Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2320623121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607930

RESUMEN

Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional "root economics space" synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.


Asunto(s)
Ecosistema , Longevidad , Evolución Biológica , Cambio Climático , Cabeza
2.
New Phytol ; 241(5): 1985-1997, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38189091

RESUMEN

Adaptations of plants to phosphorus (P) deficiency include reduced investment of leaf P in storage (orthophosphates in vacuoles), nucleic acids and membrane lipids. Yet, it is unclear how these adaptations are associated with plant ecological strategies. Five leaf P fractions (orthophosphate P, Pi ; metabolite P, PM ; nucleic acid P, PN ; lipid P, PL ; and residual P, PR ) were analysed alongside leaf economic traits among 35 Australian woody species from three habitats: one a high-P basalt-derived soil and two low-P sandstone-derived soils, one undisturbed and one disturbed by human activities with artificial P inputs. Species at the undisturbed low-P site generally exhibited lower concentrations of total leaf P ([Ptotal ]), primarily associated with lower concentrations of Pi , and PN . The relative allocation of P to each fraction varied little among sites, except that higher PL per [Ptotal ] (rPL ) was recorded at the undisturbed low-P site than at the high-P site. This higher rPL , reflecting relative allocation to membranes, was primarily associated with lower concentrations of leaf nitrogen at the undisturbed low-P site than at the high-P site. Associations between leaf P fractions and leaf nitrogen may provide a basis for understanding the variation in plant ecological strategies dependent on soil P availability.


Asunto(s)
Fósforo , Plantas , Humanos , Australia , Fósforo/metabolismo , Plantas/metabolismo , Fosfatos/metabolismo , Nitrógeno/metabolismo , Suelo , Hojas de la Planta/metabolismo
3.
Ann Bot ; 131(5): 769-787, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805162

RESUMEN

BACKGROUND AND AIMS: Cork oaks (Quercus section Cerris) comprise 15 extant species in Eurasia. Despite being a small clade, they display a range of leaf morphologies comparable to the largest sections (>100 spp.) in Quercus. Their fossil record extends back to the Eocene. Here, we explore how cork oaks achieved their modern ranges and how legacy effects might explain niche evolution in modern species of section Cerris and its sister section Ilex, the holly oaks. METHODS: We inferred a dated phylogeny for cork and holly oaks using a reduced-representation next-generation sequencing method, restriction site-associated DNA sequencing (RAD-seq), and used D-statistics to investigate gene flow hypotheses. We estimated divergence times using a fossilized birth-death model calibrated with 47 fossils. We used Köppen profiles, selected bioclimatic parameters and forest biomes occupied by modern species to infer ancestral climatic and biotic niches. KEY RESULTS: East Asian and Western Eurasian cork oaks diverged initially in the Eocene. Subsequently, four Western Eurasian lineages (subsections) differentiated during the Oligocene and Miocene. Evolution of leaf size, form and texture was correlated, in part, with multiple transitions from ancestral humid temperate climates to mediterranean, arid and continental climates. Distantly related but ecologically similar species converged on similar leaf traits in the process. CONCLUSIONS: Originating in temperate (frost-free) biomes, Eocene to Oligocene ranges of the primarily deciduous cork oaks were restricted to higher latitudes (Siberia to north of Paratethys). Members of the evergreen holly oaks (section Ilex) also originated in temperate biomes but migrated southwards and south-westwards into then-(sub)tropical southern China and south-eastern Tibet during the Eocene, then westwards along existing pre-Himalayan mountain ranges. Divergent biogeographical histories and deep-time phylogenetic legacies (in cold and drought tolerance, nutrient storage and fire resistance) thus account for the modern species mosaic of Western Eurasian oak communities, which are composed of oaks belonging to four sections.


Asunto(s)
Quercus , Filogenia , Quercus/genética , Ecosistema , Bosques , Secuencia de Bases
4.
Trends Ecol Evol ; 37(10): 829-837, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35717415

RESUMEN

Plant life-history variation reflects different outcomes of natural selection given the strictures of resource allocation trade-offs. However, there is limited theory of selection predicting how leaves, stems, roots, and reproductive organs should evolve in concert across environments. Here, we synthesize two optimality theories to offer a general theory of plant carbon economics, named as Gmax theory, that shows how life-history variation is limited to phenotypes that have an approximately similar lifetime net carbon gain per body mass. In consequence, fast-slow economics spectra are the result of trait combinations obtaining similar lifetime net carbon gains from leaves and similar net carbon investment costs in stems, roots, and reproductive organs. Gmax theory also helps explain ecosystem and crop productivity and even helps guide carbon conservation strategies.


Asunto(s)
Carbono , Rasgos de la Historia de Vida , Ecosistema , Hojas de la Planta , Plantas
5.
New Phytol ; 235(3): 978-992, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35474217

RESUMEN

Increased droughts impair tree growth worldwide. This study analyzes hydraulic and carbon traits of conifer species, and how they shape species strategies in terms of their growth rate and drought resilience. We measured 43 functional stem and leaf traits for 28 conifer species growing in a 50-yr-old common garden experiment in the Netherlands. We assessed: how drought- and carbon-related traits are associated across species, how these traits affect stem growth and drought resilience, and how traits and drought resilience are related to species' climatic origin. We found two trait spectra: a hydraulics spectrum reflecting a trade-off between hydraulic and biomechanical safety vs hydraulic efficiency, and a leaf economics spectrum reflecting a trade-off between tough, long-lived tissues vs high carbon assimilation rate. Pit aperture size occupied a central position in the trait-based network analysis and also increased stem growth. Drought recovery decreased with leaf lifespan. Conifer species with long-lived leaves suffer from drought legacy effects, as drought-damaged leaves cannot easily be replaced, limiting growth recovery after drought. Leaf lifespan, rather than hydraulic traits, can explain growth responses to a drier future.


Asunto(s)
Sequías , Tracheophyta , Carbono , Longevidad , Hojas de la Planta/fisiología , Árboles/fisiología , Agua/fisiología
6.
Sci Total Environ ; 820: 153175, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35051451

RESUMEN

Temperature affects leaf lifespan (LL) across either space or time, driving long-term adaptation and short-term thermal acclimation, respectively. However, a comprehensive understanding of the phenomenon and the underlying phenological mechanisms remain poorly understood. The present study investigated the relationship between LL and temperature in six common deciduous trees across both spatial and temporal gradients, then explained the LL variation patterns based on phenological shifts. Using long-term (1971-2000) phenological records of six deciduous tree species at 54 sites across central Europe, we analyzed spatial and temporal variations of LL and leaf phenology along temperature gradients. We assessed the relative contribution of phenological shifts to LL variations by comparing absolute changes in leaf-out and leaf fall. We reported positive LL-temperature relationships across all observations along both spatial (+3.32 days/°C) and temporal (+4.43 days/°C) gradients. The paired t-test of the six deciduous tree species showed no significant difference in regression slopes of LL- temperature between the two gradients (t = -1.50, df = 5, P = 0.194). Prolonged LL can be explained mainly by earlier leaf-out induced by warmer temperatures both spatially (-3.22 days/°C) and temporally (-4.08 days/°C). The converging temperature-dependent patterns of LL across time and space indicate that short-term thermal acclimation keeps pace with long-term genetic adaptation for deciduous trees in Europe. Earlier leaf-out is the key force shaping the LL-temperature relationship. These results provide insights for predicting future vegetation dynamics under global warming.


Asunto(s)
Longevidad , Árboles , Cambio Climático , Europa (Continente) , Hojas de la Planta , Estaciones del Año , Temperatura
7.
Oecologia ; 191(3): 483-491, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31456021

RESUMEN

Leaf longevity (LL), the amount of time a photosynthetically active leaf remains on a plant, is an important trait of evergreen species, affecting physiological ecology and ecosystem processes. A long LL gives leaves more time to fix carbon but carries higher construction costs, while a short LL allows plants to respond more rapidly to changing environmental conditions. For many evergreen taxa, LL data are not readily available, and it is not known if LL is phylogenetically conserved. To address this gap, we measured LL for 169 temperate and boreal evergreen woody species at the Arnold Arboretum, a botanical garden in Boston, Massachusetts, along with metrics of leaf size and number known to be related to LL. We hypothesized that LL is phylogenetically conserved, and that longer LL is associated with a greater numbers of leaves, smaller leaves, and a colder hardiness zone of the species' native range. We found that average LL ranged from 1.4 years in Rhododendron tomentosum to 10.5 years in Abies cilicia. LL was phylogenetically conserved, with some genera, such as Abies and Picea, exhibiting long LL (> 3 years) and others, such as Ilex and Rhododendron, exhibiting short LL (< 3 years). Leaf length was negatively correlated with LL in conifers, due to differences between Pinus and other genera; however, there was no correlation between LL and number of leaves. This study highlights the considerable variation and phylogenetic pattern in LL among temperate evergreen species, which has implications for carbon budgets and ecosystem models.


Asunto(s)
Abies , Pinus , Ecosistema , Filogenia , Hojas de la Planta
8.
PeerJ ; 7: e6855, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31119078

RESUMEN

The species-rich arborescent assemblages of humid tropical forests encompass much of the known range of the leaf economics spectrum, often including >20-fold variation in leaf lifespan. This suite of traits underpins a life-history continuum from fast-growing pioneers to slow-growing shade-tolerant species. Less is known about the range of leaf traits in humid temperate forests, and there are conflicting reports about relationships of these traits with the light requirements of temperate evergreen angiosperms. Here I quantify the range of leaf functional traits in a New Zealand temperate evergreen forest, and relationships of these traits with light requirements of juvenile trees and shrubs. Foliage turnover of saplings of 19 evergreen angiosperms growing beneath gaps (12-29% canopy openness) and in understories (1.2-2.9%) was measured over 12 months. Dry mass per area (LMA), dry matter content, thickness, density and nitrogen content (N) of leaves were also measured. Species minimum light requirements were indexed as the 10th percentile of the distribution of saplings in relation to canopy openness. Interspecific variation of leaf lifespan was ∼6-fold in gaps (0.6 to 3.8 yrs), and ∼11-fold in the understorey (0.7 to 7.7 yrs). Six small tree and shrub species are effectively leaf-exchangers, with leaf lifespans of c.1 year in gaps-albeit usually longer in the shade. Interspecific variation in other leaf traits was 2.5 to 4-fold. Lifespans and LMA of both sun and shade leaves were negatively correlated with species light requirements i.e., positively correlated with shade tolerance. However, light environment (gap vs shade) explained about the same amount of variation in LMA as species' identity did. Species light requirements were not significantly correlated with leaf N, dry matter content, density or thickness-except for a marginally significant correlation with dry matter content of shade leaves. Species light requirements were thus less consistently related to leaf structural traits than appears to be the case in humid tropical forests. Whereas the wide interspecific variation in leaf economic traits of tropical rainforest species outweighs plastic response to light availability, temperate evergreen woody angiosperms appear to occupy a narrower range of the leaf economic spectrum. Standardization of the light environments in which LMA is measured is vital in comparative studies of humid temperate forest evergreens, because of countergradient responses of this trait to light, and because of the relative magnitudes of plastic and interspecific variation in LMA in these forests.

9.
New Phytol ; 223(2): 607-618, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30887533

RESUMEN

Leaf mechanical strength and photosynthetic capacity are critical plant life-history traits associated with tolerance and growth under various biotic and abiotic stresses. In principle, higher mechanical resistance achieved via higher relative allocation to cell walls should slow photosynthetic rates. However, interspecific relationships among these two leaf functions have not been reported. We measured leaf traits of 57 dominant woody species in a subtropical evergreen forest in China, focusing especially on photosynthetic rates, mechanical properties, and leaf lifespan (LLS). These species were assigned to two ecological strategy groups: shade-tolerant species and light-demanding species. On average, shade-tolerant species had longer LLS, higher leaf mechanical strength but lower photosynthetic rates, and exhibited longer LLS for a given leaf mass per area (LMA) or mechanical strength than light-demanding species. Depending on the traits and the basis of expression (per area or per mass), leaf mechanical resistance and photosynthetic capacity were either deemed unrelated, or only weakly negatively correlated. We found only weak support for the proposed trade-off between leaf biomechanics and photosynthesis among co-occurring woody species. This suggests there is considerable flexibility in these properties, and the observed relationships may result more so from trait coordination than any physically or physiologically enforced trade-off.


Asunto(s)
Bosques , Luz , Fotosíntesis/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Clima Tropical , Adaptación Fisiológica/efectos de la radiación , Fenómenos Biomecánicos , Modelos Biológicos , Carácter Cuantitativo Heredable
10.
Ecol Lett ; 21(5): 734-744, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29569818

RESUMEN

The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait-trait covariation. We found that most variation in LES traits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species. LES traits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation in LES traits cannot always be interpreted as differences in resource use strategy.


Asunto(s)
Evolución Biológica , Hojas de la Planta , Ecología , Fenotipo , Fenómenos Fisiológicos de las Plantas , Plantas
11.
Am J Bot ; 105(1): 50-59, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29532934

RESUMEN

PREMISE OF THE STUDY: The pygmy forest, a plant community of severely stunted conifers and ericaceous angiosperms, occurs on patches of highly acidic, nutrient-poor soils along the coast of Northern California, USA. This system is an excellent opportunity to study the effect of severe nutrient deficiency on leaf physiology in a naturally-occurring ecosystem. In this study, we seek to understand the physiological mechanisms stunting the plants' growth and their implications for whole plant function. METHODS: We measured 14 traits pertaining to leaf photosynthetic function or physical structure on seven species. Samples were taken from the pygmy forest community and from conspecifics growing on higher-nutrient soils, where trees may grow over 30 m tall. KEY RESULTS: Pygmy plants of most species maintained similar area-based photosynthetic and stomatal conductance rates to conspecific controls, but had lower specific leaf area (leaf area divided by dry weight), lower percent nitrogen, and less leaf area relative to xylem growth. Sequoia sempervirens, a species rare in the pygmy forest, had a categorically different response from the more common plants and had remarkably low photosynthetic rates. CONCLUSIONS: Pygmy plants were not stunted by low photosynthetic rates on a leaf-area basis; instead, several species had restricted whole-plant photosynthesis due to low leaf area production. Pygmy plants of all species showed signs of greater carbon investment in their leaves and higher production of nonphotosynthetic leaf tissue, further contributing to slow growth rates.


Asunto(s)
Nutrientes/deficiencia , Hojas de la Planta/fisiología , Suelo/química , Árboles/fisiología , California , Bosques , Árboles/crecimiento & desarrollo
12.
Glob Chang Biol ; 24(8): 3537-3545, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29460318

RESUMEN

Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of leaf coloration is split between temperature and drought is not known for many species. Moreover, whether growing season and autumn temperatures interact in influencing the timing of leaf coloration is not clear. Here, we revealed major climate drivers of leaf coloration dates and their interactions using 154 phenological datasets for four winter deciduous tree species at 89 stations, and the corresponding daily mean/minimum air temperature and precipitation data across China's temperate zone from 1981 to 2012. Results show that temperature is more decisive than drought in causing leaf coloration, and the growing season mean temperature plays a more important role than the autumn mean minimum temperature. Higher growing season temperature and lower autumn minimum temperature would induce earlier leaf coloration date. Moreover, the mean temperature over the growing season correlates positively with the autumn minimum temperature. This implies that growing season mean temperature may offset the requirement of autumn minimum temperature in triggering leaf coloration. Our findings deepen the understanding of leaf coloration mechanisms in winter deciduous trees and suggest that leaf life-span control depended on growing season mean temperature and autumn low temperature control and their interaction are major environmental cues. In the context of climate change, whether leaf coloration date advances or is delayed may depend on intensity of the offset effect of growing season temperature on autumn low temperature.


Asunto(s)
Cambio Climático , Sequías , Temperatura , Árboles/fisiología , China , Color , Pigmentación , Hojas de la Planta/fisiología , Populus/fisiología , Robinia/fisiología , Salix/fisiología , Estaciones del Año , Ulmus/fisiología
13.
Biol Lett ; 13(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28490446

RESUMEN

The resource availability hypothesis (RAH), the most successful theory explaining plant defence patterns, predicts that defence investment is related to the relative growth rate (RGR) of plant species, which is associated with habitat quality. Thus, fast-growing species should show lower resistance than slow-growing species, which would lead fast growers to sustain higher herbivory rates, but the fitness consequences of herbivory would be greater for slow growers. The latter is often assumed but rarely tested. In a temperate rainforest, we tested the expected pattern of tolerance to herbivory derived from the RAH: that fast-growing species should be more tolerant than slow-growing species. We also evaluated whether other plant features covary with RGR (leaf lifespan, shade tolerance and leaf toughness) and thus could also contribute to the patterns of tolerance to herbivory. As expected, seedlings from tree species with higher RGR showed greater tolerance to herbivory. Among the three plant features included, only leaf lifespan showed a significant association with RGR, but RGR was the best predictor of tolerance. We argue that plant tolerance to herbivory must be evaluated to properly verify the assumptions of the RAH.


Asunto(s)
Herbivoria , Ecosistema , Hojas de la Planta , Plantones , Árboles
14.
New Phytol ; 214(4): 1395-1397, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28485082
15.
Environ Sci Pollut Res Int ; 24(34): 26227-26237, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28386899

RESUMEN

Nitrogen (N) deposition due to anthropogenic pollution is a major driver of the global biodiversity loss. We studied the effect of experimental N and phosphorus (P) fertilization (0, 10, 20, and 50 kg N ha-1 year-1 and 14 kg P ha-1 year-1 over the background deposition levels) on plant cover dynamics of a rosemary (Rosmarinus officinalis L.) shrubland after 8 years of nutrient addition in a semiarid Mediterranean ecosystem from Central Spain. We specifically aimed at testing whether N deposition has the potential to influence the observed expanding trend of woody vegetation into areas dominated by grassland, biological soil crusts, and bare soil. Our results show that N addition loads above 10 kg N ha-1 year-1 reverted the cover dynamics of shrubs. Under N addition conditions, N was no longer a limiting nutrient and other elements, especially P and calcium, determined the seasonal growth of young twigs. Interestingly, N fertilization did not inhibit the growth of young shoots; our estimates point to a reduced rosemary leaf lifespan that is driving individuals to death. This may be triggered by long-term accumulation of N compounds in leaves, suggesting the need to consider the old organs and tissues in long-lived perennial plants, where N toxicity effects could be more mediated by accumulation processes. Shrublands are a widely distributed ecosystem type in biodiverse Mediterranean landscapes, where shrubs play a key role as nurse plants. Therefore, the disappearance of shrublands may accelerate the biodiversity loss associated with other global change drivers, hamper the recruitment of seedlings of woody species, and, as a consequence, accelerate desertification.


Asunto(s)
Fertilizantes/toxicidad , Nitrógeno/toxicidad , Rosmarinus/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Biodiversidad , Ecosistema , Nitrógeno/análisis , Fósforo/análisis , Fósforo/toxicidad , Plantones/química , Plantones/efectos de los fármacos , Suelo , España
16.
Ecology ; 98(2): 425-432, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27861782

RESUMEN

Herbivory is well known to be a major selective pressure that affects plant communities, but the leaf traits that mediate variations in herbivory at the interspecific level remain controversial. We collected published data on background insect herbivory and leaf traits from a wide variety of species to test the hypothesis that species with intermediate leaf lifespans, lower fiber, and higher nutrient contents in leaves should have higher levels of herbivory. We found that at the interspecific level herbivory had a hump-shaped relationship with leaf lifespan and a positive relationship with leaf size. Surprisingly, our data show that nutritional traits have little relationship to herbivory. Our study provides new insights relevant to the recent debate on leaf trait-herbivory relationships. These findings are especially helpful in explaining the general patterns of herbivory detected on the global scale.


Asunto(s)
Herbivoria , Insectos/fisiología , Hojas de la Planta , Animales , Plantas
17.
Ann Bot ; 118(5): 983-996, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27489160

RESUMEN

Background and Aims Morphological variation in light-foraging strategies potentially plays important roles in efficient light utilization and carbon assimilation in spatially and temporally heterogeneous environments such as tropical moist forest understorey. By considering a suite of morphological traits at various hierarchical scales, we examined the functional significance of crown shape diversity and plasticity in response to canopy openness. Methods We conducted a field comparative study in French Guiana among tree saplings of 14 co-occurring species differing in light-niche optimum and breadth. Each leaf, axis or crown functional trait was characterized by a median value and a degree of plasticity expressed under contrasting light regimes. Key Results We found divergent patterns between shade-tolerant and heliophilic species on the one hand and between shade and sun plants on the other. Across species, multiple regression analysis showed that relative crown depth was positively correlated with leaf lifespan and not correlated with crown vertical growth rate. Within species displaying a reduction in crown depth in the shade, we observed that crown depth was limited by reduced crown vertical growth rate and not by accelerated leaf or branch shedding. In addition, the study provides contrasting examples of morphological multilevel plastic responses, which allow the maintenance of efficient foliage and enable effective whole-plant light capture in shaded conditions under a moderate vertical light gradient. Conclusions This result suggests that plastic adjustment of relative crown depth does not reflect a strategy maximizing light capture efficiency. Integrating and scaling-up leaf-level dynamics to shoot- and crown-level helps to interpret in functional and adaptive terms inter- and intraspecific patterns of crown traits and to better understand the mechanism of shade tolerance.

18.
Am J Bot ; 103(5): 963-70, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27208363

RESUMEN

PREMISE OF THE STUDY: Spring-ephemeral forest-herbs emerge early to take advantage of the high-light conditions preceding canopy closure; they complete their life cycle in a few weeks, then senesce as the tree canopy closes. Summer greens acclimate their leaves to shade and thus manage to maintain a net carbon gain throughout summer. Differences in phenology among life stages within a species have been reported in tree saplings, whose leaf activity may extend beyond the period of shade conditions caused by mature trees. Similar phenological acclimation has seldom been studied in forest herbs. METHODS: We compared wild-leek bulb growth and leaf phenology among plants from seedling to maturity and from under 4 to 60% natural light availability. We also compared leaf chlorophyll content and chl a/b ratio among seedlings and adult plants in a natural population as an indicator of photosynthetic capacity and acclimation to light environment. KEY RESULTS: Overall, younger plants senesced later than mature ones. Increasing light availability delayed senescence in mature plants, while hastening seedling senescence. In natural populations, only seedlings acclimated to the natural reduction in light availability through time. CONCLUSIONS: Wild-leek seedlings exhibit a summer-green phenology, whereas mature plants behave as true spring ephemerals. Growth appears to be more source-limited in seedlings than in mature plants. This modulation of phenological strategy, if confirmed in other species, would require a review of the current classification of species as either spring ephemerals, summer greens, wintergreens, or evergreens.


Asunto(s)
Aclimatación/efectos de la radiación , Luz , Cebollas/fisiología , Cebollas/efectos de la radiación , Estaciones del Año , Clorofila/metabolismo , Funciones de Verosimilitud , Fotosíntesis/efectos de la radiación , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
19.
Ecol Lett ; 19(1): 54-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26563777

RESUMEN

The leaf economics spectrum (LES) is a prominent ecophysiological paradigm that describes global variation in leaf physiology across plant ecological strategies using a handful of key traits. Nearly a decade ago, Shipley et al. (2006) used structural equation modelling to explore the causal functional relationships among LES traits that give rise to their strong global covariation. They concluded that an unmeasured trait drives LES covariation, sparking efforts to identify the latent physiological trait underlying the 'origin' of the LES. Here, we use newly developed phylogenetic structural equation modelling approaches to reassess these conclusions using both global LES data as well as data collected across scales in the genus Helianthus. For global LES data, accounting for phylogenetic non-independence indicates that no additional unmeasured traits are required to explain LES covariation. Across datasets in Helianthus, trait relationships are highly variable, indicating that global-scale models may poorly describe LES covariation at non-global scales.


Asunto(s)
Helianthus/clasificación , Helianthus/fisiología , Modelos Biológicos , Filogenia , Hojas de la Planta/fisiología , Fotosíntesis
20.
Evolution ; 69(10): 2705-20, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26339995

RESUMEN

The leaf economics spectrum (LES) describes a major axis of plant functional trait variation worldwide, defining suites of leaf traits aligned with resource-acquisitive to resource-conservative ecological strategies. The LES has been interpreted to arise from leaf-level trade-offs among ecophysiological traits common to all plants. However, it has been suggested that the defining leaf-level trade-offs of the LES may not hold within specific functional groups (e.g., herbs) nor within many groups of closely related species, which challenges the usefulness of the LES paradigm across evolutionary scales. Here, we examine the evolution of the LES across 28 species of the diverse herbaceous genus Helianthus (the sunflowers), which occupies a wide range of habitats and climate variation across North America. Using a phylogenetic comparative approach, we find repeated evolution of more resource-acquisitive LES strategies in cooler, drier, and more fertile environments. We also find macroevolutionary correlations among LES traits that recapitulate aspects of the global LES, but with one major difference: leaf mass per area is uncorrelated with leaf lifespan. This indicates that whole-plant processes likely drive variation in leaf lifespan across Helianthus, rather than leaf-level trade-offs. These results suggest that LES patterns do not reflect universal physiological trade-offs at small evolutionary scales.


Asunto(s)
Evolución Biológica , Ecosistema , Helianthus/fisiología , Hojas de la Planta/fisiología , Clima , Helianthus/anatomía & histología , Helianthus/genética , América del Norte , Fenotipo , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA