalyst is a promise alternative for practical photocatalytic applications under sunlight.


Asunto(s)
Grafito , Nanocompuestos , Grafito/química , Titanio/química , Luz Solar , Nanocompuestos/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-38038267

RESUMEN

In this study, we demonstrate the fabrication of a novel 2D transition metal dichalcogenide, VTe2, into a saturable absorber (SA) by using the liquid phase exfoliation method. Furthermore, the first-principles calculations were conducted to elucidate the electronic band structures and absorption spectrum. The nonlinear optical absorption properties of VTe2 at 1.0, 2.0, and 3.0 µm were measured using open-aperture Z-scan and P-scan methods, which showed saturation intensities and modulation depths of 95.57 GW/cm2 and 9.24%, 3.11 GW/cm2 and 7.26%, and 15.8 MW/cm2 and 17.1%, respectively. Furthermore, in the realm of practical implementation, the achievement of stable passively Q-switched (PQS) lasers employing SA composed of few-layered VTe2 nanosheets has manifested itself with broadband operating wavelengths from 1.0 to ∼3.0 µm. Specifically, PQS laser operations from near-infrared to mid-infrared with pulse durations of 195 and 563 ns for 1.0 and 2.0 µm solid-state lasers, respectively, and 749 ns for an Er3+-doped fluoride fiber laser at 3.0 µm were obtained. Our experimental results demonstrate that VTe2 is a potential broadband SA device for achieving PQS lasers. To the best of our knowledge, this is the first demonstration of using VTe2 as an SA in PQS lasers in the near- and mid-infrared regions, which highlights the potential of VTe2 for future research and applications in optoelectronic devices.

19.
MethodsX ; 11: 102409, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37928106

RESUMEN

In this study, a facile and scalable method for synthesizing MoSe2 nanomaterial via a sonication-assisted liquid-phase exfoliation method is proposed. This study shows the successful synthesis of few-layered MoSe2 in various solvents including DI water, ethanol, N-Methyl-2-pyrrolidone (NMP), Dimethylformamide (DMF) and Dimethylsulfoxide (DMSO). The exfoliated nanosheets have remarkably different properties than bulk MoSe2 which were studied using Field emission scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and UV-Vis spectroscopy to investigate their morphology, functional groups, structure and optical properties, respectively. The mean values of the number of layers from an optical extinction spectrum based on the effect of edge and quantum confinement were also calculated. Moreover, the exfoliated material using this method has potential application in energy storage as demonstrated by the electrochemical performance of the bulk and exfoliated materials.•Successful synthesis of the few-layer MoSe2 from bulk MoSe2 using liquid phase exfoliation method in various solvents•The investigation of the effect of solvent on the number of layers and optical properties of MoSe2.

20.
ACS Appl Mater Interfaces ; 15(46): 53786-53801, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37938813

RESUMEN

As a metal-free and visible-light-responsive photocatalyst, graphitic carbon nitride (g-C3N4) has emerged as a new research hotspot and has attracted broad attention in the field of solar energy conversion and thin-film transistors. Liquid-phase exfoliation (LPE) is the best-known method for the synthesis of 2D g-C3N4 nanosheets. In LPE, bulk g-C3N4 is exfoliated in a solvent via high-shear mixing or sonication in order to produce a stable suspension of individual nanosheets. Two parameters of importance in gauging the performance of a solvent in LPE are the free energy required to exfoliate a unit area of layered materials into individual sheets in the solvent (ΔGexf) and the solvation free energy per unit area of a nanosheet (ΔGsol). While approximations for the free energies exist, they are shown in our previous work to be inaccurate and incapable of capturing the experimentally observed efficacy of LPE. Molecular dynamics (MD) simulations can provide accurate free-energy calculations, but doing so for every single solvent is time- and resource-consuming. Herein, machine learning (ML) algorithms are used to predict ΔGexf and ΔGsol for g-C3N4. First, a database for ΔGexf and ΔGsol is created based on a series of MD simulations involving 49 different solvents with distinct chemical structures and properties. The data set also includes values of critical descriptors for the solvents, including density, surface tension, dielectric constant, etc. Different ML methods are compared, accompanied by descriptor selection, to develop the most accurate model for predicting ΔGexf and ΔGsol. The extra tree regressor is shown to be the best performer among the six ML methods studied. Experimental validation of the model is conducted by performing dispersibility tests in several solvents for which the free energies are predicted. Finally, the influence of the selected descriptors on the free energies is analyzed, and strategies for solvent selection in LPE are proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA