Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 734
Filtrar
1.
Autophagy ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291751

RESUMEN

The KEAP1-NFE2L2 axis is essential for the cellular response against metabolic and oxidative stress. KEAP1 is an adaptor protein of CUL3 (cullin 3) ubiquitin ligase that controls the cellular levels of NFE2L2, a critical transcription factor of several cytoprotective genes. Oxidative stress, defective autophagy and pathogenic infections activate NFE2L2 signaling through phosphorylation of the autophagy receptor protein SQSTM1, which competes with NFE2L2 for binding to KEAP1. Here we show that phosphoribosyl-linked serine ubiquitination of SQSTM1 catalyzed by SidE effectors of Legionella pneumophila controls NFE2L2 signaling and cell metabolism upon Legionella infection. Serine ubiquitination of SQSTM1 sterically blocks its binding to KEAP1, resulting in NFE2L2 ubiquitination and degradation. This reduces NFE2L2-dependent antioxidant synthesis in the early phase of infection. Levels of serine ubiquitinated SQSTM1 diminish in the later stage of infection allowing the expression of NFE2L2-target genes; causing a differential regulation of the host metabolome and proteome in a NFE2L2-dependent manner.

2.
Chembiochem ; : e202400293, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252664

RESUMEN

Resistance to anti-microbial agents is a world-wide health threat. Thus there is an urgent need for new treatments. An alternative approach to disarm pathogens consists in developing drugs targeting epigenetic modifiers. Bacterial pathogens can manipulate epigenetic regulatory systems of the host to bypass defences to proliferate and survive. One example is Legionella pneumophila, a Gram-negative intracellular pathogen that targets host chromatin with a specific, secreted bacterial SET-domain methyltransferase named RomA. This histone methyltransferase specifically methylates H3K14 during infection and is responsible for changing the host epigenetic landscape upon L. pneumophila infection. To inhibit RomA activity during infection, we developed a reliable high-content imaging screening assay, which we used to screen an in-house chemical library developed to inhibit DNA and histone methyltransferases. This assay was optimised using monocytic leukemic THP-1 cells differentiated into macrophages infected with L. pneumophila in a 96- or 384-well plate format using the Opera Phenix® (Perkin Elmer) confocal microscope, combined with Columbus™ software for automated image acquisition and analysis. H3K14 methylation was followed in infected, single cells and cytotoxicity was assessed in parallel. A first pilot screening of 477 compounds identified a potential starting point for inhibitors of H3K14 methylation.

3.
Eur J Case Rep Intern Med ; 11(9): 004817, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247236

RESUMEN

Introduction: Legionella pneumophila can cause a wide spectrum of clinical manifestations, ranging from a mild flu-like illness to fulminant multi-organ involvement, characterised by severe pneumonia, diarrhoea, encephalopathy, shock, hepatic dysfunction and renal failure. Very rarely, it can be associated with haematologic conditions such as thrombotic thrombocytopenic purpura (TTP), haemolytic uraemic syndrome (HUS) and immune thrombocytopenic purpura (ITP). We report a rare case of L. pneumophila causing ITP and review previously published cases of thrombocytopenia associated with Legionellosis in the literature. Case description: A 53-year-old male presented with fevers, chills, a productive cough and severe haemoptysis. Blood work was remarkable for leukocytosis, severe thrombocytopenia and hyponatraemia. Computed tomography (CT) imaging showed left lower lobe lung consolidation, and a peripheral blood smear showed giant platelets consistent with ITP. Legionella urine antigen testing returned positive. He was treated with intravenous immunoglobin, steroid taper and a ten-day course of azithromycin, which led to normalisation of his platelet count and resolution of the pneumonia. Discussion: L. pneumophila can lead to complement-mediated destruction of platelets resulting in ITP. Antibodies against L. pneumophila can also cross-react with the enzyme ADAMTS13, inhibiting its function and resulting in TTP and HUS. Additionally, L. pneumophila can infect vascular endothelial cells causing their death and stimulating release of von Willebrand factor (vWF) multimers into the bloodstream, promoting thrombosis and platelet consumption. Conclusion: It is important for internists to consider L. pneumophila in the differential for any patient presenting with pneumonia and severe thrombocytopenia. Earlier detection and intervention can lead to prevention of critical bleeding and better outcomes. LEARNING POINTS: Legionella pneumophila is rarely associated with different haematologic disorders resulting in severe bleeding diathesis as well as thrombosis.It is important for internists to consider Legionella pneumophila in the differential diagnosis for any patient presenting with pneumonia and severe thrombocytopenia.Earlier detection and intervention can lead to prevention of critical bleeding and better outcomes.

4.
mSphere ; : e0022224, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166849

RESUMEN

Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate mitogen-activated protein kinase (MAPK) activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high-osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on a high-osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain. IMPORTANCE: Legionella pneumophila grows in a membrane-bound compartment in macrophages during disease. Construction of the compartment requires a dedicated secretion system that translocates virulence proteins into host cells. One of these proteins, LegA7, is shown to activate a stress response pathway in host cells called the mitogen-activated protein kinase (MAPK) pathway. The effects on the mammalian MAPK pathway were reconstructed in yeast, allowing the development of a strategy to identify the role of individual domains of LegA7. A domain similar to cysteine proteases is demonstrated to be critical for impinging on the MAPK pathway, and the catalytic activity of this domain is required for targeting this path. In addition, a conserved series of repeats, called ankyrin repeats, controls this activity. Data are provided that argue the interaction of the ankyrin repeats with unknown targets probably results in activation of the cysteine protease domain.

5.
J Environ Manage ; 369: 122266, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216355

RESUMEN

Risk assessment and management of Legionella spp. contamination in activated sludge in wastewater treatment plants is carried out using the culture method. Underestimation of Legionella spp. is frequently reported in the literature, but a comprehensive long-term study of the performance of the method under comparable conditions is still lacking. The aim of this study is to evaluate the recovery rate and limit of detection of the culture method for Legionella spp. from activated sludge samples collected during the different seasons of the year. Activated sludge samples spiked with Legionella pneumophila subsp. pneumophila strain Philadelphia-1 (mean concentration 5.2 ± 0.35 logCFU/mL) were analysed monthly for one year using the culture method. Three different sample pre-treatments were compared, namely filtration, acid treatment and thermal treatment, and the recovery rate and limit of detection were assessed for each. The recovery rate of the culture method for Legionella spp. depended on the type of sample pre-treatment and the season of activated sludge sampling, while the limit of detection depended only on the sample pre-treatment. The best performance of the culture method, defined as the combination of the highest recovery rate and lowest limit of detection, was obtained for the filtered acid pre-treated samples (recovery rate: 89 ± 4 %; limit of detection: 1.3 logCFU/mL in 83 % of the samples). The lowest limit of detection was observed for the filtered thermally pre-treated samples (1.0 logCFU/mL in 93 % of the samples). Simultaneously, both thermally pre-treated samples showed up to a third lower recovery rates than the other pre-treatments in winter, while untreated and acid pre-treated samples showed consistently high recovery rates (>80%, logCFU/mL). The recovery rates of the unfiltered and filtered thermally pre-treated samples showed significant weak to strong positive correlations with the organic and phosphorus load in the influent as well as with the water and atmospheric temperatures, indicating that the recovery rate depends on the seasonal variation of the wastewater composition. This study presents new insights into the detection and quantification of Legionella spp. in activated sludge samples and considers seasonal dependencies in analytical results.


Asunto(s)
Legionella , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Legionella/aislamiento & purificación , Aguas Residuales/microbiología
6.
Environ Sci (Camb) ; 10(4): 767-786, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-39185481

RESUMEN

Premise plumbing water quality degradation has led to negative health impacts from pathogen outbreaks (e.g., Legionella pneumophila and non-tuberculous mycobacteria), as well as chronic effects from exposure to heavy metals or disinfection by-products (DBP). Common water quality management interventions include flushing, heat shock (thermal disinfection), supplemental disinfection (shock or super chlorination), and water heater temperature setpoint change. In this study, a Legionella pneumophila- colonized Leadership in Energy and Environmental Design (LEED) certified building was monitored to study health-relevant water quality changes before and after three controlled management interventions: (1) flushing at several points throughout the building; (2) changing the water heater set point; and (3) a combination of interventions (1) and (2) by flushing during a period of elevated water heater set point (incompletely performed due to operational issues). Microbial (culturable L. pneumophila, the L. pneumophila mip gene, and cATP) and physico-chemical (pH, temperature, conductivity, disinfectant residual, disinfection by-products (DBPs; total trihalomethanes, TTHM), and heavy metals) water quality were monitored alongside building occupancy as approximated using Wi-Fi logins. Flushing alone resulted in a significant decrease in cATP and L. pneumophila concentrations (p = 0.018 and 0.019, respectively) and a significant increase in chlorine concentrations (p = 0.002) as well as iron and DBP levels (p = 0.002). Copper concentrations increased during the water heater temperature setpoint increase alone to 140°F during December 2022 (p = 0.01). During the flushing and elevated temperature in parts of the building in February 2023, there was a significant increase in chlorine concentrations (p = 0.002) and iron (p = 0.002) but no significant decrease in L. pneumophila concentrations in the drinking water samples (p = 0.27). This study demonstrated the potential impacts of short term or incompletely implemented interventions which in this case were not sufficient to holistically improve water quality. As implementing interventions is logistically- and time-intensive, more effective and holistic approaches are needed for informing preventative and corrective actions that are beneficial for multiple water quality and sustainability goals.

7.
Pathogens ; 13(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39204265

RESUMEN

Free-living amoebae (FLA) are common in both natural and engineered freshwater ecosystems. They play important roles in biofilm control and contaminant removal through the predation of bacteria and other taxa. Bacterial predation by FLA is also thought to contribute to pathogen dispersal and infectious disease transmission in freshwater environments via the egestion of viable bacteria. Despite their importance in shaping freshwater microbial communities, the diversity and function of FLA in many freshwater ecosystems are poorly understood. In this study, we isolated and characterized FLA from two groundwater sites in Canterbury, New Zealand using microbiological, microscopic, and molecular techniques. Different methods for groundwater FLA isolation and enrichment were trialed and optimized. The ability of these isolated FLA to predate on human pathogen Legionella pneumophila was assessed. FLA were identified by 18S metagenomic amplicon sequencing. Our study showed that Acanthamoeba spp. (including A. polyphaga) and Vermamoeba veriformis were the main FLA species present in both groundwater sites examined. While most of the isolated FLA co-existed with L. pneumophila, the FLA populations in the L. pneumophila co-culture experiments predominantly consisted of A. polyphaga, Acanthamoeba spp., Naegleria spp., V. vermiformis, Paravahlkampfia spp., and Echinamoeba spp. These observations suggest that FLA may have the potential to act as reservoirs for L. pneumophila in Canterbury, New Zealand groundwater systems and could be introduced into the local drinking water infrastructure, where they may promote the survival, multiplication, and dissemination of Legionella. This research addresses an important gap in our understanding of FLA-mediated pathogen dispersal in freshwater ecosystems.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39200710

RESUMEN

Legionella bacteria can proliferate in poorly maintained water systems, posing risks to users. All Legionella species are potentially pathogenic, but Legionella pneumophila (L. pneumophila) is usually the primary focus of testing. However, Legionella anisa (L. anisa) also colonizes water distribution systems, is frequently found with L. pneumophila, and could be a good indicator for increased risk of nosocomial infection. Anonymized data from three commercial Legionella testing laboratories afforded an analysis of 565,750 water samples. The data covered July 2019 to August 2021, including the COVID-19 pandemic. The results confirmed that L. anisa commonly colonizes water distribution systems, being the most frequently identified non-L. pneumophila species. The proportions of L. anisa and L. pneumophila generally remained similar, but increases in L. pneumophila during COVID-19 lockdown suggest static water supplies might favor its growth. Disinfection of hospital water systems was effective, but re-colonization did occur, appearing to favor L. pneumophila; however, L. anisa colony numbers also increased as a proportion of the total. While L. pneumophila remains the main species of concern as a risk to human health, L. anisa's role should not be underestimated, either as a potential infection risk or as an indicator of the need to intervene to control Legionella's colonization of water supplies.


Asunto(s)
Legionella , Microbiología del Agua , Legionella/aislamiento & purificación , Humanos , COVID-19/transmisión , COVID-19/epidemiología , Abastecimiento de Agua , Legionella pneumophila/aislamiento & purificación , SARS-CoV-2
9.
Appl Environ Microbiol ; 90(8): e0065824, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39016616

RESUMEN

Legionella pneumophila is ubiquitous and sporadically infects humans causing Legionnaire's disease (LD). Globally, reported cases of LD have risen fourfold from 2000 to 2014. In 2016, Sydney, Australia was the epicenter of an outbreak caused by L. pneumophila serogroup 1 (Lpsg1). Whole-genome sequencing was instrumental in identifying the causal clone which was found in multiple locations across the city. This study examined the epidemiology of Lpsg1 in an urban environment, assessed typing schemes to classify resident clones, and investigated the association between local climate variables and LD outbreaks. Of 223 local Lpsg1 isolates, we identified dominant clones with one clone isolated from patients in high frequency during outbreak investigations. The core genome multi-locus sequence typing scheme was the most reliable in identifying this Lpsg1 clone. While an increase in humidity and rainfall was found to coincide with a rise in LD cases, the incidence of the major L. pneumophila outbreak clone did not link to weather phenomena. These findings demonstrated the role of high-resolution typing and weather context assessment in determining source attribution for LD outbreaks in urban settings, particularly when clinical isolates remain scarce.IMPORTANCEWe investigated the genomic and meteorological influences of infections caused by Legionella pneumophila in Sydney, Australia. Our study contributes to a knowledge gap of factors that drive outbreaks of legionellosis compared to sporadic infections in urban settings. In such cases, clinical isolates can be rare, and thus, other data are needed to inform decision-making around control measures. The study revealed that core genome multi-locus sequence typing is a reliable and adaptable technique when investigating Lpsg1 outbreaks. In Sydney, the genomic profile of Lpsg1 was dominated by a single clone, which was linked to numerous community cases over a period of 40 years. Interestingly, the peak in legionellosis cases during Autumn was not associated with this prevalent outbreak clone. Incorporating meteorological data with Lpsg1 genomics can support risk assessment strategies for legionellosis in urban environments, and this approach may be relevant for other densely populated regions globally.


Asunto(s)
Brotes de Enfermedades , Genómica , Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Legionella pneumophila/genética , Legionella pneumophila/clasificación , Legionella pneumophila/aislamiento & purificación , Enfermedad de los Legionarios/epidemiología , Enfermedad de los Legionarios/microbiología , Australia/epidemiología , Ciudades/epidemiología , Tipificación de Secuencias Multilocus , Secuenciación Completa del Genoma , Legionelosis/epidemiología , Legionelosis/microbiología , Nueva Gales del Sur/epidemiología , Tiempo (Meteorología)
10.
Sci Rep ; 14(1): 16781, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039267

RESUMEN

Biofilms are known to be critical for Legionella settlement in engineered water systems and are often associated with Legionnaire's Disease events. One of the key features of biofilms is their heterogeneous three-dimensional structure which supports the establishment of microbial interactions and confers protection to microorganisms. This work addresses the impact of Legionella pneumophila colonization of a Pseudomonas fluorescens biofilm, as information about the interactions between Legionella and biofilm structures is scarce. It combines a set of meso- and microscale biofilm analyses (Optical Coherence Tomography, Episcopic Differential Interference Contrast coupled with Epifluorescence Microscopy and Confocal Laser Scanning Microscopy) with PNA-FISH labelled L. pneumophila to tackle the following questions: (a) does the biofilm structure change upon L. pneumophila biofilm colonization?; (b) what happens to L. pneumophila within the biofilm over time and (c) where is L. pneumophila preferentially located within the biofilm? Results showed that P. fluorescens structure did not significantly change upon L. pneumophila colonization, indicating the competitive advantage of the first colonizer. Imaging of PNA-labelled L. pneumophila showed that compared to standard culture recovery it colonized to a greater extent the 3-day-old P. fluorescens biofilms, presumably entering in VBNC state by the end of the experiment. L. pneumophila was mostly located in the bottom regions of the biofilm, which is consistent with the physiological requirements of both bacteria and confers enhanced Legionella protection against external aggressions. The present study provides an expedited methodological approach to address specific systematic laboratory studies concerning the interactions between L. pneumophila and biofilm structure that can provide, in the future, insights for public health Legionella management of water systems.


Asunto(s)
Biopelículas , Legionella pneumophila , Pseudomonas fluorescens , Biopelículas/crecimiento & desarrollo , Legionella pneumophila/fisiología , Pseudomonas fluorescens/fisiología , Legionella/fisiología , Microscopía Confocal , Tomografía de Coherencia Óptica
11.
Pathogens ; 13(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39057790

RESUMEN

Cu is an antimicrobial that is commonly applied to premise (i.e., building) plumbing systems for Legionella control, but the precise mechanisms of inactivation are not well defined. Here, we applied a suite of viability assays and mass spectrometry-based proteomics to assess the mechanistic effects of Cu on L. pneumophila. Although a five- to six-log reduction in culturability was observed with 5 mg/L Cu2+ exposure, cell membrane integrity only indicated a <50% reduction. Whole-cell proteomic analysis revealed that AhpD, a protein related to oxidative stress, was elevated in Cu-exposed Legionella relative to culturable cells. Other proteins related to cell membrane synthesis and motility were also higher for the Cu-exposed cells relative to controls without Cu. While the proteins related to primary metabolism decreased for the Cu-exposed cells, no significant differences in the abundance of proteins related to virulence or infectivity were found, which was consistent with the ability of VBNC cells to cause infections. Whereas the cell-membrane integrity assay provided an upper-bound measurement of viability, an amoebae co-culture assay provided a lower-bound limit. The findings have important implications for assessing Legionella risk following its exposure to copper in engineered water systems.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39023717

RESUMEN

The pandemic marked the beginning of an era of dynamic and rapid changes in the diagnosis of respiratory infections. Herein we describe Legionnaires' disease trend in the years 2016-2023 in a large Italian hospital showing how improvements in diagnostic algorithms impact on its detection.

13.
Environ Sci Pollut Res Int ; 31(32): 45234-45245, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961023

RESUMEN

Wastewater treatment plants (WWTPs) are suspected reservoirs of Legionella pneumophila (Lp). The required aeration and mixing steps lead to the emission and dispersion of bioaerosols potentially harboring Lp. The aim of the project is to evaluate municipal WWTPs as a possible source of legionellosis through the statistical analysis of case clusters. A space-time scanning statistical method was implemented in SaTScan software to identify and analyze WWTPs located within and close to spatiotemporal clusters of legionellosis detected in Quebec between 2016 and 2020. In parallel, WWTPs were ranked according to their pollutant load, flow rate and treatment type. These parameters were used to evaluate the WWTP susceptibility to generate and disperse bioaerosols. Results show that 37 of the 874 WWTPs are located inside a legionellosis cluster study zone, including six of the 40 WWTPs ranked most susceptible. In addition, two susceptible WWTPs located within an extended area of 2.5 km from the study zone (2.5-km buffer) were included, for a total of 39 WWTPs. The selected 39 WWTPs were further studied to document proximity of population, dominant wind direction, and surrounding water quality. Samples collected from the influent and the effluent of six selected WWTPs revealed the presence of Legionella spp. in 92.3% of the samples. Lp and Lp serogroupg 1 (Lp sg1) were detected below the limit of quantification in 69% and 46% of the samples, respectively. The presence of Legionella in wastewater and the novel statistical approach presented here provides information to the public health authorities regarding the investigation of WWTPs as a possible source of Legionella exposure, sporadic cases, and clusters of legionellosis.


Asunto(s)
Monitoreo del Ambiente , Legionelosis , Aguas Residuales , Legionelosis/epidemiología , Humanos , Quebec/epidemiología , Legionella pneumophila , Purificación del Agua , Microbiología del Agua , Eliminación de Residuos Líquidos
14.
Microorganisms ; 12(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39065134

RESUMEN

Legionella pneumophila is the waterborne pathogen primarily responsible for causing both Pontiac Fever and Legionnaire's Disease in humans. L. pneumophila is transmitted via aerosolized water droplets. The purpose of this study was to design and test primers to allow for rapid polymerase chain reaction (PCR) melt detection and identification of this infectious agent in cases of clinical or emergency response detection. New PCR primers were designed for this species of bacteria; the primer set was purchased from IDT and the target bacterial DNA was purchased from ATCC. The L. pneumophila primers targeted the macrophage infectivity potentiator gene (mip), which inhibits macrophage phagocytosis. The primers were tested for specificity, repeatability, and sensitivity using PCR-high-resolution melt (HRM) assays. The primer set was found to be specific to the designated bacteria and did not amplify the other twenty-one species from the panel. The L. pneumophila assay was able to be multiplexed. The duplex assay consists of primers for L. pneumophila and Vibrio parahaemolyticus, which are both waterborne pathogens. The triplex assay consists of primers for L. pneumophila, V. parahaemolyticus, and Campylobacter jejuni. The unique melting temperature for the L. pneumophila primer assay is 82.84 ± 0.19 °C, the C. jejuni assay is 78.10 ± 0.58 °C, and the V. parahaemolyticus assay is 86.74 ± 0.65 °C.

15.
North Clin Istanb ; 11(3): 214-218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005748

RESUMEN

OBJECTIVE: Legionella pneumophila (Lp) is aerobic, non-spore forming Gram-negative bacteria, which is ubiquitous in freshwater habitats, such as rivers and hot springs, as well as colonizing artificial aquatic environments. The ability of Lp to grow intracellularly within pulmonary macrophages is a prerequisite for the development of infection. Therefore, macrolides can achieve appropriate therapeutic concentrations in eukaryotic cells, such as azithromycin. This study aimed to investigate the macrolides susceptibility of Lp. METHODS: Pre-flash water samples (n=143) were collected from the public buildings (hospitals and hotels) water system in Istanbul. Colonies were confirmed as Lp ST1, ST2-14, and non-pneumophila Lp using latex agglutination kit. RESULTS: 30 Lp were detected in hospital (n=23) and hotel (n=7) water systems using latex agglutination. Regardless of serotype and excluding strains without zone formation (≥256 mg/L), the main MIC values of azithromycin, erythromycin and clarithromycin were 0.61 mg/L (range 0.047-1 mg/L), 0.47 mg/L (range 0.047-1 mg/L) and 0.44 mg/L (range 0.047-1 mg/L), respectively. The MIC50 and MIC90 values for macrolides were 0.5 and 3 mg/L for azithromycin, respectively; 0.38 and 1 mg/L for erythromycin, respectively; and 0.5 and 1 mg/L for clarithromycin, respectively. We compared the MIC values of the strains for all antimicrobial agents tested without serotype discrimination. We did not find a significant difference between the MIC values of the antibiotics (p=0.16). CONCLUSION: Although the data obtained from our study do not fully reflect the breakpoints, further epidemiological studies are needed to standardize MIC values.

16.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39028840

RESUMEN

To remodel their hosts and escape immune defenses, many pathogens rely on large arsenals of proteins (effectors) that are delivered to the host cell using dedicated translocation machinery. Effectors hold significant insight into the biology of both the pathogens that encode them and the host pathways that they manipulate. One of the most powerful systems biology tools for studying effectors is the model organism, Saccharomyces cerevisiae. For many pathogens, the heterologous expression of effectors in yeast is growth inhibitory at a frequency much higher than housekeeping genes, an observation ascribed to targeting conserved eukaryotic proteins. Abrogation of yeast growth inhibition has been used to identify bacterial suppressors of effector activity, host targets, and functional residues and domains within effector proteins. We present here a yeast-based method for enriching for informative, in-frame, missense mutations in a pool of random effector mutants. We benchmark this approach against three effectors from Legionella pneumophila, an intracellular bacterial pathogen that injects a staggering >330 effectors into the host cell. For each protein, we show how in silico protein modeling (AlphaFold2) and missense-directed mutagenesis can be combined to reveal important structural features within effectors. We identify known active site residues within the metalloprotease RavK, the putative active site in SdbB, and previously unidentified functional motifs within the C-terminal domain of SdbA. We show that this domain has structural similarity with glycosyltransferases and exhibits in vitro activity consistent with this predicted function.


Asunto(s)
Proteínas Bacterianas , Legionella pneumophila , Mutagénesis , Mutación Missense , Saccharomyces cerevisiae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Modelos Moleculares
17.
Cureus ; 16(5): e60856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38910759

RESUMEN

Legionnaires' disease is an atypical pneumonia caused by Legionella pneumophila. Legionella species are found in freshwater sources and are transmitted through inhalation of contaminated aerosols. Patients commonly present with fever, chills, and cough. However, in immunosuppressed patients or severe cases, the disease can lead to multiorgan failure. In recent years, the incidence of Legionnaires' disease has drastically increased and unfortunately is commonly underdiagnosed. Gold-standard diagnosis is made through sputum cultures; however, urine Legionella antigen remains the most common test used for diagnosis. Goal-directed care includes antibiotics and supportive care. This case highlights a rare and unique presentation of Legionnaires' disease presenting with an elevated 2:1 aspartate aminotransferase to alanine transaminase pattern, typically seen with alcoholic hepatitis.

18.
Front Microbiol ; 15: 1408443, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933033

RESUMEN

Introduction: Antibiotics frequently induce abnormal liver function. Omadacycline is a novel aminomethylcycline antibiotic, which shows potent activity against Gram-positive and Gram-negative aerobic, anaerobic, and atypical (including Legionella pneumophila) bacteria. Of note, omadacycline is tolerable in most patients with liver impairment. However, evidence regarding the application of omadacycline in patients with Legionella pneumophila pneumonia after experiencing liver dysfunction is scarce. Methods: The current study reported 6 cases of patients with Legionella pneumophila pneumonia receiving omadacycline as subsequent antibiotics after experiencing liver dysfunction. Results: These 6 cases were admitted to the hospital for pneumonia and received antibiotic therapy, including piperacillin-tazobactam, imipenem, meropenem, and moxifloxacin. After receiving these antibiotics, increased liver enzymes were noted. Although hepatoprotective therapy (such as magnesium isoglycyrrhizinate and glutathione) was given, the liver function was still abnormal. According to metagenomic next-generation sequencing, these patients were diagnosed with Legionella pneumophila pneumonia. Considering the abnormal liver function, the antibiotic therapy was switched to omadacycline-containing antibiotic therapy. After that, liver function was improved, and the infection was ameliorated. Ultimately, all patients discharged from the hospital, including 2 patients who achieved complete clinical symptomatic improvement and 4 patients who achieved partial clinical symptomatic improvement. Discussion: This study emphasizes the successful treatment of switching to omadacycline after experiencing abnormal liver function in patients with Legionella pneumophila pneumonia. This study suggests that omadacycline may serve as an optional antibiotic for patients with Legionella pneumophila pneumonia, especially when occurring liver dysfunction. However, more clinical studies are required to validate our findings.

19.
Cell Mol Life Sci ; 81(1): 249, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836877

RESUMEN

Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.


Asunto(s)
Legionella pneumophila , Fagosomas , Proteínas SNARE , Ubiquitinación , Proteínas de Unión al GTP rab , Legionella pneumophila/metabolismo , Humanos , Fagosomas/metabolismo , Fagosomas/microbiología , Proteínas SNARE/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Proteínas Qa-SNARE/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Vacuolas/metabolismo , Vacuolas/microbiología , Células HEK293 , Ratones , Proteínas de Unión a GTP rab7/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Retículo Endoplásmico/metabolismo
20.
BMC Pulm Med ; 24(1): 279, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867173

RESUMEN

BACKGROUND: Legionella pneumonia is one of the most severe types of atypical pneumonia, impairing multiple organ systems, posing a threat to life. Diagnosing Legionella pneumonia is challenging due to difficulties in culturing the bacteria and limitations in immunoassay sensitivity and specificity. CASE PRESENTATION: This paper reports a rare case of sepsis caused by combined infection with Legionella pneumophila and Fusobacterium necrophorum, leading to respiratory failure, acute kidney injury, acute liver injury, myocardial damage, and electrolyte disorders. In addition, we systematically reviewed literature on patients with combined Legionella infections, analyzing their clinical features, laboratory results and diagnosis. CONCLUSIONS: For pathogens that require prolonged incubation periods and are less sensitive to conventional culturing methods, metagenomic next-generation sequencing (mNGS) can be a powerful supplement to pathogen screening and plays a significant role in the auxiliary diagnosis of complex infectious diseases.


Asunto(s)
Coinfección , Infecciones por Fusobacterium , Fusobacterium necrophorum , Secuenciación de Nucleótidos de Alto Rendimiento , Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Legionella pneumophila/genética , Legionella pneumophila/aislamiento & purificación , Enfermedad de los Legionarios/diagnóstico , Enfermedad de los Legionarios/microbiología , Infecciones por Fusobacterium/diagnóstico , Infecciones por Fusobacterium/microbiología , Infecciones por Fusobacterium/complicaciones , Fusobacterium necrophorum/aislamiento & purificación , Fusobacterium necrophorum/genética , Coinfección/diagnóstico , Coinfección/microbiología , Metagenómica/métodos , Masculino , Persona de Mediana Edad , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA