Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Ann Oncol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39293515

RESUMEN

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) that progresses on androgen receptor pathway inhibitors (ARPIs) may continue to be driven by AR signaling. BMS-986365 is an orally administered ligand-directed degrader targeting the AR via a first-in-class dual mechanism of AR degradation and antagonism. CC-94676-PCA-001 (NCT04428788) is a phase 1 multicenter study of BMS-986365 in patients with progressive mCRPC. PATIENTS AND METHODS: Patients who progressed on androgen deprivation therapy, ≥ 1 ARPI, and taxane chemotherapy (unless declined/ineligible) were enrolled. The study included dose escalation (Part A) and expansion (Part B) of BMS-986365 up to 900 mg twice daily (BID). Primary objectives were safety, tolerability, and to define maximum tolerated dose (MTD) and/or recommended phase 2 dose (RP2D). Key secondary endpoints included decline in prostate-specific antigen ≥50% (PSA50) and radiographic progression-free survival (rPFS). RESULTS: Parts A and B enrolled 27 and 68 patients, respectively. In Part B, the median number of prior therapies was 4 (range 2-11). The most common treatment-related adverse events (TRAEs) were asymptomatic prolonged corrected QT interval (47%) and bradycardia (34%). Part A MTD was not reached and RP2D selection is ongoing. Across Part B three highest doses (400-900 mg BID, n = 60), PSA50 was 32% (n = 19), including 50% (n = 10/20) at 900 mg; median rPFS (95% CI) was 6.3 months (5.3-12.6), including 8.3 months (3.8-16.6) at 900 mg; and rPFS was longer in patients without versus with prior chemotherapy: 16.5 months (5.5-not evaluable) versus 5.5 months (2.7-8.3), respectively. Efficacy was observed in patients with AR ligand binding domain (LBD) WT or with AR LBD mutations. CONCLUSIONS: BMS-986365 was well tolerated, with a manageable safety profile, and demonstrated activity in heavily pretreated patients with potentially higher benefit in chemotherapy-naïve patients. These data show BMS-986365's potential to overcome resistance to current ARPIs, regardless of AR LBD mutation status.

2.
J Struct Biol ; 216(3): 108113, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079583

RESUMEN

Kainate receptors play an important role in the central nervous system by mediating postsynaptic excitatory neurotransmission and modulating the release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. To date, only three structures of the ligand-binding domain (LBD) of the kainate receptor subunit GluK1 in complex with positive allosteric modulators have been determined by X-ray crystallography, all belonging to class II modulators. Here, we report a high-resolution structure of GluK1-LBD in complex with kainate and BPAM538, which belongs to the full-spanning class III. One BPAM538 molecule binds at the GluK1 dimer interface, thereby occupying two allosteric binding sites simultaneously. BPAM538 stabilizes the active receptor conformation with only minor conformational changes being introduced to the receptor. Using a calcium-sensitive fluorescence-based assay, a 5-fold potentiation of the kainate response (100 µM) was observed in presence of 100 µM BPAM538 at GluK1(Q)b, whereas no potentiation was observed at GluK2(VCQ)a. Using electrophysiology recordings of outside-out patches excised from HEK293 cells, BPAM538 increased the peak response of GluK1(Q)b co-expressed with NETO2 to rapid application of 10 mM L-glutamate with 130 ± 20 %, and decreased desensitization determined as the steady-state/peak response ratio from 23 ± 2 % to 90 ± 4 %. Based on dose-response relationship experiments on GluK1(Q)b the EC50 of BPAM538 was estimated to be 58 ± 29 µM.


Asunto(s)
Ácido Kaínico , Receptores de Ácido Kaínico , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Receptores de Ácido Kaínico/genética , Cristalografía por Rayos X , Ácido Kaínico/metabolismo , Ácido Kaínico/farmacología , Ligandos , Regulación Alostérica , Humanos , Sitios de Unión , Unión Proteica , Dominios Proteicos , Sitio Alostérico , Células HEK293
3.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928329

RESUMEN

Vitamin D is a group of seco-steroidal fat-soluble compounds. The two basic forms, vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol), do not have biological activity. They are converted in the body by a two-step enzymatic hydroxylation into biologically active forms, 1α,25-dihydroxyvitamin D2 [ercalcitriol, 1,25(OH)2D2] and 1α,25-dihydroxyvitamin D3 [calcitriol, 1,25(OH)2D3], which act as classical steroid hormones. 1,25(OH)2D3 exerts most of its physiological functions by binding to the nuclear vitamin D receptor (VDR), which is present in most body tissues to provide support to a broad range of physiological processes. Vitamin D-liganded VDR controls the expression of many genes. High levels of 1,25(OH)2D3 cause an increase in calcium in the blood, which can lead to harmful hypercalcemia. Several analogs of 1,25(OH)2D3 and 1,25(OH)2D2 have been designed and synthesized with the aim of developing compounds that have a specific therapeutic function, for example, with potent anticancer activity and a reduced toxic calcemic effect. Particular structural modifications to vitamin D analogs have led to increased anticancer activity and reduced calcemic action with the prospect of extending work to provide future innovative therapies.


Asunto(s)
Antineoplásicos , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/agonistas , Antineoplásicos/farmacología , Antineoplásicos/química , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Calcitriol/farmacología , Calcitriol/análogos & derivados , Calcitriol/química , Relación Estructura-Actividad , Vitamina D/análogos & derivados , Vitamina D/farmacología , Vitamina D/química
4.
Lipids Health Dis ; 23(1): 182, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867270

RESUMEN

BACKGROUND: Familial hypercholesterolemia (FH) is a common inherited metabolic disease that causes premature atherosclerosis, cardiovascular disease, and even death at a young age. Approximately 95% of FH-causing genetic variants that have been identified are in the LDLR gene. However, only 10% of the FH population worldwide has been diagnosed and adequately treated, due to the existence of numerous unidentified variants, uncertainties in the pathogenicity scoring of many variants, and a substantial number of individuals lacking access to genetic testing. OBJECTIVE: The aim of this study was to identify a novel variant in the LDLR gene that causes FH in a Chinese family, thereby expanding the spectrum of FH-causing variants. METHODS: Patients were recruited from Beijing Anzhen Hospital, Capital Medical University. FH diagnosis was made according to the Dutch Lipid Clinical Network (DLCN) criteria. Whole-exome sequencing (WES) was conducted to identify the FH-causing variant in the proband, and amplicon sequencing was used to verify the variant in his family members. RESULTS: A three-generation Chinese family was recruited, and two FH patients were clinically diagnosed, both without known FH-causing variants. These two FH patients and another possible patient carried a novel variant, NC_000019.9(NM_000527.5):c.89_92dup (NP_000518.1:p.Phe32Argfs*21), in the ligand-binding domain of the low-density lipoprotein (LDL) receptor that led to a frameshift. The FH adults in the family showed severe clinical symptoms and statin therapy resistance. CONCLUSION: This study identified a novel pathogenic LDLR variant, c.89_92dup, associated with severe FH clinical manifestations and statin therapy resistance.


Asunto(s)
Mutación del Sistema de Lectura , Hiperlipoproteinemia Tipo II , Linaje , Receptores de LDL , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Receptores de LDL/genética , Masculino , Mutación del Sistema de Lectura/genética , Femenino , Adulto , Persona de Mediana Edad , Secuenciación del Exoma
5.
Environ Sci Technol ; 58(16): 6913-6923, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38593436

RESUMEN

4-Nonylphenol (4-NP), a para-substituted phenolic compound with a straight or branched carbon chain, is a ubiquitous environmental pollutant and food contaminant. 4-NP, particularly the branched form, has been identified as an endocrine disruptor (ED) with potent activities on estrogen receptors. Constitutive Androstane Receptor (CAR) is another crucial nuclear receptor that regulates hepatic lipid, glucose, and steroid metabolism and is involved in the ED mechanism of action. An NP mixture has been described as an extremely potent activator of both human and rodent CAR. However, detailed mechanistic aspects of CAR activation by 4-NP are enigmatic, and it is not known if 4-NP can directly interact with the CAR ligand binding domain (LBD). Here, we examined interactions of individual branched (22NP, 33NP, and 353NP) and linear 4-NPs with CAR variants using molecular dynamics (MD) simulations, cellular experiments with various CAR expression constructs, recombinant CAR LBD in a TR-FRET assay, or a differentiated HepaRG hepatocyte cellular model. Our results demonstrate that branched 4-NPs display more stable poses to activate both wild-type CAR1 and CAR3 variant LBDs in MD simulations. Consistently, branched 4-NPs activated CAR3 and CAR1 LBD more efficiently than linear 4-NP. Furthermore, in HepaRG cells, we observed that all 4-NPs upregulated CYP2B6 mRNA, a relevant hallmark for CAR activation. This is the first study to provide detailed insights into the direct interaction between individual 4-NPs and human CAR-LBD, as well as its dominant variant CAR3. The work could contribute to the safer use of individual 4-NPs in many areas of industry.


Asunto(s)
Fenoles , Humanos , Fenoles/química , Fenoles/metabolismo , Receptor de Androstano Constitutivo/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Disruptores Endocrinos/química , Simulación de Dinámica Molecular
6.
Protein Sci ; 33(4): e4953, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38511490

RESUMEN

Deciphering the structural effects of gene variants is essential for understanding the pathophysiological mechanisms of genetic diseases. Using a neurodevelopmental disorder called Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) as a genetic disease model, we applied structural bioinformatics and Genetic Code Expansion (GCE) strategies to assess the pathogenic impact of human NR2F1 variants and their binding with known and novel partners. While the computational analyses of the NR2F1 structure delineated the molecular basis of the impact of several variants on the isolated and complexed structures, the GCE enabled covalent and site-specific capture of transient supramolecular interactions in living cells. This revealed the variable quaternary conformations of NR2F1 variants and highlighted the disrupted interplay with dimeric partners and the newly identified co-factor, CRABP2. The disclosed consequence of the pathogenic mutations on the conformation, supramolecular interplay, and alterations in the cell cycle, viability, and sub-cellular localization of the different variants reflect the heterogeneous disease spectrum of BBSOAS and set up novel foundation for unveiling the complexity of neurodevelopmental diseases.


Asunto(s)
Discapacidad Intelectual , Humanos , Mutación , Discapacidad Intelectual/genética , Código Genético
7.
Biol Pharm Bull ; 47(3): 580-590, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432913

RESUMEN

There are 48 nuclear receptors in the human genome, and many members of this superfamily have been implicated in human diseases. The NR4A nuclear receptor family consisting of three members, NR4A1, NR4A2, and NR4A3 (formerly annotated as Nur77, Nurr1, and NOR1, respectively), are still orphan receptors but exert pathological effects on immune-related and neurological diseases. We previously reported that prostaglandin A1 (PGA1) and prostaglandin A2 (PGA2) are potent activators of NR4A3, which bind directly to the ligand-binding domain (LBD) of the receptor. Recently, the co-crystallographic structures of NR4A2-LBD bound to PGA1 and PGA2 were reported, followed by reports of the neuroprotective effects of these possible endogenous ligands in mouse models of Parkinson's disease. Based on these structures, we modeled the binding structures of the other two members (NR4A1 and NR4A3) with these potential endogenous ligands using a template-based modeling method, and reviewed the similarity and diversity of ligand-binding mechanisms in the nuclear receptor family.


Asunto(s)
Enfermedad de Parkinson , Humanos , Animales , Ratones , Ligandos , Modelos Animales de Enfermedad , Dominios Proteicos , Prostaglandinas
8.
Eur J Med Chem ; 261: 115869, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37857142

RESUMEN

Nuclear receptors (NRs) are ligand-induced transcriptional factors implicated in several physiological pathways. Naïve ligands bind to their cognate receptors and modulate gene expression as agonists or antagonists. It has been observed that some ligands bind via covalent bonding with the NR Ligand Binding Domain (LBD) residues. While many such instances have been known since the 1980s, a consolidated account of these ligands and their interactions with NR-LBD is yet to be documented. To negate this, we have culled out the human NR-LBDs that form a covalent attachment with ligands. According to the study, 16 of the 48 human NRs have been targeted by covalent ligands. It was found that conserved cysteines prone to covalent attachment are predominantly located in NR-LBD helices 3 and 11. These conserved cysteines are also observed in many of the remaining NRs, which can be probed for their reactivity. Thus, the structural insights into NR-LBD interactions with covalent ligands presented here would aid drug discovery efforts targeting NRs.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Factores de Transcripción , Humanos , Sitios de Unión , Ligandos , Modelos Moleculares , Factores de Transcripción/metabolismo
9.
Vitam Horm ; 123: 231-247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37717986

RESUMEN

Liver X receptors α and ß are members of the nuclear receptor family, which comprise a flexible N-terminal domain, a DNA binding domain, a hinge linker, and a ligand binding domain. Liver X receptors are important regulators of cholesterol and lipid homeostasis by controlling the transcription of numerous genes. Key to their transcriptional role is synergetic interaction among the domains. DNA binding domain binds on DNA; ligand binding domain is a crucial switch to control the transcription activity through conformational change caused by ligand binding. The Liver X receptors form heterodimers with retinoid X receptor and then the liganded heterodimer may recruit other necessary transcription components to form an active transcription complex.


Asunto(s)
Receptores X del Hígado , Humanos , Ligandos , Dominios Proteicos
10.
Vitam Horm ; 123: 285-312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37717989

RESUMEN

The cellular response to the adrenal steroid aldosterone is mediated by the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily of ligand-dependent transcription factors. The MR binds more than one physiological ligand with binding at the MR determined by pre-receptor metabolism of glucocorticoid ligands by 11ß hydroxysteroid dehydrogenase type 2. The MR has a wide tissue distribution with multiple roles beyond the classical role in electrolyte homeostasis including cardiovascular function, immune cell signaling, neuronal fate and adipocyte differentiation. The MR has three principal functional domains, an N-terminal ligand domain, a central DNA binding domain and a C-terminal, ligand binding domain, with structures having been determined for the latter two domains but not for the whole receptor. MR signal-transduction can be best viewed as a series of interactions which are determined by the conformation conferred on the receptor by ligand binding. This conformation then determines subsequent intra- and inter-molecular interactions. These interactions include chromatin, coregulators and other transcription factors, and additional less well characterized cytoplasmic non-genomic effects via crosstalk with other signaling pathways. This chapter will provide a review of MR structure and function, and an analysis of the critical interactions involved in MR-mediated signal transduction, which contribute to ligand- and tissue-specificity. Understanding the relevant mechanisms for selective MR signaling in terms of these interactions opens the possibility of novel therapeutic approaches for the treatment of MR-mediated diseases.


Asunto(s)
Aldosterona , Receptores de Mineralocorticoides , Humanos , Ligandos , Transducción de Señal , Relación Estructura-Actividad
11.
Antioxidants (Basel) ; 12(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37627519

RESUMEN

No therapeutic drugs are currently available for nonalcoholic steatohepatitis (NASH) that progresses from nonalcoholic fatty liver via oxidative stress-involved pathways. Three cognate peroxisome proliferator-activated receptor (PPAR) subtypes (PPARα/δ/γ) are considered as attractive targets. Although lanifibranor (PPARα/δ/γ pan agonist) and saroglitazar (PPARα/γ dual agonist) are currently under investigation in clinical trials for NASH, the development of seladelpar (PPARδ-selective agonist), elafibranor (PPARα/δ dual agonist), and many other dual/pan agonists has been discontinued due to serious side effects or little/no efficacies. This study aimed to obtain functional and structural insights into the potency, efficacy, and selectivity against PPARα/δ/γ of three current and past anti-NASH investigational drugs: lanifibranor, seladelpar, and elafibranor. Ligand activities were evaluated by three assays to detect different facets of the PPAR activation: transactivation assay, coactivator recruitment assay, and thermal stability assay. Seven high-resolution cocrystal structures (namely, those of the PPARα/δ/γ-ligand-binding domain (LBD)-lanifibranor, PPARα/δ/γ-LBD-seladelpar, and PPARα-LBD-elafibranor) were obtained through X-ray diffraction analyses, six of which represent the first deposit in the Protein Data Bank. Lanifibranor and seladelpar were found to bind to different regions of the PPARα/δ/γ-ligand-binding pockets and activated all PPAR subtypes with different potencies and efficacies in the three assays. In contrast, elafibranor induced transactivation and coactivator recruitment (not thermal stability) of all PPAR subtypes, but the PPARδ/γ-LBD-elafibranor cocrystals were not obtained. These results illustrate the highly variable PPARα/δ/γ activation profiles and binding modes of these PPAR ligands that define their pharmacological actions.

12.
Cells ; 12(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37371105

RESUMEN

The glucocorticoid receptor α (GRα) is a member of the nuclear receptor superfamily and functions as a glucocorticoid (GC)-responsive transcription factor. GR can halt inflammation and kill off cancer cells, thus explaining the widespread use of glucocorticoids in the clinic. However, side effects and therapy resistance limit GR's therapeutic potential, emphasizing the importance of resolving all of GR's context-specific action mechanisms. Fortunately, the understanding of GR structure, conformation, and stoichiometry in the different GR-controlled biological pathways is now gradually increasing. This information will be crucial to close knowledge gaps on GR function. In this review, we focus on the various domains and mechanisms of action of GR, all from a structural perspective.


Asunto(s)
Receptores de Glucocorticoides , Humanos , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción
13.
Pharmacol Ther ; 248: 108477, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37330113

RESUMEN

Nuclear receptors (NR) collectively regulate several biological functions in various organs. While NRs can be characterized by activation of the transcription of their signature genes, they also have other diverse roles. Although most NRs are directly activated by ligand binding, which induces cascades of events leading to gene transcription, some NRs are also phosphorylated. Despite extensive investigations, primarily focusing on unique phosphorylation of amino acid residues in different NRs, the role of phosphorylation in the biological activity of NRs in vivo has not been firmly established. Recent studies on the phosphorylation of conserved phosphorylation motifs within the DNA- and ligand-binding domains confirmed has indicated the physiologically relevance of NR phosphorylation. This review focuses on estrogen and androgen receptors, and highlights the concept of phosphorylation as a drug target.


Asunto(s)
Proteínas de Unión al ADN , Receptores Citoplasmáticos y Nucleares , Humanos , Fosforilación , Ligandos , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo
14.
FEBS J ; 290(15): 3745-3747, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37345272

RESUMEN

GluD1 and GluD2 subunits (also known as delta 1 and 2) are the members of the delta family of ionotropic glutamate receptors. They are particularly puzzling, since they are unable to bind glutamate, but rather bind glycine and d-serine via their classical ligand binding domain (LBD). While GluD2 has been the subject of intensive research over the past decades, it is only recently that GluD1 received similar interest and very few studies compare the properties of these two membrane proteins. In their research article included in this issue, Masternak et al. resolved the 3D structure of the GluD1 LBD, compared its d-serine sensitivity with that of GluD2 and identified critical residues involved in the dynamics of the LBD.


Asunto(s)
Ácido Glutámico , Receptores de Glutamato , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Ligandos , Dominios Proteicos , Serina/metabolismo
15.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239961

RESUMEN

HNF4α, a member of the nuclear receptor superfamily, regulates the genes involved in lipid and glucose metabolism. The expression of the RARß gene in the liver of HNF4α knock-out mice was higher versus wildtype controls, whereas oppositely, RARß promoter activity was 50% reduced by the overexpression of HNF4α in HepG2 cells, and treatment with retinoic acid (RA), a major metabolite of vitamin A, increased RARß promoter activity 15-fold. The human RARß2 promoter contains two DR5 and one DR8 binding motifs, as RA response elements (RARE) proximal to the transcription start site. While DR5 RARE1 was previously reported to be responsive to RARs but not to other nuclear receptors, we show here that mutation in DR5 RARE2 suppresses the promoter response to HNF4α and RARα/RXRα. Mutational analysis of ligand-binding pocket amino acids shown to be critical for fatty acid (FA) binding indicated that RA may interfere with interactions of FA carboxylic acid headgroups with side chains of S190 and R235, and the aliphatic group with I355. These results could explain the partial suppression of HNF4α transcriptional activation toward gene promoters that lack RARE, including APOC3 and CYP2C9, while conversely, HNF4α may bind to RARE sequences in the promoter of the genes such as CYP26A1 and RARß, activating these genes in the presence of RA. Thus, RA could act as either an antagonist towards HNF4α in genes lacking RAREs, or as an agonist for RARE-containing genes. Overall, RA may interfere with the function of HNF4α and deregulate HNF4α targets genes, including the genes important for lipid and glucose metabolism.


Asunto(s)
Factor Nuclear 4 del Hepatocito , Hepatocitos , Receptores de Ácido Retinoico , Tretinoina , Animales , Humanos , Ratones , Glucosa , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Lípidos , Receptor alfa de Ácido Retinoico/genética , Tretinoina/farmacología , Receptores de Ácido Retinoico/genética
16.
Proteins ; 91(10): 1394-1406, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37213073

RESUMEN

Chemotaxis is a fundamental process whereby bacteria seek out nutrient sources and avoid harmful chemicals. For the symbiotic soil bacterium Sinorhizobium meliloti, the chemotaxis system also plays an essential role in the interaction with its legume host. The chemotactic signaling cascade is initiated through interactions of an attractant or repellent compound with chemoreceptors or methyl-accepting chemotaxis proteins (MCPs). S. meliloti possesses eight chemoreceptors to mediate chemotaxis. Six of these receptors are transmembrane proteins with periplasmic ligand-binding domains (LBDs). The specific functions of McpW and McpZ are still unknown. Here, we report the crystal structure of the periplasmic domain of McpZ (McpZPD) at 2.7 Å resolution. McpZPD assumes a novel fold consisting of three concatenated four-helix bundle modules. Through phylogenetic analyses, we discovered that this helical tri-modular domain fold arose within the Rhizobiaceae family and is still evolving rapidly. The structure, offering a rare view of a ligand-free dimeric MCP-LBD, reveals a novel dimerization interface. Molecular dynamics calculations suggest ligand binding will induce conformational changes that result in large horizontal helix movements within the membrane-proximal domains of the McpZPD dimer that are accompanied by a 5 Å vertical shift of the terminal helix toward the inner cell membrane. These results suggest a mechanism of transmembrane signaling for this family of MCPs that entails both piston-type and scissoring movements. The predicted movements terminate in a conformation that closely mirrors those observed in related ligand-bound MCP-LBDs.


Asunto(s)
Proteínas Bacterianas , Sinorhizobium meliloti , Proteínas Bacterianas/química , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Filogenia , Proteínas Quimiotácticas Aceptoras de Metilo/química , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Quimiotaxis/fisiología
17.
Front Endocrinol (Lausanne) ; 14: 1175369, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967784

RESUMEN

[This corrects the article DOI: 10.3389/fendo.2022.981090.].

18.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 4): 95-104, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995121

RESUMEN

Mutations in the androgen receptor (AR) ligand-binding domain (LBD) can cause resistance to drugs used to treat prostate cancer. Commonly found mutations include L702H, W742C, H875Y, F877L and T878A, while the F877L mutation can convert second-generation antagonists such as enzalutamide and apalutamide into agonists. However, pruxelutamide, another second-generation AR antagonist, has no agonist activity with the F877L and F877L/T878A mutants and instead maintains its inhibitory activity against them. Here, it is shown that the quadruple mutation L702H/H875Y/F877L/T878A increases the soluble expression of AR LBD in complex with pruxelutamide in Escherichia coli. The crystal structure of the quadruple mutant in complex with the agonist dihydrotestosterone (DHT) reveals a partially open conformation of the AR LBD due to conformational changes in the loop connecting helices H11 and H12 (the H11-H12 loop) and Leu881. This partially open conformation creates a larger ligand-binding site for AR. Additional structural studies suggest that both the L702H and F877L mutations are important for conformational changes. This structural variability in the AR LBD could affect ligand binding as well as the resistance to antagonists.


Asunto(s)
Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Ligandos , Cristalografía por Rayos X , Mutación , Estructura Secundaria de Proteína
19.
Curr Biol ; 33(6): 1019-1035.e8, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36796359

RESUMEN

In Arabidopsis thaliana, local wounding and herbivore feeding provoke leaf-to-leaf propagating Ca2+ waves that are dependent on the activity of members of the glutamate receptor-like channels (GLRs). In systemic tissues, GLRs are needed to sustain the synthesis of jasmonic acid (JA) with the subsequent activation of JA-dependent signaling response required for the plant acclimation to the perceived stress. Even though the role of GLRs is well established, the mechanism through which they are activated remains unclear. Here, we report that in vivo, the amino-acid-dependent activation of the AtGLR3.3 channel and systemic responses require a functional ligand-binding domain. By combining imaging and genetics, we show that leaf mechanical injury, such as wounds and burns, as well as hypo-osmotic stress in root cells, induces the systemic apoplastic increase of L-glutamate (L-Glu), which is largely independent of AtGLR3.3 that is instead required for systemic cytosolic Ca2+ elevation. Moreover, by using a bioelectronic approach, we show that the local release of minute concentrations of L-Glu in the leaf lamina fails to induce any long-distance Ca2+ waves.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Ácido Glutámico , Presión , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Protein Sci ; 32(4): e4599, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806291

RESUMEN

We report the discovery of the androgen receptor missense mutation V770D, that was found in two sisters suffering from complete androgen insensitivity. Experimental validation of AR V770 variants demonstrated that AR V770D was transcriptionally inactive due to the inability to dimerize and a reduced ligand binding affinity. The more conservative AR V770A variant showed a dimerization defect at low levels of DHT with a partial recovery of the transcriptional activity and of the receptor's ability to dimerize when increasing the DHT levels. With V770 located outside of the proposed LBD dimerization interface of the AR LBD homodimer crystal structure, the effects of the V770A mutation on AR dimerization were unexpected. We therefore explored whether the AR LBD dimerization interface would be better described by an alternative dimerization mode based on available human homodimeric LBD crystal structures of other nuclear receptors. Superposition of the monomeric AR LBD in the homodimeric crystal structures of GR, PR, ER, CAR, TRß, and HNF-4α showed that the GR-like LBD dimer model was energetically the most stable. Moreover, V770 was a key energy residue in the GR-like LBD dimer while it was not involved in the stabilization of the AR LBD homodimer according to the crystal structure. Additionally, the observation that 4 AIS mutations impacted the stability of the AR LBD dimer while 16 mutations affected the GR-like LBD dimer, suggested that the AR LBD dimer crystal is a snapshot of a breathing AR LBD homodimer that can transition into the GR-like LBD dimer model.


Asunto(s)
Síndrome de Resistencia Androgénica , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/química , Síndrome de Resistencia Androgénica/genética , Ligandos , Unión Proteica/genética , Mutación Missense , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA