Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(32): e2404188, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810207

RESUMEN

The emerging market demand for high-energy-density of energy storage devices is pushing the disposal of end-of-life LiCoO2 (LCO) to shift toward sustainable upgrading into structurally stable high-voltage cathode materials. Herein, an integrated bulk and surface commodification strategy is proposed to render spent LCO (S-LCO) to operate at high voltages, involving bulk Mn doping, near surface P gradient doping, and Li3PO4/CoP (LPO/CP) coating on the LCO surface to yield upcycled LCO (defined as MP-LCO@LPO/CP). Benefiting from hybrid surface coating with Li+-conductive Li3PO4 (LPO) and electron conductive CoP (CP) coupled with Mn and P co-doping, the optimized MP-LCO@LPO/CP cathode exhibits enhanced high-voltage performance, delivering an initial discharge capacity of 218.8 mAh g-1 at 0.2 C with excellent capacity retention of 80.9% (0.5 C) after 200 cycles at a cut-off voltage of 4.6 V, along with 96.3% of capacity retention over 100 cycles at 4.5 V. These findings may afford meaningful construction for the upcycling of commercial S-LCO into next-generation upmarket cathode materials through the elaborate surface and bulk modification design.

2.
ACS Appl Mater Interfaces ; 16(22): 28537-28549, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781051

RESUMEN

The structural and interfacial instability of Ni-rich layered cathodes LiNi0.9Co0.05Mn0.05O2 (NCM9055) severely hinders their commercial application. In this work, straightforward high-temperature solid-state methods are utilized to successfully synthesize Nb-doped and Li3PO4-coated LiNi0.9Co0.05Mn0.05O2 by combining two niobium sources, NbOPO4·3H2O and Nb2O5, for the first time. Studies indicate that Nb doping enhanced the integrity of the layered structure, and the Li3PO4 coating reduced water absorption on the surface and considerably boosted the durability of the interface. The dual-modified cathode Li(Ni0.9Co0.05Mn0.05)0.985Nb0.015O2@Li3PO4 (NCM-2) exhibits remarkable cycling and rate performance. The initial discharge specific capacity of NCM-2 is 203.33 mAh g-1 at 0.1 C and 196.04 mAh g-1 at 1 C, while the capacity retention after 200 cycles is 91.38% at 1 C, which is much higher than that of pristine NCM9055 (49.96%). In addition, it also provides a superior discharge specific capacity of about 175.63 mAh g-1 even at 5 C. This study emphasizes a feasible approach to enhancing the stability of Ni-rich cathodes at the interfaces and bulk structures.

3.
Angew Chem Int Ed Engl ; 63(5): e202317549, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078819

RESUMEN

Solid electrolyte interphase (SEI) makes the electrochemical window of aqueous electrolytes beyond the thermodynamics limitation of water. However, achieving the energetic and robust SEI is more challenging in aqueous electrolytes because the low SEI formation efficiency (SFE) only contributed from anion-reduced products, and the low SEI formation quality (SFQ) negatively impacted by the hydrogen evolution, resulting in a high Li loss to compensate for SEI formation. Herein, we propose a highly efficient strategy to construct Spatially-Temporally Synchronized (STS) robust SEI by the involvement of synergistic chemical precipitation-electrochemical reduction. In this case, a robust Li3 PO4 -rich SEI enables intelligent inherent growth at the active site of the hydrogen by the chemical capture of the OH- stemmed from the HER to trigger the ionization balance of dihydrogen phosphate (H2 PO4 - ) shift to insoluble solid Li3 PO4 . It is worth highlighting that the Li3 PO4 formation does not extra-consume lithium derived from the cathode but makes good use of the product of HER (OH- ), prompting the SEI to achieve 100 % SFE and pushing the HER potential into -1.8 V vs. Ag/AgCl. This energetic and robust SEI offers a new way to achieve anion/concentration-independent interfacial chemistry for the aqueous batteries.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37883525

RESUMEN

Due to its high energy density, high-voltage LiCoO2 is the preferred cathode material for consumer electronic products. However, its commercial viability is hindered by rapid capacity decay resulting from structural degradation and surface passivation during cycling at 4.6 V. The key to achieving stable cycling of LiCoO2 at high voltages lies in constructing a highly stable interface to mitigate surface side reactions. In this study, we present a facile in situ coating strategy that is amenable to mass production through a simple wet-mixing process, followed by high-temperature calcination. By capitalizing on the facile dispersion characteristics of nano-TiO2 in ethanol and the ethanol dissolubility of LiPO2F2, we construct a uniform precoating layer on LiCoO2 with nano-TiO2 and LiPO2F2. The subsequent thermal treatment triggers an in situ reaction between the coating reagents and LiCoO2, yielding a uniform composite coating layer. This composite layer comprises spinel-structured compounds (e.g., LiCoTiO4) and Li3PO4, which exhibit excellent chemical and structural stability under high-voltage conditions. The uniform and stable coating layer effectively prevents direct contact between LiCoO2 and the electrolyte, thereby reducing side reactions and suppressing the surface passivation of LiCoO2 particles. As a result, coated LiCoO2 maintains favorable electronic and ionic conductivity even after prolonged cycling. The synergistic effects of spinel-structured compounds and Li3PO4 contribute to the superior performance of LiCoO2, demonstrating a high capacity of 202.1 mA h g-1 (3.0-4.6 V, 0.5 C, 1 C = 274 mA g-1), with a capacity retention rate of 96.7% after 100 cycles.

5.
Small ; 19(39): e2300802, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37259273

RESUMEN

Stable cycling of LiCoO2 (LCO) cathode at high voltage is extremely challenging due to the notable structural instability in deeply delithiated states. Here, using the sol-gel coating method, LCO materials (LMP-LCO) are obtained with bulk Mg-doping and surface LiMgPO4 /Li3 PO4 (LMP/LPO) coating. The experimental results suggest that the simultaneous modification in the bulk and at the surface is demonstrated to be highly effective in improving the high-voltage performance of LCO. LMP-LCO cathodes deliver 149.8 mAh g-1 @4.60 V and 146.1 mAh g-1 @4.65 V after 200 cycles at 1 C. For higher cut-off voltages, 4.70 and 4.80 V, LMP-LCO cathodes still achieve 144.9 mAh g-1 after 150 cycles and 136.8 mAh g-1 after 100 cycles at 1 C, respectively. Bulk Mg-dopants enhance the ionicity of CoO bond by tailoring the band centers of Co 3d and O 2p, promoting stable redox on O2- , and thus enhancing stable cycling at high cut-off voltages. Meanwhile, LMP/LPO surface coating suppresses detrimental surface side reactions while allowing facile Li-ion diffusion. The mechanism of high-voltage cycling stability is investigated by combining experimental characterizations and theoretical calculations. This study proposes a strategy of surface-to-bulk simultaneous modification to achieve superior structural stability at high voltages.

6.
ACS Appl Mater Interfaces ; 15(5): 6666-6675, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36705679

RESUMEN

Lithium (Li) metal is a promising candidate for next-generation anode materials with high energy densities. However, Li dissolution/deposition processes are limited at the upper surface in contact with the electrolyte, which brings a locally high current density and then results in dendritic Li growth. This restraint of the local surface reaction during cycling has not been solved by commonly used modification strategies. In this study, a three-dimensional (3D) Li+ conductive skeleton is activated from atomic layer deposition (ALD) coating Li3PO4 (LPO) on the surface of the Ni foam (LPNF). Then, the skeleton is efficiently constructed in the Li metal anode by the lower-temperature Li infusion. Ionic conductor LPO layers and electronic conductor Ni fibers supply charge transport channels between the electrolyte and the internal Li. The mixed conductive network realizes holistic charge transfer, which is proved by in situ scanning electron microscopy experiments. In virtue of dispersive dissolution/deposition and optimized electrochemical kinetics brought by a Li+ conductive network, the composited Li electrode presents an excellent symmetric battery cycling stability (over 1200 h) and enhanced rate performances (stable cycling even at 10.0 mA cm-2). When matching with a LiCoO2 (LCO) cathode, LCO||Li@LPNF full batteries exhibit a capacity retention of 80.8% over 250 cycles. During cycling, there was no evidence of dendrite growth and the remaining Li in the composited anode showed a smooth, compact, and well-combined condition with LPNF. Through constructing a 3D Li+ conductive network, the composited Li metal anode breaks through the limit of the local surface reaction; this work proposes a novel insight of realizing holistic charging/discharging for the dendrite-free Li metal anode.

7.
ACS Appl Mater Interfaces ; 15(4): 5345-5356, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657037

RESUMEN

Solid-state batteries based on a metallic Li anode and nonflammable solid electrolytes (SEs) are anticipated to achieve high energy and power densities with absolute safety. In particular, cubic garnet-type Nb-doped Li7La3Zr2O12 (Nb-LLZO) SEs possess superior ionic conductivity, are feasible to prepare under ambient conditions, have strong thermal stability, and are of low cost. However, the interfacial compatibility with Li metal and Li dendrite hazards still hinder the applications of Nb-LLZO. Herein, a quick and efficient solution was applied to address this issue, generating a nano-Li3PO4 pre-reduction layer from the reaction of H3PO4 with the ion-exchanged passivation layer (Li2CO3/LiOH) on the surface of Nb-LLZO. A lithiophilic, electrically insulating interlayer is in situ created when the Li3PO4 modified layer interacts with molten Li, successfully preventing the reduction of Nb5+. The interlayer, which mostly consists of Li3P and Li3PO4, also has a high shear modulus and relatively high Li+ conductivity, which effectively inhibit the growth of Li dendrites. The Li|Li3PO4|Nb-LLZO|Li3PO4|Li symmetric cells stably cycled for over 5000 h at 0.05 mA cm-2 and over 1000 h at a high rate of 0.15 mA cm-2 without any short circuits. The LiFePO4 and S/C hybrid solid-state batteries using the modified Nb-LLZO electrolyte also demonstrated good electrochemical performances, confirming the practical application of this interfacial engineering in various solid-state battery systems. This work offers an efficient solution to the instability issue between the Nb-LLZO SE and metallic Li anode.

8.
ACS Appl Mater Interfaces ; 14(38): 43237-43245, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36110088

RESUMEN

The aqueous processing of lithium transition metal oxides into battery electrodes is attracting a lot of attention as it would allow for avoiding the use of harmful N-methyl-2-pyrrolidone (NMP) from the cell fabrication process and, thus, render it more sustainable. The addition of slurry additives, for instance phosphoric acid (PA), has been proven to be highly effective for overcoming the corresponding challenges such as aluminum current collector corrosion and stabilization of the active material particle. Herein, a comprehensive investigation of the effect of the ball-milling speed on the effectiveness of PA as a slurry additive is reported using Li4Ti5O12 (LTO) as an exemplary lithium transition metal oxide. Interestingly, at elevated ball-milling speeds, rod-shaped lithium phosphate particles are formed, which remain absent at lower ball-milling speeds. A detailed surface characterization by means of SEM, EDX, HRTEM, STEM-EDX, XPS, and EIS revealed that in the latter case, a thin protective phosphate layer is formed on the LTO particles, leading to an improved electrochemical performance. As a result, the corresponding lithium-ion cells comprising LTO anodes and LiNi0.5Mn0.3Co0.2O2 (NMC532) cathodes reveal greater long-term cycling stability and higher capacity retention after more than 800 cycles. This superior performance originates from the less resistive electrode-electrolyte interphase evolving upon cycling, owing to the interface-stabilizing effect of the lithium phosphate coating formed during electrode preparation. The results highlight the importance of commonly neglected─frequently not even reported─electrode preparation parameters.

9.
J Colloid Interface Sci ; 576: 468-475, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32473416

RESUMEN

Lithium-rich layered oxides exhibit one of the highest reversible discharge capacities among cathode materials for lithium-ion batteries. However, their voltage decay and poor cycle stability severely restrict their use as a commercial cathode material. In this work, a novel approach of that combines Cr doping and a Li3PO4 coating was designed to address the problems associated with lithium-rich Li1.2Mn0.54Ni0.13Co0.13O2 materials. The synergistic method not only increases the discharge capacity and cycle stability but also decreases the voltage decay. The 1.0 wt% Li3PO4 coating and 0.08 Cr doping on Li1.2Mn0.54Ni0.13Co0.13O2 cathode shows a capacity retention of 76.5% compared to the 59.0% capacity retention for the pristine electrode after 200 cycles. The initial discharge capacity is also increased from 255.8 mAh·g-1 to 265.2 mAh·g-1. In addition, the discharge voltage decay decreases from 0.84 V to 0.39 V after 200 cycles as a result of the Cr doping and Li3PO4 coating. These enhanced electrochemical properties are attributed to the fact that the Cr doping stabilized the layered structure and inhibited its phase transformation to the spinel phase, and the Li3PO4 coating confined the interfacial side reactions between the electrode and electrolyte. This work may provide a new method to solve the subsistent problems of lithium-rich cathode materials.

10.
ACS Appl Mater Interfaces ; 10(48): 41732-41737, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30465729

RESUMEN

Using synchrotron surface X-ray diffraction, we investigated the atomic structures of the interfaces of a solid electrolyte (Li3PO4) and electrode (LiCoO2). We prepared two types of interfaces with high and low interface resistances; the low-resistance interface exhibited a flat and well-ordered atomic arrangement at the electrode surface, whereas the high-resistance interface showed a disordered interface. These results indicate that the crystallinity of LiCoO2 at the interface has a significant impact on interface resistance. Furthermore, we reveal that the migration of Li ions along the interface and into grain boundaries and antiphase domain boundaries is a critical factor reducing interface resistance.

11.
Scanning ; 38(4): 317-21, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26435203

RESUMEN

In this study, optical and surface properties of the optically transparent Li3 PO4 solid electrolyte layer for transparent solid battery have been investigated for the first time. To determine the optical properties, transmittance, absorbance, reflection, refractive index spectra, and optical band gap were determined by UV-Vis spectrophotometer and optical interferometer. The surface property of the transparent Li3 PO4 solid electrolyte was analyzed using atomic force microscopy. One another important parameter is contact angle (CA) surface free energy (SFE). CA and SFE were determined by optical tensiometer. These values probably are a most important parameter for polymer and hybrid battery performance. For the best performance, value of CA should be low. As a result, solid electrolyte layer is a highly transparent and it has a high wettability. SCANNING 38:317-321, 2016. © 2015 Wiley Periodicals, Inc.

12.
Chemistry ; 20(24): 7479-85, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24782138

RESUMEN

LiNi0.5Mn1.5O4 is regarded as a promising cathode material to increase the energy density of lithium-ion batteries due to the high discharge voltage (ca. 4.7 V). However, the interface between the LiNi0.5Mn1.5O4 cathode and the electrolyte is a great concern because of the decomposition of the electrolyte on the cathode surface at high operational potentials. To build a stable and functional protecting layer of Li3PO4 on LiNi0.5Mn1.5O4 to avoid direct contact between the active materials and the electrolyte is the emphasis of this study. Li3PO4-coated LiNi0.5Mn1.5O4 is prepared by a solid-state reaction and noncoated LiNi0.5Mn1.5O4 is prepared by the same method as a control. The materials are fully characterized by XRD, FT-IR, and high-resolution TEM. TEM shows that the Li3PO4 layer (<6 nm) is successfully coated on the LiNi0.5Mn1.5O4 primary particles. XRD and FT-IR reveal that the synthesized Li3PO4-coated LiNi0.5Mn1.5O4 has a cubic spinel structure with a space group of Fd3m, whereas noncoated LiNi0.5Mn1.5O4 shows a cubic spinel structure with a space group of P4(3)32. The electrochemical performance of the prepared materials is characterized in half and full cells. Li3PO4-coated LiNi0.5Mn1.5O4 shows dramatically enhanced cycling performance compared with noncoated LiNi0.5Mn1.5O4.

13.
Luminescence ; 29(8): 1082-94, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24760580

RESUMEN

Li3 PO4 phosphors prepared by solid-state diffusion technique and lyoluminescence (LL) as well as mechanoluminescence (ML) studies are reported. Dy- and Tb-activated phosphors show dosimetric characteristics using LL and ML techniques. The energy levels and hence trapping and detrapping of charge carriers in the material can be studied using ML. Li3 PO4 phosphor can be used in the dosimetric applications for ionizing radiation. By using the LL technique, the LL characteristics of Li3 PO4 may be useful for high radiation doses. We also report a more detailed theoretical understanding of the mechanism of LL and ML.


Asunto(s)
Disprosio/química , Luminiscencia , Modelos Teóricos , Terbio/química , Cristalización , Difusión , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Compuestos de Litio/química , Mediciones Luminiscentes/métodos , Solventes/química , Dosimetría Termoluminiscente
14.
Luminescence ; 29(1): 58-64, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23554212

RESUMEN

Li3 PO4 phosphor was prepared using a modified solid-state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3 PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic emission of Ce and Eu was observed. The lyoluminescence glow curves of Li3 PO4 microcrystals show that lyoluminescence intensity initially increases with time and then decreases exponentially. The decay time consists of two components for all masses. The dependence of decay time, especially the longer component, on mass has been investigated. Experiments on γ-irradiated crystals have proved that the light emission originates from the recombination of released F-centres with trapped holes (V2-centres) at the sulfuric acid-solid interface. Incorporation of bivalent alkali in solid lithium phosphate leads to an enhancement of lyoluminescence. A possible explanation for the experimental results has been attempted. The phosphor has a mechanoluminescence single glow peak. Mechanoluminescence intensity under various loading conditions was investigated. It is observed that mechanoluminescence intensity increases with increasing impurity concentration and increasing piston impact velocity. The results may be considered as only being of academic interest in solid-state materials.


Asunto(s)
Cerio/química , Europio/química , Compuestos de Litio/química , Luminiscencia , Fosfatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA