Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
1.
Adv Exp Med Biol ; 1461: 15-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39289271

RESUMEN

The cell membrane, also called the plasma membrane, is the membrane on the cytoplasmic surface that separates the extracellular from the intracellular. It is thin, about 10 nm thick when viewed with an electron microscope, and is composed of two monolayers of phospholipid membranes (lipid bilayers) containing many types of proteins. It is now known that this cell membrane not only separates the extracellular from the intracellular, but is also involved in sensory stimuli such as pain, itching, sedation, and excitement. Since the "Fluid mosaic model" was proposed for cell membranes, molecules have been thought to be homogeneously distributed on the membrane surface. Later, at the end of the twentieth century, the existence of "Phase-separated microdomain structures" consisting of ordered phases rich in saturated lipids and cholesterol was suggested, and these were termed "Lipid rafts." A model in which lipid rafts regulate cell signaling has been proposed and is the subject of active research.This chapter first outlines the physicochemical properties and thermodynamic models of membrane phase separation (lipid rafts), which play an important role in cell signaling. Next, how physiologically active molecules such as local anesthetics, cooling agents (menthol), and warming agents (capsaicin) interact with artificial cell membranes will be presented.It is undeniable that the plasma membrane contains many channels and receptors that are involved in the propagation of sensory stimuli. At the same time, however, it is important to understand that the membrane exerts a significant influence on the intensity and propagation of these stimuli.


Asunto(s)
Microdominios de Membrana , Microdominios de Membrana/metabolismo , Microdominios de Membrana/química , Humanos , Animales , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Transducción de Señal , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Termodinámica , Membrana Celular/metabolismo , Membrana Celular/química , Biomimética/métodos , Colesterol/química , Colesterol/metabolismo
2.
Colloids Surf B Biointerfaces ; 245: 114191, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39232481

RESUMEN

The effects of a peripheral protein - cholesterol oxidase (3ß-hydroxysteroid oxidase, ChOx) on the characteristics of model lipid membranes composed of cholesterol, cholesterol:sphingomyelin (1:1), and the raft model composed of DOPC:Chol:SM (1:1:1) were investigated using two membrane model systems: the flat monolayer prepared by the Langmuir technique and the curved model consisting of liposome of the same lipids. The planar monolayers and liposomes were employed to follow membrane cholesterol oxidation to cholestenone catalyzed by ChOx and changes in the lipid membrane structure accompanying this reaction. Changes in the structure of liposomes in the presence of the enzyme were reflected in the changes of hydrodynamic diameter and fluorescence microscopy images, while changes of surface properties of planar membranes were evaluated by grazing incidence X-ray diffraction (GIXD) and Brewster angle microscopy. UV-Vis absorbance measurements confirmed the activity of the enzyme in the tested systems. A better understanding of the interactions between the enzyme and the cell membrane may help in finding alternative ways to decrease excessive cholesterol levels than the common approach of treating hypercholesterolemia with statins, which are not free from undesirable side effects, repeatedly reported in the literature and observed by the patients.

3.
Neurochem Int ; 179: 105826, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117000

RESUMEN

TRPV1 acts as a unique polymodal ion channel having distinct structure and gating properties. In this context, TRPV1-R575D represents a special mutant located at the inner lipid-water-interface (LWI) region that has less possibility of interaction with membrane cholesterol. In control conditions, this lab-generated mutant of TRPV1 shows no "ligand-sensitivity", reduced surface expression, reduced localization in the lipid rafts, yet induces high cellular lethality. Notably, the cellular lethality induced by TRPV1-R575D expression can be rescued by adding 5'I-RTX (a specific inhibitor of TRPV1) or by introducing another mutation in the next position, i.e. in TRPV1-R575D/D576R. In this work we characterized TRPV1-R575D and TRPV1-R575D/D576R mutants in different cellular conditions and compared with the TRPV1-WT. We report that the "ligand-insensitivity" of TRPV1-R575D can be rescued in certain conditions, such as by chelation of extracellular Ca2+, or by reduction of the membrane cholesterol. Here we show that Ca2+ plays an important role in the channel gating of TRPV1-WT as well as LWI mutants (TRPV1-R575D, TRPV1-R575D/D576R). However, chelation of intracellular Ca2+ or depletion of ER Ca2+ did not have a significant effect on the TRPV1-R575D. Certain properties related to channel gating of mutant TRPV1-R575D/D576R can be rescued partially or fully in a context -dependent manner. Cholesterol depletion also alters these properties. Our data suggests that lower intracellular basal Ca2+ acts as a pre-requisite for further opening of TRPV1-R575D. These findings enable better understanding of the structure-function relationship of TRPV1 and may be critical in comprehending the channelopathies induced by other homologous thermosensitive TRPVs.


Asunto(s)
Calcio , Capsaicina , Colesterol , Canales Catiónicos TRPV , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Colesterol/metabolismo , Capsaicina/farmacología , Calcio/metabolismo , Humanos , Células HEK293 , Mutación , Agua/metabolismo , Agua/química , Quelantes/farmacología , Animales
4.
Structure ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39181124

RESUMEN

The SPFH (stomatin, prohibitin, flotillin, and HflK/C) protein family is universally present and encompasses the evolutionarily conserved SPFH domain. These proteins are predominantly localized in lipid raft and implicated in various biological processes. The NfeD (nodulation formation efficiency D) protein family is often encoded in tandem with SPFH proteins, suggesting a close functional relationship. Here, we elucidate the cryoelectron microscopy (cryo-EM) structure of the Escherichia coli QmcA-YbbJ complex belonging to the SPFH and NfeD families, respectively. Our findings reveal that the QmcA-YbbJ complex forms an intricate cage-like structure composed of 26 copies of QmcA-YbbJ heterodimers. The transmembrane helices of YbbJ act as adhesive elements bridging adjacent QmcA molecules, while the oligosaccharide-binding domain of YbbJ encapsulates the SPFH domain of QmcA. Our structural study significantly contributes to understanding the functional role of the NfeD protein family and sheds light on the interplay between SPFH and NfeD family proteins.

5.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201269

RESUMEN

The synapse is a piece of information transfer machinery replacing the electrical conduction of nerve impulses at the end of the neuron. Like many biological mechanisms, its functioning is heavily affected by time constraints. The solution selected by evolution is based on chemical communication that, in theory, cannot compete with the speed of nerve conduction. Nevertheless, biochemical and biophysical compensation mechanisms mitigate this intrinsic weakness: (i) through the high concentrations of neurotransmitters inside the synaptic vesicles; (ii) through the concentration of neurotransmitter receptors in lipid rafts, which are signaling platforms; indeed, the presence of raft lipids, such as gangliosides and cholesterol, allows a fine tuning of synaptic receptors by these lipids; (iii) through the negative electrical charges of the gangliosides, which generate an attractive (for cationic neurotransmitters, such as serotonin) or repulsive (for anionic neurotransmitters, such as glutamate) electric field. This electric field controls the flow of glutamate in the tripartite synapse involving pre- and post-synaptic neurons and the astrocyte. Changes in the expression of brain gangliosides can disrupt the functioning of the glutamatergic synapse, causing fatal diseases, such as Rett syndrome. In this review, we propose an in-depth analysis of the role of gangliosides in the glutamatergic synapse, highlighting the primordial and generally overlooked role played by the electric field of synaptic gangliosides.


Asunto(s)
Encéfalo , Gangliósidos , Ácido Glutámico , Electricidad Estática , Sinapsis , Gangliósidos/metabolismo , Gangliósidos/química , Humanos , Sinapsis/metabolismo , Animales , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Neurotransmisores/metabolismo , Neuronas/metabolismo , Transmisión Sináptica
6.
Methods Enzymol ; 700: 77-104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38971613

RESUMEN

The biophysical drivers of membrane lateral heterogeneity, often termed lipid rafts, have been largely explored using synthetic liposomes or mammalian plasma membrane-derived giant vesicles. Yeast vacuoles, an organelle comparable to mammalian lysosomes, is the only in vivo system that shows stable micrometer scale phase separation in unperturbed cells. The ease of manipulating lipid metabolism in yeast makes this a powerful system for identifying lipids involved in the onset of vacuole membrane heterogeneity. Vacuole domains are induced by stationary stage growth and nutritional starvation, during which they serve as a docking and internalization site for lipid droplet energy stores. Here we describe methods for characterizing vacuole phase separation, its physiological function, and its lipidic drivers. First, we detail methodologies for robustly inducing vacuole domain formation and quantitatively characterizing during live cell imaging experiments. Second, we detail a new protocol for biochemical isolation of stationary stage vacuoles, which allows for lipidomic dissection of membrane phase separation. Third, we describe biochemical techniques for analyzing lipid droplet internalization in vacuole domains. When combined with genetic or chemical perturbations to lipid metabolism, these methods allow for systematic dissection of lipid composition in the structure and function of ordered membrane domains in living cells.


Asunto(s)
Metabolismo de los Lípidos , Saccharomyces cerevisiae , Vacuolas , Vacuolas/metabolismo , Saccharomyces cerevisiae/metabolismo , Microdominios de Membrana/metabolismo , Gotas Lipídicas/metabolismo , Membrana Celular/metabolismo , Lipidómica/métodos
7.
Infect Med (Beijing) ; 3(2): 100113, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39006003

RESUMEN

Background: Vibrio cholerae N-acetylglucosamine-binding protein (GbpA) is a four-domain, secretory colonization factor which is essential for chitin utilization in the environment, as well as in adherence to intestinal cells. GbpA is also involved in inducing intestinal inflammation by enhancing mucin and interleukin-8 secretion. The underlying cell signaling mechanism involved in the induction of the pro-inflammatory response and IL-8 secretion has yet to be deciphered in detail. Methods: Herein, the process through which GbpA triggers the induction of IL-8 in intestinal cells was investigated by examining the role of GbpA in intestinal cell line HT 29. Results: GbpA, specifically through the fourth domain, forms a binding connection with Toll-like receptor 2 (TLR2) and additionally, recruits TLR1 along with CD14 within a lipid raft micro-domain to initiate the signaling pathway. Notably, disruption of this micro-domain complex resulted in a reduction in IL-8 secretion. The lipid raft association served as the catalyst that invoked a downstream cellular inflammatory signaling pathway. This cascade involved the activation of various MAP kinases and NFκB and assembly of the AP-1 complex. This coordinated activation of signaling molecules eventually leads to enhanced IL-8 transcription via increased promoter activity. These findings suggested that GbpA is a crucial protein in V. cholerae, capable of inciting a pro-inflammatory response during infection by orchestrating the formation of the GbpA-TLR1/2-CD14 lipid raft complex. Activation of AP-1 and NFκB in the nucleus eventually enhanced IL-8 transcription through increased promoter activity. Conclusion: Collectively, these findings indicated that GbpA plays a pivotal role within V. cholerae by triggering a pro-inflammatory response during infection. This response is instrumented by the formation of the GbpA-TLR1/2-CD14 lipid raft complex.

8.
Methods Enzymol ; 700: 189-216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38971600

RESUMEN

We describe a method for investigating lateral membrane heterogeneity using cryogenic electron microscopy (cryo-EM) images of liposomes. The method takes advantage of differences in the thickness and molecular density of ordered and disordered phases that are resolvable in phase contrast cryo-EM. Compared to biophysical techniques like FRET or neutron scattering that yield ensemble-averaged information, cryo-EM provides direct visualization of individual vesicles and can therefore reveal variability that would otherwise be obscured by averaging. Moreover, because the contrast mechanism involves inherent properties of the lipid phases themselves, no extrinsic probes are required. We explain and discuss various complementary analyses of spatially resolved thickness and intensity measurements that enable an assessment of the membrane's phase state. The method opens a window to nanodomain structure in synthetic and biological membranes that should lead to an improved understanding of lipid raft phenomena.


Asunto(s)
Microscopía por Crioelectrón , Liposomas , Microscopía por Crioelectrón/métodos , Liposomas/química , Membrana Dobles de Lípidos/química , Microdominios de Membrana/ultraestructura , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Lípidos de la Membrana/química , Separación de Fases
9.
Front Microbiol ; 15: 1409552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873163

RESUMEN

Background: Lipids are a key nutrient source for the growth and reproduction of Mycobacterium tuberculosis (Mtb). Urine-derived extracellular vesicles (EVs), because of its non-invasive sampling, lipid enrichment, and specific sorting character, have been recognized as a promising research target for biomarker discovery and pathogenesis elucidation in tuberculosis (TB). We aim to profile lipidome of Mtb-infected individuals, offer novel lipid signatures for the development of urine-based TB testing, and provide new insights into the lipid metabolism after Mtb infection. Methods: Urine-derived extracellular vesicles from 41 participants (including healthy, pulmonary tuberculosis, latent tuberculosis patients, and other lung disease groups) were isolated and individually detected using targeted lipidomics and proteomics technology platforms. Biomarkers were screened by multivariate and univariate statistical analysis and evaluated by SPSS software. Correlation analyses were performed on lipids and proteins using the R Hmisc package. Results: Overall, we identified 226 lipids belonging to 14 classes. Of these, 7 potential lipid biomarkers for TB and 6 for latent TB infection (LTBI) were identified, all of which were classified into diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acid (FFA), and cholesteryl ester (CE). Among them, FFA (20:1) was the most promising biomarker target in diagnosing TB/LTBI from other compared groups and also have great diagnostic performance in distinguishing TB from LTBI with AUC of 0.952. In addition, enhanced lipolysis happened as early as individuals got latent Mtb infection, and ratio of raft lipids was gradually elevated along TB progression. Conclusion: This study demonstrated individualized lipid profile of urinary EVs in patients with Mtb infection, revealed novel potential lipid biomarkers for TB/LTBI diagnosis, and explored mechanisms by which EV lipid raft-dependent bio-processes might affect pathogenesis. It lays a solid foundation for the subsequent diagnosis and therapeutic intervention of TB.

10.
Biology (Basel) ; 13(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785798

RESUMEN

Escherichia coli (E. coli) is a frequent gram-negative bacterium that causes nosocomial infections, affecting more than 100 million patients annually worldwide. Bacterial lipopolysaccharide (LPS) from E. coli binds to toll-like receptor 4 (TLR4) and its co-receptor's cluster of differentiation protein 14 (CD14) and myeloid differentiation factor 2 (MD2), collectively known as the LPS receptor complex. LPCAT2 participates in lipid-raft assembly by phospholipid remodelling. Previous research has proven that LPCAT2 co-localises in lipid rafts with TLR4 and regulates macrophage inflammatory response. However, no published evidence exists of the influence of LPCAT2 on the gene expression of the LPS receptor complex induced by smooth or rough bacterial serotypes. We used RAW264.7-a commonly used experimental murine macrophage model-to study the effects of LPCAT2 on the LPS receptor complex by transiently silencing the LPCAT2 gene, infecting the macrophages with either smooth or rough LPS, and quantifying gene expression. LPCAT2 only significantly affected the gene expression of the LPS receptor complex in macrophages infected with smooth LPS. This study provides novel evidence that the influence of LPCAT2 on macrophage inflammatory response to bacterial infection depends on the LPS serotype, and it supports previous evidence that LPCAT2 regulates inflammatory response by modulating protein translocation to lipid rafts.

11.
Front Immunol ; 15: 1401294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720899

RESUMEN

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Asunto(s)
Esfingolípidos , Animales , Humanos , Esfingolípidos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Fagocitosis , Fagocitos/inmunología , Fagocitos/metabolismo , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Membrana Celular/metabolismo , Unión Proteica
12.
Neurochem Res ; 49(8): 2021-2037, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38814360

RESUMEN

Acetylcholine is the main neurotransmitter at the vertebrate neuromuscular junctions (NMJs). ACh exocytosis is precisely modulated by co-transmitter ATP and its metabolites. It is assumed that ATP/ADP effects on ACh release rely on activation of presynaptic Gi protein-coupled P2Y13 receptors. However, downstream signaling mechanism of ATP/ADP-mediated modulation of neuromuscular transmission remains elusive. Using microelectrode recording and fluorescent indicators, the mechanism underlying purinergic regulation was studied in the mouse diaphragm NMJs. Pharmacological stimulation of purinoceptors with ADP decreased synaptic vesicle exocytosis evoked by both low and higher frequency stimulation. This inhibitory action was suppressed by antagonists of P2Y13 receptors (MRS 2211), Ca2+ mobilization (TMB8), protein kinase C (chelerythrine) and NADPH oxidase (VAS2870) as well as antioxidants. This suggests the participation of Ca2+ and reactive oxygen species (ROS) in the ADP-triggered signaling. Indeed, ADP caused an increase in cytosolic Ca2+ with subsequent elevation of ROS levels. The elevation of [Ca2+]in was blocked by MRS 2211 and TMB8, whereas upregulation of ROS was prevented by pertussis toxin (inhibitor of Gi protein) and VAS2870. Targeting the main components of lipid rafts, cholesterol and sphingomyelin, suppressed P2Y13 receptor-dependent attenuation of exocytosis and ADP-induced enhancement of ROS production. Inhibition of P2Y13 receptors decreased ROS production and increased the rate of exocytosis during intense activity. Thus, suppression of neuromuscular transmission by exogenous ADP or endogenous ATP can rely on P2Y13 receptor/Gi protein/Ca2+/protein kinase C/NADPH oxidase/ROS signaling, which is coordinated in a lipid raft-dependent manner.


Asunto(s)
Microdominios de Membrana , Unión Neuromuscular , Oxidación-Reducción , Transducción de Señal , Transmisión Sináptica , Animales , Unión Neuromuscular/metabolismo , Unión Neuromuscular/efectos de los fármacos , Microdominios de Membrana/metabolismo , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Ratones , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos , Masculino , Especies Reactivas de Oxígeno/metabolismo , Exocitosis/fisiología , Exocitosis/efectos de los fármacos , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Calcio/metabolismo
13.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731855

RESUMEN

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Asunto(s)
Esfingomielina Fosfodiesterasa , Canales Catiónicos TRPM , beta-Ciclodextrinas , Animales , Humanos , Ratones , Analgésicos/farmacología , Analgésicos/uso terapéutico , beta-Ciclodextrinas/farmacología , Supervivencia Celular/efectos de los fármacos , Células CHO , Colesterol/metabolismo , Cricetulus , Modelos Animales de Enfermedad , Células HEK293 , Microdominios de Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Dolor/metabolismo , Pregnenolona/farmacología , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Pirimidinonas/farmacología
14.
J Control Release ; 371: 29-42, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763389

RESUMEN

The tumor develops defense tactics, including conversing the mechanical characteristics of tumor cells and their surrounding environment. A recent study reported that cholesterol depletion stiffens tumor cells, which could enhance adaptive T-cell immunotherapy. However, it remains unclear whether reducing the cholesterol in tumor cells contributes to re-educating the stiff tumor matrix, which serves as a physical barrier against drug penetration. Herein, we found that depleting cholesterol from tumor cells can demolish the intratumor physical barrier by disrupting the mechanical signal transduction between tumor cells and the extracellular matrix through the destruction of lipid rafts. This disruption allows nanoparticles (H/S@hNP) to penetrate deeply, resulting in improved photodynamic treatment. Our research also indicates that cholesterol depletion can inhibit the epithelial-mesenchymal transition and repolarize tumor-associated macrophages from M2 to M1, demonstrating the essential role of cholesterol in tumor progression. Overall, this study reveals that a cholesterol-depleted, softened tumor matrix reduces the difficulty of drug penetration, leading to enhanced antitumor therapeutics.


Asunto(s)
Colesterol , Colesterol/metabolismo , Animales , Humanos , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Nanopartículas/administración & dosificación , Ratones , Fotoquimioterapia/métodos , Microambiente Tumoral/efectos de los fármacos , Femenino , Matriz Extracelular/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos
15.
J Cell Sci ; 137(8)2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38668720

RESUMEN

Amyloid ß (Aß) is a central contributor to neuronal damage and cognitive impairment in Alzheimer's disease (AD). Aß disrupts AMPA receptor-mediated synaptic plasticity, a key factor in early AD progression. Numerous studies propose that Aß oligomers hinder synaptic plasticity, particularly long-term potentiation (LTP), by disrupting GluA1 (encoded by GRIA1) function, although the precise mechanism remains unclear. In this study, we demonstrate that Aß mediates the accumulation of GM1 ganglioside in lipid raft domains of cultured cells, and GluA1 exhibits preferential localization in lipid rafts via direct binding to GM1. Aß enhances the raft localization of GluA1 by increasing GM1 in these areas. Additionally, chemical LTP stimulation induces lipid raft-dependent GluA1 internalization in Aß-treated neurons, resulting in reduced cell surface and postsynaptic expression of GluA1. Consistent with this, disrupting lipid rafts and GluA1 localization in rafts rescues Aß-mediated suppression of hippocampal LTP. These findings unveil a novel functional deficit in GluA1 trafficking induced by Aß, providing new insights into the mechanism underlying AD-associated cognitive dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Hipocampo , Potenciación a Largo Plazo , Microdominios de Membrana , Receptores AMPA , Péptidos beta-Amiloides/metabolismo , Receptores AMPA/metabolismo , Microdominios de Membrana/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Hipocampo/metabolismo , Gangliósido G(M1)/metabolismo , Humanos , Neuronas/metabolismo , Ratas , Ratones , Transporte de Proteínas
16.
Front Cell Dev Biol ; 12: 1334130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481530

RESUMEN

Transient Receptor Potential Vanilloid 1 (TRPV1) and Ankyrin 1 (TRPA1) are nonselective cation channels expressed in primary sensory neurons and several other non-neuronal structures such as immune cells, keratinocytes, and vascular smooth muscle cells. They play important roles in nociception, pain processing and their chanellopathies are associated with the development of several pathological conditions. They are located in cholesterol- and sphingolipid-rich membrane lipid raft regions serving as platforms to modulate their activations. We demonstrated earlier that disruption of these lipid rafts leads to decreased TRP channel activation and exerts analgesic effects. Cyclodextrins are macrocyclic molecules able to form host-guest complexes with cholesterol and deplete it from the membrane lipid rafts. The aim of this study was to investigate 8 structurally different (methylated and non-methylated) CD derivatives on cell viability, mitochondrial membrane potential, membrane composition and activation abilities of the TRPV1 and TRPA1 channels. We showed that non-methylated derivatives have preferable safety profiles compared to methylated ones. Furthermore, methylated derivatives reduced mitochondrial membrane potential. However, all investigated derivatives influence the ordered cell membrane structure depleting membrane cholesterol and inhibit the TRPV1 agonist capsaicin- and the TRPA1 agonist allyl isothiocyanate-induced Ca2+-influx. This mechanism of action might provide novel perspectives for the development of peripherally acting analgesics via indirectly decreasing the generation and transmission of nociceptive signals.

17.
Int J Biol Macromol ; 264(Pt 2): 130690, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458297

RESUMEN

Nowadays, non-small cell lung cancer (NSCLC) is still one of the most life-threatening diseases in the world. In previous studies, a fungal protein PFAP with anti-NSCLC properties was isolated and identified from Pleurotus ferulae lanzi. In this study, the amino acid sequence of PFAP was analyzed and found to be highly homologous to the aegerolysin family. PFAP, like other members of the aegerolysin family, specifically recognizes lipid raft domains rich in cholesterol and sphingomyelin, which is probably its specific anti-tumor mechanism. Previous studies have shown that PFAP can induce AMPK-mediated autophagy and G1-phase cell cycle arrest in A549 lung cancer cells. This study further revealed that PFAP can also induce paraptosis and endoplasmic reticulum stress (ERS) in A549 cells in vitro by targeting AMPK. PFAP induces multi-pathway death of A549 cells, and thus demonstrates its potential value for developing new drugs for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Apoptosis , Paraptosis , Proteínas Quinasas Activadas por AMP , Estrés del Retículo Endoplásmico
18.
J Agric Food Chem ; 72(13): 7130-7139, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516841

RESUMEN

Macrophage inflammation and oxidative stress promote atherosclerosis progression. Naringenin is a naturally occurring flavonoid with antiatherosclerotic properties. Here, we elucidated the effects of naringenin on monocyte/macrophage endothelial infiltration and vascular inflammation. We found naringenin inhibited oxidized low-density lipoprotein (oxLDL)-induced pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α toward an M2 macrophage phenotype and inhibited oxLDL-induced TLR4 (Toll-like receptor 4) membrane translocation and downstream NF-κB transcriptional activity. Results from flow cytometric analysis showed that naringenin reduced monocyte/macrophage infiltration in the aorta of high-fat-diet-treated ApoE-deficient mice. The aortic cytokine levels were also inhibited in naringenin-treated mice. Further, we found that naringenin reduced lipid raft clustering and acid sphingomyelinase (ASMase) membrane gathering and inhibited the TLR4 and NADPH oxidase subunit p47phox membrane recruitment, which reduced the inflammatory response. Recombinant ASMase treatment or overexpression of ASMase abolished the naringenin function and activated macrophage and vascular inflammation. We conclude that naringenin inhibits ASMase-mediated lipid raft redox signaling to attenuate macrophage activation and vascular inflammation.


Asunto(s)
Flavanonas , Esfingomielina Fosfodiesterasa , Receptor Toll-Like 4 , Ratones , Animales , Receptor Toll-Like 4/genética , Esfingomielina Fosfodiesterasa/genética , Inflamación/tratamiento farmacológico , Inflamación/genética , FN-kappa B , Citocinas , NADPH Oxidasas/genética , Microdominios de Membrana
19.
J Biol Chem ; 300(4): 107154, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479603

RESUMEN

Styrene-maleic acid (SMA) and similar amphiphilic copolymers are known to cut biological membranes into lipid nanoparticles/nanodiscs containing membrane proteins apparently in their relatively native membrane lipid environment. Our previous work demonstrated that membrane raft microdomains resist such disintegration by SMA. The use of SMA in studying membrane proteins is limited by its heterogeneity and the inability to prepare defined derivatives. In the present paper, we demonstrate that some amphiphilic peptides structurally mimicking SMA also similarly disintegrate cell membranes. In contrast to the previously used copolymers, the simple peptides are structurally homogeneous. We found that their membrane-disintegrating activity increases with their length (reaching optimum at 24 amino acids) and requires a basic primary structure, that is, (XXD)n, where X represents a hydrophobic amino acid (optimally phenylalanine), D aspartic acid, and n is the number of repeats of these triplets. These peptides may provide opportunities for various well-defined potentially useful modifications in the study of membrane protein biochemistry. Our present results confirm a specific character of membrane raft microdomains.


Asunto(s)
Proteínas de la Membrana , Péptidos , Animales , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Maleatos/química , Microdominios de Membrana/metabolismo , Microdominios de Membrana/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Péptidos/química , Poliestirenos/química , Línea Celular
20.
Cell Mol Biol Lett ; 29(1): 41, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532366

RESUMEN

Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/ß-catenin, TGF-ß/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Transducción de Señal , Antígeno AC133/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Membrana Celular/metabolismo , Células Madre Neoplásicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA