Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Angew Chem Int Ed Engl ; : e202415228, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238432

RESUMEN

The cleavage of carbophosphinocarbenes and carbodicarbenes with nitrous oxide (N2O) leads to the formation of room-temperature stable diazoalkenes. The utility of Ph3P/N2 and NHC/N2 ligand exchange reactions were demonstrated by accessing novel benzimidazole- and benzothiazole derived diazoalkenes, which are not accessible by the current state-of-the-art methods. The stable diazoalkenes subsequently allow further ligand exchange reactions at C(0) with carbon monoxide, isocyanide, or a diamidocarbene (DAC). Overall, the combination of hitherto unknown NHC/N2 and N2/L (L = DAC, CO, R-NC) ligand exchange reactions at a C(0) center allow the selective functionalization of the carbodicarbene ligand structure which represents a new methodology to rapidly assemble novel carbodicarbenes or cumulenic compounds.

2.
Chemistry ; : e202403034, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189361

RESUMEN

The atomic precision of metal nanoclusters and variability of surface ligands pave the way for its rational design and functionalization, whereas the property strengthening in multiple ways has been long challenging. Herein, improved amphiphilicity, chirality, thermostability, and strong CPL (circularly polarized luminescence) properties have been accomplished by facile ligand exchange of [Au23(CHT)16]- with HCapt (HCHT and HCapt denote cyclohexanethiol and captopril). In addition, the obtained chiral [Au23(SR)16]- (short for [Au23(CHT)16-x(Capt)x]-) clusters show specific binding affinity to remote-diamines (such as arginine and single/double strand DNA), originating from the hydrogen bonding and Van der Walls interaction among the surface Capt ligands and the di-amine groups.

3.
ACS Appl Mater Interfaces ; 16(33): 44164-44173, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39087727

RESUMEN

PbS quantum dots (QDs) are promising for short-wave infrared (SWIR) photodetection and imaging. Solid-state ligand exchange (SSLE) is a low-fabrication-threshold QD solid fabrication method. However, QD treatment by SSLE remains challenging in seeking refined surface passivation to achieve the desired device performance. This work investigates using NaAc in the ligand exchange process to enhance the film morphology and electronic coupling configuration of QD solids. By implementing various film and photodetector device characterization studies, we confirm that adding NaAc with a prominent adding ratio of 20 wt % NaAc with tetrabutylammonium iodide (TBAI) in the SSLE leads to an improved film morphology, reduced surface roughness, and decreased trap states in the QD solid films. Moreover, compared to the devices without NaAc treatment, those fabricated with NaAc-treated QD solids exhibit an enhanced performance, including lower dark current density (<100 nA/cm2), faster response speed, higher responsivity, detectivity, and external quantum efficiency (EQE reaching 25%). The discoveries can be insightful in developing efficient, low-cost, and low-fabrication-threshold QD SWIR detection and imager applications.

4.
Chemosphere ; 364: 143104, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159764

RESUMEN

Arsenic contamination of water is a global environmental concern, and membrane technology combined with nanotechnology contributes to more efficient removal of arsenic. In this study, Fe-Mn oxide (FM), Polydopamine (PDA), and PDA-modified FM (PFM) were incorporated into polysulfone (PSF) to prepare adsorption membranes (PFMP) for arsenic removal. The prepared nanoparticles and membranes were characterized using TEM, SEM, FTIR, TGA, contact angle, and pure water flux. The introduction of particles enhanced the hydrophilicity of the membranes and significantly enhanced the pure water flux of the membranes. Adsorption experiments indicated that the PFMP membrane exhibited the best arsenic removal performance, with maximum adsorption capacities for As(III) and As(V) were 11.57 mg/g and 12.39 mg/g, respectively. The Langmuir model fitted the adsorption isotherms well, and the kinetics followed the pseudo-second-order model. The filtration experiment revealed that the PFMP membrane was capable of reducing As(III) solution (915 L/m2) and As(V) solution (1075 L/m2) from a concentration of 100 µg/L to the safe limit of As (<10 µg/L). The As-loaded membrane was regenerated using NaOH solution (pH = 11), and the filtration experiment was repeated. FTIR and XPS demonstrated that the mechanism of the reaction between the membrane and arsenic was ligand exchange, where the arsenic ions were bonded to the oxygen ions to form Mn-O-As and Fe-O-As.

5.
Nano Lett ; 24(35): 10908-10914, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39168468

RESUMEN

Colloidal quantum dots (cQDs), semiconductor materials with widely tunable properties, can be printed in submicrometer patterns through electrohydrodynamic printing, avoiding aggressive photolithography steps. Postprinting ligand exchange determines the final optoelectronic properties of the cQD structures. However, achieving a complete bulk exchange is challenging, and the conventional vibrational analysis lacks the required spatial resolution. Infrared nanospectroscopy enables quantitative analysis of vibrational signals and structural topography on the nanometer scale upon ligand substitution on lead sulfide cQDs. A solution of ethanedithiol led to rapid (∼60 s) exchange of ≤90% of the ligands, in structures up to ∼750 nm thick. Prolonged exposures (>1 h) caused the degradation of the microstructures, with a systematic removal of cQDs regulated by surface:bulk ratios and solvent interactions. This study establishes a method for the development of devices through a combination of tunable photoactive materials, additive manufacturing of microstructures, and their quantitative nanometer-scale analysis.

6.
Nano Lett ; 24(34): 10418-10425, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39158928

RESUMEN

Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS2 QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS2 QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS2 QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.

7.
Small ; : e2404426, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058212

RESUMEN

Solution-processed colloidal III-V semiconductor-based quantum dots (QDs) represent promising and environmentally-friendly alternatives to Cd-based QDs in the realms of optoelectronics and biological applications. While InP-based core-shell QDs have demonstrated efficient light-emitting diode (LED) performance in the visible region, achieving deep-red emission (above 700 nm) with a narrow linewidth has proven challenging. Herein, the study presents a novel strategy for synthesizing InP/ZnSe/ZnS core-shell-shell QDs tailored for emission in the first biological transparency window. The resulting QDs exhibit an emission wavelength up to 725 nm with a narrow peak full width at half maximum (FWHM) down to 107 meV (45 nm). To enhance the biocompatibility and chemical stability of the QDs, their surface is further capped with a layer of amorphous alumina resulting in an InP/ZnSe/ZnS/Al2O3 heterostructure. This surface passivation not only ensures environmental- and photostability but also enhances the photoluminescence quantum yield (PLQY). The alumina capping enables the aqueous phase transfer via surface ligand exchange using mercaptopropionic acid (MPA) while maintaining the initial quantum yield. The resulting QDs demonstrate a significant potential for advancing next-generation optoelectronic technologies and bio-applications.

8.
Nanotechnology ; 35(40)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38991512

RESUMEN

CsPbBr3quantum dots (QDs) have excellent optical properties and good phase stability, but the long-chain ligands on their surfaces affect the charge transfer between QDs. Here, we propose a simple ligand exchange strategy: solution-phase ligand exchange. By adding an acetone solution of phenylethylammonium bromide to the purification process of CsPbBr3QDs, the long-chain ligands were effectively replaced and the electric coupling between QDs was improved. As a result, the power conversion efficiency of the solar cell was increased from 1.95% to 2.83%. Meanwhile, the stability of the devices was significantly improved in the unencapsulated case.

9.
Nanomaterials (Basel) ; 14(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057911

RESUMEN

Colloidal semiconductor nanoparticles (NPs) represent an emergent state of matter with unique properties, bridging bulk materials and molecular structures. Their distinct physical attributes, such as bandgap and photoluminescence, are intricately tied to their size and morphology. Ligand passivation plays a crucial role in shaping NPs and determining their physical properties. Ligand exchange (LE) offers a versatile approach to tailoring NP properties, often guided by Pearson's Hard-Soft Acid-Base theory. Lead sulfide (PbS), a semiconductor of considerable interest, exhibits size-dependent tunable bandgaps from the infrared to the visible range. Here, we present two methods for synthesizing water-soluble, polyvinylpyrrolidone (PVP)-coated PbS NPs. The first involves direct synthesis in an aqueous solution while utilizing PVP as the surfactant for the formation of nano-cubes with a crystal coherence length of ~30 nm, while the second involves LE from octadecylamine-coated PbS truncated nano-cubes to PVP-coated PbS NPs with a crystal coherence length of ~15 nm. Multiple characterization techniques, including X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy, and thermal gravimetric analysis, confirmed the results of the synthesis and allowed us to monitor the ligand exchange process. Our findings demonstrate efficient and environmentally friendly approaches for synthesizing PVP-coated PbS NPs.

10.
Water Res ; 262: 122146, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39079425

RESUMEN

The formation of flocs is crucial in the coagulation process of water treatment. However, the nature of ligand exchange on the surface of primary nanoparticles (PNPs) during floc formation requires further investigation to enhance our understanding of the coagulation mechanism. Phosphate (P) is a ubiquitous nutrient ion in aquatic surface water, in this study, the impact of P on floc growth under different pH conditions were investigated. The results revealed that floc growth patterns depended on both P dosage and pH. The mode of ligand exchange between P and in-situ formed ferric hydroxide within a pH range of 5 to 10 was further explored, and remarkable disparities in pH changes induced by P addition were observed. At lower pH levels, OH- release occurred relatively slowly, stabilizing with continued P addition. At neutral pH, OH- release was comparatively higher with P addition, while under alkaline conditions, both the quantity of OH- and its release rate decreased. It was deduced that Fe-OH21/2+ sites function as "active sites," while Fe-OH1/2- sites act as "inert sites" on the surface of PNPs formed during flocculation. These sites are crucial in the interconnections between flocs formed during coagulation and in floc growth. Analyses of Fe PNPs by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), with and without P addition, revealed that the introduction of P inhibits or interferes with the self-crystallization of Fe PNPs through chemical coordination reactions. The results offer deeper insights into the coagulation mechanism and the transformation of Fe flocs in raw waters containing P during water treatment practices.


Asunto(s)
Floculación , Fosfatos , Purificación del Agua , Fosfatos/química , Concentración de Iones de Hidrógeno , Hierro/química , Compuestos Férricos/química , Nanopartículas/química
11.
Angew Chem Int Ed Engl ; : e202409150, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046732

RESUMEN

Incorporating diverse components into metal-organic frameworks (MOFs) can expand their scope of properties and applications. Stratified MOFs (sMOFs) consist of compositionally unique concentric domains (strata), offering unprecedented complexity through partitioning of structural and functional components. However, the labile nature ofmetal-ligand coordination handicaps achieving compositionally-distinct domains due to ligand exchange reactions occurring concurrently with secondary strata growth. To achieve complex sMOF compositions, characterizing and controlling the competing processes of new strata growth and ligand exchange are vital. This work systematicallyexamines controlling ligand exchange in UiO-67 sMOFs by tuning ligand sterics. We present quantitative methods for assessing and visualizing the outcomes of strata growth and ligand exchange that rely on high-angle annular dark-field images and elemental mapping via scanning transmission electron microscopy-energy dispersive X-ray spectroscopy. In addition, we leverage ligand sterics to create 'blocking layers' that minimize ligand exchange between strata which are particularly susceptible to ligand exchange and inter-strata ligand mixing. Finally, we evaluate strata compositional integrity in various solvents and find that sMOFs can maintain their compositions for >12 months in some cases.Collectively, these studies and methods enhance understanding and control over ligand placement in multi-domain MOFs, factors that underscore careful tunning of properties and function.

12.
ACS Nano ; 18(26): 16776-16789, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38885184

RESUMEN

Doped metal oxide nanocrystals exhibit a localized surface plasmon resonance that is widely tunable across the mid- to near-infrared region, making them useful for applications in optoelectronics, sensing, and photocatalysis. Surface states pin the Fermi level and induce a surface depletion layer that hinders conductivity and refractive index sensing but can be advantageous for optical modulation. Several strategies have been developed to both synthetically and postsynthetically tailor the depletion layer toward particular applications; however, this understanding has primarily been advanced in Sn-doped In2O3 (ITO) nanocrystals, leaving open questions about generalizing to other doped metal oxides. Here, we quantitatively analyze the depletion layer in In-doped CdO (ICO) nanocrystals, which is shown to have an intrinsically wide depletion layer that leads to broad plasmonic modulation via postsynthetic chemical reduction and ligand exchange. Leveraging these insights, we applied depletion layer tuning to enhance the inherently weak plasmonic coupling in ICO nanocrystal superlattices. Our results demonstrate how an electronic band structure dictates the radial distribution of electrons and governs the response to postsynthetic modulation, enabling the design of tunable and responsive plasmonic materials.

13.
ACS Nano ; 18(27): 17611-17621, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38916981

RESUMEN

Emerging applications of Internet of Things (IoT) technologies in smart health, home, and city, in agriculture and environmental monitoring, and in transportation and manufacturing require materials and devices with engineered physical properties that can be manufactured by low-cost and scalable methods, support flexible forms, and are biocompatible and biodegradable. Here, we report the fabrication and device integration of low-cost and biocompatible/biodegradable colloidal Cu nanocrystal (NC) films through room temperature, solution-based deposition, and sintering, achieved via chemical exchange of NC surface ligands. Treatment of organic-ligand capped Cu NC films with solutions of shorter, environmentally benign, and noncorrosive inorganic reagents, namely, SCN- and Cl-, effectively removes the organic ligands, drives NC grain growth, and limits film oxidation. We investigate the mechanism of this chemically driven sintering by systemically varying the Cu NC size, ligand reagent, and ligand treatment time and follow the evolution of their structure and electrical and optical properties. Cl--treated, 4.5 nm diameter Cu NC films yield the lowest DC resistivity, only 3.2 times that of bulk Cu, and metal-like dielectric functions at optical frequencies. We exploit the high conductivity of these chemically sintered Cu NC films and, in combination with photo- and nanoimprint-lithography, pattern multiscale structures to achieve high-Q radio frequency (RF) capacitive sensors and near-infrared (NIR) resonant optical metasurfaces.

14.
Chemistry ; 30(48): e202401144, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38924574

RESUMEN

We report a simple and versatile method for effectively replacing the toxic ligands, such as cetyltrimethylammonium bromide (CTAB) and cetyltrimethylammonium chloride (CTAC), on the surface of Au nanospheres with different sizes by citrate. The method involves the deposition of an ultrathin shell of fresh Au in the presence of sodium citrate at an adequate concentration. After the ligand exchange process, multiple techniques are used to confirm that the surface of the resultant Au nanospheres is covered by citrate while there is no sign of aggregation. We also demonstrate the mitigation of cell toxicity after exchanging the surface-bound CTAB/CTAC with citrate, opening the door to a range of biomedical applications.


Asunto(s)
Cetrimonio , Oro , Nanopartículas del Metal , Nanosferas , Oro/química , Cetrimonio/química , Nanosferas/química , Nanopartículas del Metal/química , Humanos , Ácido Cítrico/química , Compuestos de Cetrimonio/química , Tamaño de la Partícula , Ligandos , Propiedades de Superficie , Supervivencia Celular/efectos de los fármacos
15.
Chempluschem ; : e202400270, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752655

RESUMEN

Metallo-supramolecular polymer networks (MSPNs) are fabricated from the crosslinking of polymers by discrete supramolecular coordination complexes. Due to the availability of various coordination complexes, e. g., 2D macrocycles and 3D nanocages, the MSPNs have been recently developed with broadly tunable visco-elasticity and enriched functions inherited from the coordination complexes. The coordination complexes possess enriched topologies and unique structural relaxation dynamics, rendering them the capability to break the traditional tradeoffs of polymer systems for the design of materials with enhanced mechanical performance. The structure-property relationship studies are critical for the material-by-design of MSPNs, while the spatiotemporal investigations are desired for the exploration of dynamics information. The work summarizes recent studies on the unique ligand-exchange kinetics and the multi-level structural relaxation dynamics of MSPNs. The MSPNs' mechanical properties can be quantitatively correlated with the dynamics for understanding the structure-property relationship. This concept will not only serve to attract more researchers to engage in the study of the structure-activity relationship of MSPNs but also inspire innovative research findings pertaining to the application of MSPNs.

16.
Chemistry ; 30(43): e202401661, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38780226

RESUMEN

The activity of catalytic nanoparticles is strongly dependent on their surface chemistry, which controls colloidal stability and substrate diffusion toward catalytic sites. In this work, we studied how the outer surface chemistry of nanostructured Rh(II)-based metal-organic cages or polyhedra (Rh-MOPs) impacts their performance in homogeneous catalysis. Specifically, through post-synthetic coordination of aliphatic imidazole ligands onto the exohedral Rh(II) axial sites of Rh-MOPs, we solubilized a cuboctahedral Rh-MOP in dichloromethane, thereby enabling its use as a homogeneous catalyst. We demonstrated that the presence of the coordinating ligand on the surface of the Rh-MOP does not hinder its catalytic activity in styrene aziridination and cyclopropanation reactions, thanks to the dynamic Rh-imidazole coordination bond. Finally, we used similar ligand exchange post-synthetic reactions to develop a ligand-mediated approach for precipitating the Rh-MOP catalyst, facilitating the recovery and reuse of Rh-MOPs as homogeneous catalysts.

17.
Anal Chim Acta ; 1302: 342509, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38580413

RESUMEN

Functional nucleic acids (FNAs) have attracted a lot of attention for the rapid detection of metal ions. Cr3+ is one of the major heavy metal ions in natural waters. Due to the slow ligand exchange rate of Cr3+, the FNA-based Cr3+ sensors require long assay times, limiting the on-site applications. In this study, we report that the good's buffers containing amino and polyhydroxy groups greatly increase the ligand exchange rate of Cr3+. Using EDTA as a model coordinate ligand, the Tris buffer (100 mM, pH 7.0) showed the best acceleration effect among the eight buffers. It improved the rate constant ∼20-fold, shorten the half-time 19-fold, and lowered the activation energy ∼70% at 40 °C. The Tris buffer was then applied for sensor based on the Cr3+-binding induced fluorescence quenching of fluorescein (FAM)-labeled and single-stranded DNA (ssDNA), which shortened the assay time from 1 h to 1 min. The Tris buffer also ∼100% enhanced the fluorescence intensity of FAM, achieving the 11.4-fold lower limit of detection (LOD = 6.97 nM, S/N = 3). By the combination use of the Tris buffer and ascorbic acid, the strong interference from Cu2+, Pb2+, and Fe3+ suffered in many previous reported Cr3+ sensors was avoided. The practical application of the sensor for the detection of Cr3+ spiked in the real water samples were demonstrated with high recovery percentages. The Tris buffer could be applied for other metal ions with slow ligand exchange rate (such as V2+, Co3+ and Fe2+) to solve diverse issues such as long assay time and low synthesis yield of metal complexes, without the need of heating treatment.


Asunto(s)
Cromo , Trometamina , Cromo/química , Fluorescencia , Ligandos , Metales , Iones , ADN de Cadena Simple
18.
Small ; : e2400885, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616736

RESUMEN

The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to achieve high-quality pure-blue PeLEDs, yet their performance is often hindered by the poor size distribution and high trap density. A strategy combining thermodynamic control with a polishing-driven ligand exchange process to produce high-quality QDs is developed. The strongly-confined pure-blue (≈470 nm) CsPbBr3 QDs exhibit narrow size distribution (12% dispersion) and are achieved in Br-rich ion environment based on growth thermodynamic control. Subsequent polishing-driven ligand exchange process removes imperfect surface sites and replaces initial long-chain organic ligands with short-chain benzene ligands. The resulting QDs exhibit high photoluminescence quantum yield (PLQY) to near-unity. The resulting PeLEDs exhibit a pure-blue electroluminescence (EL) emission at 472 nm with narrow full-width at half-maximum (FWHM) of 25 nm, achieving a maximum EQE of 10.7% and a bright maximum luminance of 7697 cd m-2. The pure-blue PeLEDs show ultrahigh spectral stability under high voltage, a low roll-off of EQE, and an operational half-lifetime (T50) of 127 min at an initial luminance of 103 cd m-2 under continuous operation.

19.
Small Methods ; : e2400015, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607951

RESUMEN

Nowadays, the extensively used lead sulfide (PbS) quantum dot (QD) hole transport layer (HTL) relies on layer-by-layer method to replace long chain oleic acid (OA) ligands with short 1,2-ethanedithiol (EDT) ligands for preparation. However, the inevitable significant volume shrinkage caused by this traditional method will result in undesired cracks and disordered QD arrangement in the film, along with adverse increased defect density and inhomogeneous energy landscape. To solve the problem, a novel method for EDT passivated PbS QD (PbS-EDT) HTL preparation using small-sized benzoic acid (BA) as intermediate ligands is proposed in this work. BA is substituted for OA ligands in solution followed by ligand exchange with EDT layer by layer. With the new method, smoother PbS-EDT films with more ordered and closer QD packing are gained. It is demonstrated stronger coupling between QDs and reduced defects in the QD HTL owing to the intermediate BA ligand exchange. As a result, the suppressed nonradiative recombination and enhanced carrier mobility are achieved, contributing to ≈20% growth in short circuit current density (Jsc) and a 23.4% higher power conversion efficiency (PCE) of 13.2%. This work provides a general framework for layer-by-layer QD film manufacturing optimization.

20.
Nano Lett ; 24(15): 4512-4520, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579125

RESUMEN

Perovskite nanocrystals are advantageous for interfacial passivation of perovskite solar cells (PSCs), but the insulating long alkyl chain surface ligands impede the charge transfer, while the conventional ligand exchange would possibly introduce surface defects to the nanocrystals. In this work, we reported novel in situ modification of CsPbBr3 nanocrystals using a short chain conjugated molecule 2-methoxyphenylethylammonium iodide (2-MeO-PEAI) for interfacial passivation of PSCs. Transmission electron microscopy studies with atomic resolution unveil the transformation from cubic CsPbBr3 to Ruddlesden-Popper phase (RPP) nanocrystals due to halogen exchange. Synergic passivation by the RPP nanocrystals and 2-MeO-PEA+ has led to suppressed interface defects and enhanced charge carrier transport. Consequently, PSCs with in situ modified RPP nanocrystals achieved a champion power conversion efficiency of 24.39%, along with an improvement in stability. This work brings insights into the microstructural evolution of perovskite nanocrystals, providing a novel and feasible approach for interfacial passivation of PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA