RESUMEN
(1) Background: Previous studies have enriched high-density lipoproteins (HDL) using cholesteryl esters in rabbits with a three-quarter reduction in functional renal mass, suggesting that the kidneys participate in the cholesterol homeostasis of these lipoproteins. However, the possible role of the kidneys in lipoprotein metabolism is still controversial. To understand the role of the kidneys in regulating the HDL lipid content, we determined the turnover of HDL-cholesteryl esters in rabbits with a three-quarter renal mass reduction. (2) Methods: HDL subclass characterization was conducted, and the kinetics of plasma HDL-cholesteryl esters, labeled with tritium, were studied in rabbits with a 75% reduction in functional renal mass (Ntx). (3) Results: The reduced renal mass triggered the enrichment of cholesterol, specifically cholesteryl esters, in HDL subclasses. The exchange of cholesteryl esters between HDL and apo B-containing lipoproteins (VLDL/LDL) was not significantly modified in Ntx rabbits. Moreover, the cholesteryl esters of HDL and VLDL/LDL fluxes from the plasmatic compartment tended to decrease, but they only reached statistical significance when both fluxes were added to the Nxt group. Accordingly, the fractional catabolic rate (FCR) of the HDL-cholesteryl esters was lower in Ntx rabbits, concomitantly with its accumulation in HDL subclasses, probably because of the reduced mass of renal cells requiring this lipid from lipoproteins.
Asunto(s)
Ésteres del Colesterol , Lipoproteínas HDL , Animales , Conejos , Lipoproteínas HDL/metabolismo , Ésteres del Colesterol/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Proteínas de Transferencia de Ésteres de ColesterolRESUMEN
Cholesterol is an essential component of animal cells. Different regulatory mechanisms converge to maintain adequate levels of this lipid because both its deficiency and excess are unfavorable. Low cell cholesterol content promotes its synthesis and uptake from circulating lipoproteins. In contrast, its excess induces the efflux to high-density lipoproteins (HDL) and their transport to the liver for excretion, a process known as reverse cholesterol transport. Different studies suggest that an abnormal HDL metabolism hinders female fertility. HDL are the only lipoproteins detected in substantial amounts in follicular fluid (FF), and their size and composition correlate with embryo quality. Oocytes obtain cholesterol from cumulus cells via gap junctions because they cannot synthesize cholesterol de novo and lack HDL receptors. Recent evidence has supported the possibility that FF HDL play a major role in taking up excess unesterified cholesterol (UC) from the oocyte. Indeed, genetically modified mouse models with disruptions in reverse cholesterol transport, some of which show excessive circulating UC levels, exhibit female infertility. Cholesterol accumulation can affect the egg´s viability, as reported in other cell types, and activate the plasma membrane structure and activity of membrane proteins. Indeed, in mice deficient for the HDL receptor Scavenger Class B Type I (SR-B1), excess circulating HDL cholesterol and UC accumulation in oocytes impairs meiosis arrest and hinders the developmental capacity of the egg. In other cells, the addition of cholesterol activates calcium channels and dysregulates cell death/survival signaling pathways, suggesting that these mechanisms may link altered HDL cholesterol metabolism and infertility. Although cholesterol, and lipids in general, are usually not evaluated in infertile patients, one study reported high circulating UC levels in women showing longer time to pregnancy as an outcome of fertility. Based on the evidence described above, we propose the existence of a well-regulated and largely unexplored system of cholesterol homeostasis controlling traffic between FF HDL and oocytes, with significant implications for female fertility.
RESUMEN
In this chapter, we present the major advances in CETP research since the detection, isolation, and characterization of its activity in the plasma of humans and several species. Since CETP is a major modulator of HDL plasma levels, the clinical importance of CETP activity was recognized very early. We describe the participation of CETP in reverse cholesterol transport, conflicting results in animal and human genetic studies, possible new functions of CETP, and the results of the main clinical trials on CETP inhibition. Despite major setbacks in clinical trials, the hypothesis that CETP inhibitors are anti-atherogenic in humans is still being tested.
Asunto(s)
Enfermedades Cardiovasculares , Proteínas de Transferencia de Ésteres de Colesterol , Metabolismo de los Lípidos , Animales , Aterosclerosis , Transporte Biológico , HumanosRESUMEN
Atherosclerotic plaque development is closely associated with the hemodynamic forces applied to endothelial cells (ECs). Among these, shear stress (SS) plays a key role in disease development since changes in flow intensity and direction could stimulate an atheroprone or atheroprotective phenotype. ECs under low or oscillatory SS (LSS) show upregulation of inflammatory, adhesion, and cellular permeability molecules. On the contrary, cells under high or laminar SS (HSS) increase their expression of protective and anti-inflammatory factors. The mechanism behind SS regulation of an atheroprotective phenotype is not completely elucidated. Here we used proteomics and metabolomics to better understand the changes in endothelial cells (human umbilical vein endothelial cells) under in vitro LSS and HSS that promote an atheroprone or atheroprotective profile and how these modifications can be connected to atherosclerosis development. Our data showed that lipid metabolism, in special cholesterol metabolism, was downregulated in cells under LSS. The low-density lipoprotein receptor (LDLR) showed significant alterations both at the quantitative expression level as well as regarding posttranslational modifications. Under LSS, LDLR was seen at lower concentrations and with a different glycosylation profile. Finally, modulating LDLR with atorvastatin led to the recapitulation of a HSS metabolic phenotype in EC under LSS. Altogether, our data suggest that there is significant modulation of lipid metabolism in endothelial cells under different SS intensities and that this could contribute to the atheroprone phenotype of LSS. Statin treatment was able to partially recover the protective profile of these cells.
Asunto(s)
Aterosclerosis/metabolismo , Hemodinámica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Metabolismo de los Lípidos , Lipidómica/métodos , Mecanotransducción Celular , Proteómica/métodos , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Atorvastatina/farmacología , Células Cultivadas , Colesterol/metabolismo , Glicosilación , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Fenotipo , Placa Aterosclerótica , Procesamiento Proteico-Postraduccional , Receptores de LDL/metabolismo , Flujo Sanguíneo Regional , Estrés MecánicoRESUMEN
INTRODUCTION: High-density lipoprotein cholesterol comprises a group of heterogeneous subfractions that might have differential effects on atherosclerosis. Moreover, prior investigations suggest that the presence of diabetes (T2D) modifies the impact of some subfractions on atherosclerosis. In this study, we aimed to evaluate the association between high-density lipoprotein cholesterol subfractions and carotid intima-media thickness in the baseline assessment of the Brazilian Longitudinal Study of Adult Health participants from the São Paulo investigation centre. METHODS: We evaluated 3930 individuals between 35 and 74 years without previous cardiovascular disease not using lipid-lowering drugs. High-density lipoprotein cholesterol subfractions (HDL2-C and HDL3-C) were measured by vertical ultracentrifugation (vertical auto profile). The relationship between each high-density lipoprotein cholesterol subfraction and carotid intima-media thickness was analysed by multiple linear regression models. RESULTS: Total high-density lipoprotein cholesterol, as well as HDL2-C and HDL3-C, was negatively associated with carotid intima-media thickness after adjustment for demographic data (all p < 0.001) and traditional risk factors (all p < 0.05). When stratified by T2D status, the HDL2-C/HDL3-C ratio showed a negative association with carotid intima-media thickness in participants with T2D ( p = 0.032), even after fully controlling for confounding variables, including total high-density lipoprotein cholesterol. CONCLUSION: HDL2-C, HDL3-C and HDL2/HDL3-C ratio are inversely associated with carotid intima-media thickness after adjustment for traditional risk factors. Association of the HDL2-C/HDL3-C ratio is modified by the presence of diabetes, being more pronounced in diabetic individuals.
Asunto(s)
Enfermedades de las Arterias Carótidas/sangre , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Grosor Intima-Media Carotídeo , HDL-Colesterol/sangre , Diabetes Mellitus/sangre , Dislipidemias/sangre , Adulto , Anciano , Biomarcadores/sangre , Brasil/epidemiología , Enfermedades de las Arterias Carótidas/epidemiología , Estudios Transversales , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiología , Dislipidemias/diagnóstico , Dislipidemias/epidemiología , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Factores de RiesgoRESUMEN
This study aimed to explore lipoprotein metabolism in obstructive sleep apnea (OSA) and the effects of continuous positive airway pressure (CPAP). We studied 15 men with severe OSA [apnea-hypopnea index (AHI) ≥30 events/hour] and 12 age-, BMI-, and waist circumference-matched volunteers without OSA (AHI <5 events/hour). Carotid intima-media thickness (CIMT) was determined by a blind examiner. After 12 h fasting, a triglyceride-rich chylomicron-like emulsion, labeled with [14C]cholesteryl oleate and [3H]triolein, was injected intravenously followed by blood sample collection at preestablished times. Fractional clearance rate (FCR) of the radiolabeled lipids was estimated by compartmental analysis of radioisotope decay curves. Compared with controls, patients with OSA showed a significant delay in both cholesteryl ester FCR (0.0126 ± 0.0187 vs. 0.0015 ± 0.0025 min-1; P = 0.0313) and triglycerides FCR (0.0334 ± 0.0390 vs. 0.0051 ± 0.0074 min-1; P = 0.0001). CIMT was higher in the OSA group: 620 ± 17 vs. 725 ± 29 µm; P = 0.004. Cholesteryl ester FCRs were inversely related to total sleep time <90% (r = -0.463; P = 0.029) and CIMT (r = -0.601; P = 0.022). The triglyceride FCR was inversely correlated with AHI (r = -0.537; P = 0.04). In a subgroup of patients treated with CPAP for 3 months (n = 7), triglyceride FCR increased 5-fold (P = 0.025), but the cholesteryl ester FCR was unchanged. In conclusion, severe OSA decreased lipolysis of triglyceride-rich lipoproteins and delayed removal of remnants. CPAP treatment may be effective to restore the lipolysis rates.
Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Lipoproteínas/metabolismo , Apnea Obstructiva del Sueño/metabolismo , Apnea Obstructiva del Sueño/terapia , Triglicéridos/metabolismo , Adulto , Femenino , Humanos , Lipólisis , Lipoproteínas/sangre , Masculino , Sueño , Apnea Obstructiva del Sueño/sangre , Triglicéridos/sangreRESUMEN
The potential cause-effect relationship between uric acid plasma concentrations and HDL functionality remains elusive. Therefore, this study aimed to explore the effect of oxonic acid (OA)-induced hyperuricemia on the HDL size distribution, lipid content of HDL subclasses, and apo AI turnover, as well as HDL functionality in New Zealand white rabbits. Experimental animals received OA 750 mg/kg/day by oral gavage during 21 days. The HDL-apo AI fractional catabolic rate (FCR) was determined by exogenous labeling with 125I, and HDL subclasses were determined by sequential ultracentrifugation and PAGE. Paraoxonase-1 activity (PON-1) and the effect of HDL on relaxation of aorta rings in vitro were determined as an indication of HDL functionality. Oxonic acid induced a sixfold increase of uricemia (0.84 ± 0.06 vs. 5.24 ± 0.12 mg/dL, P < 0.001), and significant decreases of triglycerides and phospholipids of HDL subclasses, whereas HDL size distribution and HDL-cholesterol remained unchanged. In addition, HDL-apo AI FCR was significantly higher in hyperuricemic rabbits than in the control group (0.03697 ± 0.0038 vs. 0.02605 ± 0.0017 h-1 respectively, P < 0.05). Such structural and metabolic changes were associated with lower levels of PON-1 activities and deleterious effects of HDL particles on endothelium-mediated vasodilation. In conclusion, hyperuricemia is associated with structural and metabolic modifications of HDL that result in impaired functionality of these lipoproteins. Our data strongly suggest that uric acid per se exerts deleterious effects on HDL that contribute to increase the risk of atherosclerosis.
Asunto(s)
Apolipoproteína A-I/metabolismo , Hiperuricemia/sangre , Lipoproteínas HDL/sangre , Ácido Oxónico/efectos adversos , Animales , Arildialquilfosfatasa/metabolismo , Modelos Animales de Enfermedad , Humanos , Hiperuricemia/inducido químicamente , Lipoproteínas HDL/química , ConejosRESUMEN
BACKGROUND: Postprandial triglyceridemia may transitory affect the structure of HDL subclasses and probably their antiatherogenic properties but little is known in this field. We analyzed the HDL subclasses lipid content along postprandial period. METHODS: Fifteen metabolic syndrome (MS) patients and 15 healthy controls were enrolled. HDL were isolated from plasma samples obtained at fasting and every 2-h up to 8-h, after a 75-g fat meal. Cholesterol (C), triglycerides (TAG), and phospholipid (Ph) plasma concentrations of five HDL subclasses were determined by densitometry of electrophoresis gels enzymatically stained. RESULTS: The increase of postprandial triglyceridemia expressed as the incremental area under the curve (iAUC) was twice in MS patients than in controls. Only large HDL2b-TAG were higher in MS than controls at 4, 6 and 8h after meal intake, whereas cholesterol of HDL2a, 3a and 3b were lower at 8h. HDL size distribution shifted towards large HDL and HDL3a-, 3b- and 3c-subclasses had a lower content of cholesterol (estimated by the C-to-Ph ratio) in subjects whose iAUC>289.5mgh/dl (n=15) in comparison with those subjects with iAUC below this cutoff point (n=15), independently of the MS status and fasting TAG. Triglycerides content of HDL subclasses changed only discreetly along the postprandial period, whereas paraoxonase-1 remained unchanged. CONCLUSIONS: A high postprandial triglyceridemia conditions the shift of HDL size distribution towards large particles and the decrease of cholesterol in HDL3 subclasses. These data demonstrate that postprandial hypertriglyceridemia contributes to a transitory hypoalphalipoproteinemia that may increase the risk of cardiovascular disease.
Asunto(s)
Colesterol , Dieta Alta en Grasa , Hipertrigliceridemia/sangre , Lipoproteínas HDL/sangre , Lipoproteínas HDL/química , Periodo Posprandial , Adulto , Anciano , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND AND AIMS: We aimed to assess whether elevated PCSK9 and lipoprotein (a) [Lp(a)] levels associate with coronary artery calcification (CAC), a good marker of atherosclerosis burden, in asymptomatic familial hypercholesterolemia. METHODS: We selected 161 molecularly defined FH patients treated with stable doses of statins for more than a year. CAC was measured using the Agatston method and quantified as categorical variable. Fasting plasma samples were collected and analyzed for lipids and lipoproteins. PCSK9 was measured by ELISA, Lp(a) and apolipoprotein (a) concentrations by inmunoturbidimetry and LC-MS/MS, respectively. RESULTS: Circulating PCSK9 levels were significantly reduced in patients without CAC (n = 63), compared to those with CAC (n = 99). Patients with the highest CAC scores (above 100) had the highest levels of circulating PCSK9 and Lp(a). In multivariable regression analyses, the main predictors for a positive CAC score was age and sex followed by circulating PCSK9 and Lp(a) levels. CONCLUSIONS: In statin treated asymptomatic FH patients, elevated PCSK9 and Lp(a) levels are independently associated with the presence and severity of CAC, a good predictor of coronary artery disease.
Asunto(s)
Calcinosis/sangre , Vasos Coronarios/patología , Hiperlipoproteinemia Tipo II/sangre , Lipoproteína(a)/sangre , Proproteína Convertasa 9/sangre , Adulto , Anciano , Calcio/sangre , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/genética , Vasos Coronarios/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Hiperlipoproteinemia Tipo II/genética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Mutación , Fenotipo , Tomografía Computarizada por Rayos XRESUMEN
The catabolism and structure of high-density lipoproteins (HDL) may be the determining factor of their atheroprotective properties. To better understand the role of the kidney in HDL catabolism, here we characterized HDL subclasses and the catabolic rates of apo A-I in a rabbit model of proteinuria. Proteinuria was induced by intravenous administration of doxorubicin in New Zealand white rabbits (n = 10). HDL size and HDL subclass lipids were assessed by electrophoresis of the isolated lipoproteins. The catabolic rate of HDL-apo A-I was evaluated by exogenous radiolabelling with iodine-131. Doxorubicin induced significant proteinuria after 4 weeks (4.47 ± 0.55 vs. 0.30 ± 0.02 g/L of protein in urine, P < 0.001) associated with increased uremia, creatininemia, and cardiotoxicity. Large HDL2b augmented significantly during proteinuria, whereas small HDL3b and HDL3c decreased compared to basal conditions. HDL2b, HDL2a, and HDL3a subclasses were enriched with triacylglycerols in proteinuric animals as determined by the triacylglycerol-to-phospholipid ratio; the cholesterol content in HDL subclasses remained unchanged. The fractional catabolic rate (FCR) of [(131)I]-apo A-I in the proteinuric rabbits was faster (FCR = 0.036 h(-1)) compared to control rabbits group (FCR = 0.026 h(-1), P < 0.05). Apo E increased and apo A-I decreased in HDL, whereas PON-1 activity increased in proteinuric rabbits. Proteinuria was associated with an increased number of large HDL2b particles and a decreased number of small HDL3b and 3c. Proteinuria was also connected to an alteration in HDL subclass lipids, apolipoprotein content of HDL, high paraoxonase-1 activity, and a rise in the fractional catabolic rate of the [(131)I]-apo A-I.