Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(16): e36533, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39262950

RESUMEN

At night, clear pavement markings are essential for driver safety. Currently, markings visibility evaluation relies on the retroreflectivity, but the impact of line width is unclear. To quantify the impact of line width on visibility and to refine visibility evaluation methods, a driver visual detection experiment was designed using both qualitative and quantitative approaches. Twenty-four drivers of small vehicles were randomly recruited to participate in visual detection tests of a total of 54 white pavement markings (comprising 6 widths and 9 retroreflectivity levels) under the illumination of high beams, following the principle of using the "emergence point" as the critical state for assessing pavement marking visibility. This study indicated that widening pavement markings significantly enhances their visibility, particularly for markings with low retroreflectivity. A visibility evaluation model was established to quantify the impact of width and retroreflectivity on the visual distance of markings. The model confirms that widening markings can improve visibility, thereby reducing the required level of retroreflectivity. The research methodology and findings provide technical support for managers to more accurately assess nighttime safety visibility during pavement marking operation and maintenance.

2.
ACS Nano ; 18(36): 24941-24952, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39189799

RESUMEN

Small metal-rich semiconducting quantum dots (QDs) are promising for solid-state lighting and single-photon emission due to their highly tunable yet narrow emission line widths. Nonetheless, the anionic ligands commonly employed to passivate these QDs exert a substantial influence on the optoelectronic characteristics, primarily owing to strong electron-phonon interactions. In this work, we combine time-domain density functional theory and nonadiabatic molecular dynamics to investigate the excited charge carrier dynamics of Cd28Se17X22 QDs (X = HCOO-, OH-, Cl-, and SH-) at ambient conditions. These chemically distinct but regularly used molecular groups influence the dynamic surface-ligand interfacial interactions in Cd-rich QDs, drastically modifying their vibrational characteristics. The strong electron-phonon coupling leads to substantial transient variations at the band edge states. The strength of these interactions closely depends on the physicochemical characteristics of passivating ligands. Consequently, the ligands largely control the nonradiative recombination rates and emission characteristics in these QDs. Our simulations indicate that Cd28Se17(OH)22 has the fastest nonradiative recombination rate due to the strongest electron-phonon interactions. Conversely, QDs passivated with thiolate or chloride exhibit considerably longer carrier lifetimes and suppressed nonradiative processes. The ligand-controlled electron-phonon interactions further give rise to the broadest and narrowest intrinsic optical line widths for OH and Cl-passivated single QDs, respectively. Obtained computational insights lay the groundwork for designing appropriate passivating ligands on metal-rich QDs, making them suitable for a wide range of applications, from blue LEDs to quantum emitters.

3.
Nano Lett ; 23(23): 11330-11336, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088142

RESUMEN

Metal halide perovskite nanocrystals are under intense investigation for their outstanding optical and electronic properties. The presence of higher fine structure states, let alone nonequilibrium processes within the fine structure, and multiexcitonic fine structure remains poorly understood due to a lack of experimental probes. Here, we use time-resolved photoluminescence (t-PL) spectroscopy with an improvement from 100 to 3 ps resolution which reveals previously unobserved spectral dynamics from excitons to multiexcitons in 15 nm CsPbBr3 nanocrystals. The simple and immediate observation from temperature dependence is a previously unobserved fine structure to the multiexcitons. Further insight is gleaned from t-PL spectral bandwidth trajectories at extrema in temperature and exciton density. The bandwidth trajectories reveal the presence of a previously unobserved fine structure in excitons as well as multiexcitons. The bandwidth trajectories reveal a complex history, from multiexciton recombination to exciton thermalization to Auger heating to lattice thermalization. Whereas the amplitude of these spectral effects is large, ∼60 meV, modeling suggests that the spectral effects are mostly phonon based illustrating the importance of the lattice on light emission from metal halide perovskite nanocrystals.

4.
Heliyon ; 9(11): e21507, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37964851

RESUMEN

The absorption spectrum of a material reveals the absorbed light frequencies, characteristic peaks, and the line width of absorption bands. This information is critical for understanding the energy levels involved in the absorption process as well as the material's electronic structure. In this study, an equation connecting the absorption line width with the static dielectric function is derived for narrow and wide gap materials. It is then compared with the Penn model. It has been found that the constant in the Penn model has a value that is restricted to the range of 0.5 to 1. Application of this equation to various narrow and wide gap materials is then discussed.

5.
Nano Lett ; 23(23): 10667-10673, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38016047

RESUMEN

Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just ∼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.

6.
ACS Nano ; 17(13): 12118-12126, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37326256

RESUMEN

Decoherence or dephasing of the exciton is a central characteristic of a quantum dot (QD) that determines the minimum width of the exciton emission line and the purity of indistinguishable photon emission during exciton recombination. Here, we analyze exciton dephasing in colloidal InP/ZnSe QDs using transient four-wave mixing spectroscopy. We obtain a dephasing time of 23 ps at a temperature of 5 K, which agrees with the smallest line width of 50 µeV we measure for the exciton emission of single InP/ZnSe QDs at 5 K. By determining the dephasing time as a function of temperature, we find that exciton decoherence can be described as a phonon-induced, thermally activated process. The deduced activation energy of 0.32 meV corresponds to the small splitting within the nearly isotropic bright exciton triplet of InP/ZnSe QDs, suggesting that the dephasing is dominated by phonon-induced scattering within the bright exciton triplet.

7.
Sensors (Basel) ; 23(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37112364

RESUMEN

Accurately assessing the geometric features of curvilinear structures on images is of paramount importance in many vision-based measurement systems targeting technological fields such as quality control, defect analysis, biomedical, aerial, and satellite imaging. This paper aims at laying the basis for the development of fully automated vision-based measurement systems targeting the measurement of elements that can be treated as curvilinear structures in the resulting image, such as cracks in concrete elements. In particular, the goal is to overcome the limitation of exploiting the well-known Steger's ridge detection algorithm in these applications because of the manual identification of the input parameters characterizing the algorithm, which are preventing its extensive use in the measurement field. This paper proposes an approach to make the selection phase of these input parameters fully automated. The metrological performance of the proposed approach is discussed. The method is demonstrated on both synthesized and experimental data.

8.
Nano Lett ; 23(9): 3971-3977, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37071728

RESUMEN

Exciton dynamics dictates the evolution of photoexcited carriers in photovoltaic and optoelectronic devices. However, interpreting their experimental signatures is a challenging theoretical problem due to the presence of both electron-phonon and many-electron interactions. We develop and apply here a first-principles approach to exciton dynamics resulting from exciton-phonon coupling in monolayer MoS2 and reveal the highly selective nature of exciton-phonon coupling due to the internal spin structure of excitons, which leads to a surprisingly long lifetime of the lowest-energy bright A exciton. Moreover, we show that optical absorption processes rigorously require a second-order perturbation theory approach, with photon and phonon treated on an equal footing, as proposed by Toyozawa and Hopfield. Such a treatment, thus far neglected in first-principles studies, gives rise to off-diagonal exciton-phonon self-energy, which is critical for the description of dephasing mechanisms and yields exciton line widths in excellent agreement with experiment.

9.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 2): 157-163, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36920874

RESUMEN

Ultra-thin rare earth iron garnet (RIG) films with a narrow ferromagnetic resonance (FMR) line width and a low damping factor have attracted a great deal of attention for microwave and spintronic applications. In this work, 200 nm Y3(GaAlFe)5O12 garnet (GaAl-YIG) films were prepared on gadolinium gallium garnet (GGG) substrates by liquid-phase epitaxy (LPE) with low saturation magnetization. The microstructural properties, chemical composition, and magnetostatic and dynamic magnetization characteristics of the films are discussed in detail. According to the structural analysis, these films exhibit a low surface roughness of less than 0.5 nm. The GaAl-YIG films show an obvious temperature dependence of lattice parameter and strain state, and the film's parameter is perfectly matched with that of the GGG substrate at 810°C. There is a clear variation in the Pb level, which brings about a gradual enhancement of the coercivity and a diminution of the squareness ratio of magnetic hysteresis loops as the growth temperature is reduced. Slight changes in surface roughness, strain condition and content of Pb induce the FMR line width and damping factor to vary on a small scale. The line width is less than 10.17 Oe at 12 GHz and the damping factor is of the order of 10-4. All these properties demonstrate that these ultra-thin GaAl-YIG films are of benefit for the development of devices operated at lower frequencies and in lower fields.

10.
ACS Nano ; 17(4): 3598-3609, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36758155

RESUMEN

InP quantum dots (QDs) are the material of choice for QD display applications and have been used as active layers in QD light-emitting diodes (QDLEDs) with high efficiency and color purity. Optimizing the color purity of QDs requires understanding mechanisms of spectral broadening. While ensemble-level broadening can be minimized by synthetic tuning to yield monodisperse QD sizes, single QD line widths are broadened by exciton-phonon scattering and fine-structure splitting. Here, using photon-correlation Fourier spectroscopy, we extract average single QD line widths of 50 meV at 293 K for red-emitting InP/ZnSe/ZnS QDs, among the narrowest for colloidal QDs. We measure InP/ZnSe/ZnS single QD emission line shapes at temperatures between 4 and 293 K and model the spectra using a modified independent boson model. We find that inelastic acoustic phonon scattering and fine-structure splitting are the most prominent broadening mechanisms at low temperatures, whereas pure dephasing from elastic acoustic phonon scattering is the primary broadening mechanism at elevated temperatures, and optical phonon scattering contributes minimally across all temperatures. Conversely for CdSe/CdS/ZnS QDs, we find that optical phonon scattering is a larger contributor to the line shape at elevated temperatures, leading to intrinsically broader single-dot line widths than for InP/ZnSe/ZnS. We are able to reconcile narrow low-temperature line widths and broad room-temperature line widths within a self-consistent model that enables parametrization of line width broadening, for different material classes. This can be used for the rational design of more spectrally narrow materials. Our findings reveal that red-emitting InP/ZnSe/ZnS QDs have intrinsically narrower line widths than typically synthesized CdSe QDs, suggesting that these materials could be used to realize QDLEDs with high color purity.

11.
Sensors (Basel) ; 23(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36617071

RESUMEN

The line width of different line shapes is a very important parameter in absorption spectroscopy sensing techniques. Based on the high sensitivity and low noise properties of wavelength modulation spectroscopy, we report a novel line width measurement method. After theoretically proving the relationship between line width, modulation amplitude and the amplitude of the second harmonic at the center frequency, the absorption lines of CH4 near 6046.96 cm-1 and CO2 4989.97 cm-1 were chosen for simulation, and the relative errors of the line width between our method and theoretical data were kept at about 1%. A distributed feedback laser diode operating near 1653 nm with three different concentrations of CH4 was used for experimental validation, and the results were consistent with the numerical simulation. Additionally, since only the peaks of second harmonic need to be measured, the advantages of wavelength modulation can be utilized while reducing the difficulty of data acquisition.

12.
Materials (Basel) ; 15(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955149

RESUMEN

Kierlik et al. recently reported their study in this journal on the application of Mössbauer spectroscopy in identifying the iron-containing components in Upper Silesian topsoil as being under industrial anthropopressure. While the presented work is an excellent example of characterizing topsoil, a significant part of the study involving iron-bearing samples using 57Fe Mössbauer spectroscopy is erroneous. In the spectral fitting routine for the obtained Mössbauer spectra of the sample IIA (Figure 2; Table 3), the authors have erroneously fitted only a single sextet for magnetite, which is unacceptable. The line width obtained by them is also incorrectly mentioned in Figure 2, as evident from fitting D1 and D2 doublets as well as of magnetite tetrahedral and octahedral sites, making the relative abundances of individual phases meaningless. The inaccurate line width makes the authors fit the inadequate number of doublets necessary for the iron-bearing phases present in these samples, resulting in incorrect relative abundance for the other phases found in the materials, making the subsequent discussion not much useful.

13.
Nat Prod Res ; 36(7): 1904-1908, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32911984

RESUMEN

Hypericin (HYP) is an active compound of Hypericum perforatum. Associated with photodynamic therapy (PDT), HYP has shown a broad therapeutic potential against microorganisms and cancer cells. Due to the low water solubility of HYP, its application in the biological medium becomes limited. To solve this limitation, our research group has been used copolymeric micelles to carrier HYP with high efficiency. However, there is no elucidated mechanism for HYP delivery mediated by copolymeric micelles. In this sense, we believed that the study of binding-sites of copolymeric micelles and HYP is the first step to its understanding. For this purpose, in this work, we employed 1D and 2D NMR techniques to investigate the behaviour of HYP-loaded P84 micelles in different concentrations . 1D and 2D NMR analysis revealed that HYP molecules were arrangement in a π-stacked aggregation form with a specific location on the core of P84 micelles.


Asunto(s)
Perileno , Fotoquimioterapia , Antracenos , Micelas , Perileno/análogos & derivados , Fotoquimioterapia/métodos
14.
Nano Lett ; 21(13): 5760-5766, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34133188

RESUMEN

Broadening of multiexciton emission from colloidal quantum dots (QDs) at room temperature is important for their use in high-power applications, but an in-depth characterization has not been possible until now. We present and apply a novel spectroscopic method to quantify the biexciton line width and biexciton binding energy of single CdSe/CdS/ZnS colloidal QDs at room temperature. In our method, which we term "cascade spectroscopy", we select emission events from the biexciton cascade and reconstruct their spectrum. The biexciton has an average emission line width of 86 meV on the single-QD scale, similar to that of the exciton. Variations in the biexciton repulsion (Eb = 4.0 ± 3.1 meV; mean ± standard deviation of 15 QDs) are correlated with but are more narrowly distributed than variations in the exciton energy (10.0 meV standard deviation). Using a simple quantum-mechanical model, we conclude that inhomogeneous broadening in our sample is primarily due to variations in the CdS shell thickness.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Análisis Espectral , Temperatura
15.
ACS Nano ; 15(5): 9076-9083, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33977721

RESUMEN

Spin-current and spin-wave-based devices have been considered as promising candidates for next-generation information transport and processing and wave-based computing technologies with low-power consumption. Spin pumping has attracted tremendous attention and has led to interesting phenomena, including the line width broadening, which indicates damping enhancement due to energy dissipation. Recently, chiral spin pumping of spin waves has been experimentally realized and theoretically studied in magnetic nanostructures. Here, we experimentally observe by Brillouin light scattering (BLS) microscopy the line width broadening sensitive to magnetization configuration in a hybrid metal-insulator nanostructure consisting of a Co nanowire grating dipolarly coupled to a planar continuous YIG film, consistent with the results of the measured hysteresis loop. Tunable line width broadening has been confirmed independently by propagating spin-wave spectroscopy, where unidirectional spin waves are detected. Position-dependent BLS measurement unravels an oscillating-like behavior of magnon populations in Co nanowire grating, which might result from the magnon trap effect. These results are thus attractive for reconfigurable nanomagnonics devices.

16.
J Magn Reson ; 323: 106895, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33429171

RESUMEN

The molecule of 2,2-dinitroethene-1,1-diamine (FOX-7) is one of the most interesting molecules with multiple redox centres stabilized by push-pull effect. To reveal the detailed mechanism of its electrochemical process radical intermediates formed in the course of its electrochemical reduction in organic aprotic media have been studied by in situ simultaneous electrochemical ESR measurements (SEESR). The radical generated on the second reduction step possesses an alternating line-width (AL) effect in the ESR spectra as a result of intramolecular dynamic processes in the timescale of ESR splitting constants. The spectra measured at different temperatures (230-335 K) were analysed with the help of a fitting program which includes a molecular dynamics. Observed dynamics describes well an asymmetric 2-site exchange model for the whole temperature range. With help of the optimized parameters and quantum chemical calculations this radical has been identified as 2,2-dinitroethane-1-amine-1-imine radical dianion, [(H2N)(HN)C=C(NO2)2]2-. The dynamic process responsible for the AL effect consists of mutual turning (changing of dihedral angle) of the both nitro groups, resulting in an intramolecular spin-density (electron) transfer. The dynamic parameters of the process have been established.

17.
Nanomaterials (Basel) ; 10(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297348

RESUMEN

This work reports a novel, simple, and resist-free chemo-epitaxy process permitting the directed self-assembly (DSA) of lamella polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymers (BCPs) on a 300 mm wafer. 193i lithography is used to manufacture topographical guiding silicon oxide line/space patterns. The critical dimension (CD) of the silicon oxide line obtained can be easily trimmed by means of wet or dry etching: it allows a good control of the CD that permits finely tuning the guideline and the background dimensions. The chemical pattern that permits the DSA of the BCP is formed by a polystyrene (PS) guide and brush layers obtained with the grafting of the neutral layer polystyrene-random-polymethylmethacrylate (PS-r-PMMA). Moreover, data regarding the line edge roughness (LER) and line width roughness (LWR) are discussed with reference to the literature and to the stringent requirements of semiconductor technology.

18.
ACS Nano ; 14(10): 12558-12570, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32790321

RESUMEN

Ultrafast laser irradiation can induce morphological and structural changes in plasmonic nanoparticles. Gold nanorods (Au NRs), in particular, can be welded together upon irradiation with femtosecond laser pulses, leading to dimers and trimers through the formation of necks between individual nanorods. We used electron tomography to determine the 3D (atomic) structure at such necks for representative welding geometries and to characterize the induced defects. The spatial distribution of localized surface plasmon modes for different welding configurations was assessed by electron energy loss spectroscopy. Additionally, we were able to directly compare the plasmon line width of single-crystalline and welded Au NRs with single defects at the same resonance energy, thus making a direct link between the structural and plasmonic properties. In this manner, we show that the occurrence of (single) defects results in significant plasmon broadening.

19.
Sensors (Basel) ; 19(23)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795472

RESUMEN

In this paper, the power spectrum resolution problem of dual-frequency coherent mixing signals is analyzed when the Doppler frequency difference is small. The power spectrum function formula of the four optical coherent mixing signals is obtained using statistical theory and the Wiener-Khinchin theorem. The influence of delay time and light source line width on the power spectrum of dual-frequency coherent signals is analyzed using this formula. The results show that delay time only affects the peak of the power spectrum of the coherent signal. An increase in the line width of the light source broadens the signal power spectrum and reduces the peak value. The necessary condition for distinguishing the Doppler frequency difference is that the theoretical Doppler frequency difference is greater than 1/5 times the line width of the light source.

20.
Nano Lett ; 19(12): 8519-8525, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31714793

RESUMEN

With a tunable size-dependent photoluminescence (PL) over a wide infrared wavelength range, lead chalcogenide quantum dots (QDs) have attracted significant scientific and technological interest. Nevertheless, the investigation of intrinsic exciton photophysics at the single-QD level has remained a challenge. Herein, we present a comprehensive study of PL properties for the individual core/shell PbS/CdS QDs emissive near 1.0 eV. In contrast to the sub-meV spectral line widths observed for II/VI QDs, PbS/CdS QDs are predicted to possess broad homogeneous line widths. Performing spectroscopy at cryogenic (4 K) temperatures, we provide direct evidence confirming theoretical predictions, showing that intrinsic line widths for PbS/CdS QDs are in the range of 8-25 meV, with an average of 16.4 meV. In addition, low-temperature, single-QD spectroscopy reveals a broad low-energy side emission attributable to optical as well as localized acoustic phonon-assisted transitions. By tracking single QDs from 4 to 250 K, we were able to probe temperature-dependent evolutions of emission energy, line width, and line shape. Finally, polarization-resolved PL imaging showed that PbS/CdS QDs are characterized by a 3D emission dipole, in contrast with the 2D dipole observed for CdSe QDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA