Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(33): 46061-46072, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980487

RESUMEN

Research on the migration behaviors of contaminants in the aquitard has been deficient for an extended period. Clay is commonly employed as an impermeable layer or barrier to stop the migration of contaminants. However, under certain conditions, the clay layer may exhibit permeability to water, thereby allowing contaminants to infiltrate and potentially contaminate adjacent aquifers. Consequently, it holds immense importance to scrutinize and investigate the migration characteristics of light non-aqueous phase liquid (LNAPL) within the aquitard for the purposes of groundwater pollution control and remediation. To evaluate the environmental risk posed by organic contaminants in the aquitard, an experimental model was formulated and devised to monitor the LNAPL concentration in the aquitard under pumping conditions. The correlation between pumping rate and LNAPL concentration was investigated. A self-developed plexiglass sandbox model was used to simulate the migration characteristics of LNAPL in the aquitard under pumping conditions. Four experimental scenarios were designed, varying pumping rates, aquitard thicknesses, and groundwater level changes. The LNAPL concentration curve was derived by systematically tracking and analyzing LNAPL levels at various locations within the aquitard. The results indicated that higher pumping rates corresponded to increased migration of LNAPL, resulting in greater LNAPL ingress into the pumping well during extraction. A thicker aquitard demonstrated a more pronounced inhibitory effect on LNAPL, leading to an extended penetration time of LNAPL within the aquitard. The drawdown within the aquitard exerted a discernible influence on LNAPL migration, with the LNAPL concentration continuing to decrease in tandem with declining water levels during pumping. These research findings can establish a scientific foundation for the control and remediation of contaminants within aquitards.


Asunto(s)
Agua Subterránea , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
2.
J Contam Hydrol ; 253: 104118, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563651

RESUMEN

With the increasing requirement of maintaining world energy security and strategic reserves, oil storage and transportation facilities are being built at a large scale. Taking the safe and efficient operation of petroleum storage projects as the goal, a set of experimental apparatus to investigate the migration of contaminants in fractures filled with media was developed to predict and evaluate the environmental risk of oil contaminants leakage. A multiphase numerical flow model based on COMSOL was built based on the laboratory experimental model. Specifically, the migration behaviour of Light Non-aqueous Phase Liquid (LNAPL) through a sand-filled fractured medium was studied by laboratory experiments and numerical simulations. Image and chemical analyses methods were used to monitor and study LNAPL migration behaviour for varying grain sizes of porous medium filling the fractures and varying groundwater table elevations. Laboratory experimental results showed that the LNAPL migration velocity in filled fracture network was significantly faster than that in adjoining porous media during the initial stage of infiltration. The migration velocity increased with the relative permeability of filled sand, which was closely related to the Van Genuchten (VG) model parameters α and n. LNAPL migrated downward with the falling groundwater table and became entrapped with the rising groundwater table, and the amount of entrapment depended on VG model parameters. Hydrogeological parameters were calibrated and LNAPL migration in filled fractured media was predicted using the calibrated numerical model. Simulation results revealed that fracture inclination had an important influence on LNAPL migration in filled fractured media and its migration velocity decreased with a decrease in fracture inclination. These research results can be applied to the control and remediation of oil-contaminated sites in fractured rock settings, such as at underground oil storage tanks and caverns, as well as at underground oil pipelines.


Asunto(s)
Agua Subterránea , Arena , Porosidad , Modelos Teóricos , Simulación por Computador
3.
J Contam Hydrol ; 167: 1-22, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25147021

RESUMEN

A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package vulnerable to LNAPL release; upper bound inventory estimates of LNAPLs; incorporating the lack of any hydraulic resistance of the package vent; the lack of any degradation of dissolved LNAPL; and, significantly, the small threshold displacement pressure assumed at which LNAPL is able to enter initially water-saturated pores. Initial scoping calculations on the latter suggested that the rate at which LNAPL is able to migrate from a waste package is likely to be very small and insignificant for likely representative displacement pressure data: this represents a key result. Adopting a conservative displacement pressure, however, allowed the effect of other features and processes in the system to be assessed. High LNAPL viscosity together with low density contrast with water reduces LNAPL migration potential. Migration to the host rock is less likely if waste package vent fluxes are small, solubility limits are high and path lengths through the backfill are short. The capacity of the system to dissolve all of the free LNAPL will, however, depend on groundwater availability. Even with the conservatisms invoked, the overall conclusion of model simulations of intact and compromised (cracked or corroded) waste packages, for a range of realistic ILW LNAPL scenarios, is that it is unlikely that significant LNAPL would be able to migrate from the waste packages and even more unlikely it would be sufficiently persistent to reach the host rock immediately beyond the GDF.


Asunto(s)
Geología , Modelos Teóricos , Residuos Radiactivos , Eliminación de Residuos/métodos , Medición de Riesgo/métodos , Movimientos del Agua , Simulación por Computador , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA