Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Physiol Biochem ; 207: 108388, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38295528

RESUMEN

Grass pea has the potential to become a miracle crop if the stigma attached to it as a toxic plant is ignored. In light of the following, we conducted transcriptome analyses on the high and low ODAP-containing cultivars i.e., Nirmal and Bidhan respectively in both normal and salt stress conditions. In this study, genes that work upstream and downstream to ß-ODAP have been found. Among these genes, AAO3 and ACL5 were related to ABA and polyamine biosynthesis, showing the relevance of ABA and polyamines in boosting the ß-ODAP content in Nirmal. Elevated ß-ODAP levels in salt stress-treated Bidhan may have evolved tolerance by positively regulating the expression of genes involved in phenylpropanoid and jasmonic acid biosynthesis. Although the concentration of ß-ODAP in Bidhan increased under salt stress, it was lower than in stress-treated Nirmal. Despite this, the expression of stress-related genes that work downstream to ß-ODAP was found higher in stress-treated Bidhan. This could be because stress-treated Nirmal has lower GSH, proline, and higher H2O2, resulting in the development of severe oxidative stress. Overall, our research not only identified new genes linked with ß-ODAP, but also revealed the molecular mechanism by which a low ß-ODAP-containing cultivar developed tolerance against salinity stress.


Asunto(s)
Aminoácidos Diaminos , Lathyrus , Lathyrus/genética , Lathyrus/metabolismo , Neurotoxinas/análisis , Neurotoxinas/metabolismo , Aminoácidos Diaminos/análisis , Aminoácidos Diaminos/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Salino/genética
2.
Front Genet ; 14: 1187597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408775

RESUMEN

Grass pea is a promising crop with the potential to provide food and fodder, but its genomics has not been adequately explored. Identifying genes for desirable traits, such as drought tolerance and disease resistance, is critical for improving the plant. Grass pea currently lacks known R-genes, including the nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family, which plays a key role in protecting the plant from biotic and abiotic stresses. In our study, we used the recently published grass pea genome and available transcriptomic data to identify 274 NBS-LRR genes. The evolutionary relationships between the classified genes on the reported plants and LsNBS revealed that 124 genes have TNL domains, while 150 genes have CNL domains. All genes contained exons, ranging from 1 to 7. Ten conserved motifs with lengths ranging from 16 to 30 amino acids were identified. We found TIR-domain-containing genes in 132 LsNBSs, with 63 TIR-1 and 69 TIR-2, and RX-CCLike in 84 LsNBSs. We also identified several popular motifs, including P-loop, Uup, kinase-GTPase, ABC, ChvD, CDC6, Rnase_H, Smc, CDC48, and SpoVK. According to the gene enrichment analysis, the identified genes undergo several biological processes such as plant defense, innate immunity, hydrolase activity, and DNA binding. In the upstream regions, 103 transcription factors were identified that govern the transcription of nearby genes affecting the plant excretion of salicylic acid, methyl jasmonate, ethylene, and abscisic acid. According to RNA-Seq expression analysis, 85% of the encoded genes have high expression levels. Nine LsNBS genes were selected for qPCR under salt stress conditions. The majority of the genes showed upregulation at 50 and 200 µM NaCl. However, LsNBS-D18, LsNBS-D204, and LsNBS-D180 showed reduced or drastic downregulation compared to their respective expression levels, providing further insights into the potential functions of LsNBSs under salt stress conditions. They provide valuable insights into the potential functions of LsNBSs under salt stress conditions. Our findings also shed light on the evolution and classification of NBS-LRR genes in legumes, highlighting the potential of grass pea. Further research could focus on the functional analysis of these genes, and their potential use in breeding programs to improve the salinity, drought, and disease resistance of this important crop.

3.
J Agric Food Chem ; 71(20): 7858-7865, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37163296

RESUMEN

LsSAT2 (serine acetyltransferase in Lathyrus sativus) is the rate-limiting enzyme in biosynthesis of ß-N-oxalyl-l-α,ß-diaminopropionic acid (ß-ODAP), a neuroactive metabolite distributed widely in several plant species including Panax notoginseng, Panax ginseng, and L. sativus. The enzymatic activity of LsSAT2 is post-translationally regulated by its involvement in the cysteine regulatory complex in mitochondria via interaction with ß-CAS (ß-cyanoalanine synthase). In this study, the binding sites of LsSAT2 with the substrate Ser were first determined as Glu290, Arg316, and His317 and the catalytic sites were determined as Asp267, Asp281, and His282 via site-directed/truncated mutagenesis, in vitro enzymatic activity assay, and functional complementation of the SAT-deficient Escherichia coli strain JM39. Furthermore, the C-terminal 10-residue peptide of LsSAT2 is confirmed to be critical to interact with LsCAS, and Ile336 in C10 peptide is the critical amino acid. These results will enhance our understanding of the regulation of LsSAT2 activities and the biosynthesis of ß-ODAP in L. sativus.


Asunto(s)
Aminoácidos Diaminos , Lathyrus , Lathyrus/química , Serina O-Acetiltransferasa/metabolismo , Aminoácidos/metabolismo
4.
Foods ; 12(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048181

RESUMEN

Grass pea (Lathyrus sativus L.) is a pulse with historical importance in Portugal, but that was forgotten over time. Previous to this work, an innovative miso was developed to increase grass pea usage and consumption, using fermentation as a tool to extol this ingredient. Our work's goal was to develop a new vegan emulsion with added value, using grass pea sweet miso as a clean-label ingredient, aligned with the most recent consumer trends. For this, a multidisciplinary approach with microbiological, rheological and chemical methods was followed. Grass pea sweet miso characterization revealed a promising ingredient in comparison with soybean miso, namely for its low fat and sodium chloride content and higher content in antioxidant potential. Furthermore, in vitro antimicrobial activity assays showed potential as a preservation supporting agent. After grass pea sweet miso characterization, five formulations with 5-15% (w/w) of miso were tested, with a vegan emulsion similar to mayonnaise as standard. The most promising formulation, 7.5% (w/w) miso, presented adequate rheological properties, texture profile and fairly good stability, presenting a unimodal droplet size distribution and stable backscattering profile. The addition of 0.1% (w/w) psyllium husk, a fiber with great water-intake capacity, solved the undesirable release of exudate from the emulsion, as observed on the backscattering results. Furthermore, the final product presented a significantly higher content of phenolic compounds and antioxidant activity in comparison with the standard vegan emulsion.

5.
Nutr. clín. diet. hosp ; 43(1): 99-107, Mar 23, 2023. tab, graf
Artículo en Español | IBECS | ID: ibc-217968

RESUMEN

Introducción: En el mundo existen varias especies de leguminosas locales que no se exportan ni se cultivan por falta de conocimiento, a pesar de que son de buen aporte de proteínas, extracto libre de nitrógeno, fibra y bajo contenido de grasa. La arveja chata (Lathyrus sativus L.) reconocida por su alto contenido de proteínas de origen vegetal, podría contribuir a la seguridad alimentaria, a la biodiversidad de las leguminosas, a la reducción de la pobreza y del hambre.Objetivo: Determinar la calidad nutricional y evaluación biológica de la harina de arveja chata (Lathyrus sativus L.) cocida en ratas.Materiales y métodos: Se utilizó la arveja chata (Lathyrus sativus L.), que se cultiva y consume en Ancash - Perú, se realizó análisis fisicoquímicos para determinar la calidad nutricional a la harina y parámetros de evaluación biológica en 50 ratas de 28 días de edad.Resultados y discusiones: Su composición proximal tuvo una humedad de 9,28 %; proteína cruda de 23,48 %; grasa de 1,82 %; fibra de 5,64 %; cenizas de 2,74 %; extracto libre de nitrógeno de 57,04 % y 338,46 kcal. Asimismo, no se encontraron diferencias significativas (p >0,05) en los parámetros de evaluación biológica, lo que muestra que los datos se ajustan a una distribución normal, se obtuvo una digestibilidad aparente de 75,09 %, valor biológico de 69,03 %, ratio de proteína neta (NPR) de 2,25 y ratio de eficiencia proteica (PER) de 1,57.Conclusiones: Se concluyó que la arveja chata (Lathyrus sativus L.) cocida es una buena alternativa alimenticia de origen vegetal y cuando se consume con cereales y/o semillas, se obtiene una proteína completa.(AU)


Introduction: In the world there are several local legumespecies that are not exported or cultivated due to lack ofknowledge, despite the fact that they are of good protein, ni-trogen free extract, fiber and low fat content. The chata pea(Lathyrus sativus L.), recognized for their high protein contentof vegetable origin, could contribute to food security, legumebiodiversity, and the reduction of poverty and hunger.Objective: To determine the nutritional quality and biolog-ical evaluation of cooked chata pea (Lathyrus sativus L.) flourin rats.Materials & methods: The pea (Lathyrus sativus L.),which is grown and consumed in Ancash - Peru, was used,physicochemical analysis was performed to determine the nu-tritional quality of the flour and biological evaluation parame-ters in 50 rats from 28 days of age.Results and discussions: Its proximal composition had ahumidity of 9,28 %; protein of 23,48 %; fat of 1,82 %; fiber of 5,64 %; ash of 2,74 %; nitrogen free extract of 57,04 %and 338,46 kcal. Also, no significant differences (p>0,05)were found in the biological evaluation parameters, showingthat the data fit a normal distribution, apparent digestibility of75,09 %, biological value of 69,03 %, net protein ratio (NPR)of 2,25 and protein efficiency ratio (PER) of 1,57. Conclusions: It was concluded that cooked chata pea(Lathyrus sativus L.) flour is a good food alternative of veg-etable origin and when consumed with cereals and/or seeds,a complete protein is obtained.(AU)


Asunto(s)
Ratas , Pisum sativum , Evaluación Nutricional , Estado Nutricional , Lathyrus sativus , Proteínas , Perú , 52503
6.
Iran J Child Neurol ; 16(4): 75-79, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36478998

RESUMEN

Ptosis, diplopia, and overall weakness in children may have serious underlying causes such as myasthenia, botulism, Guillain-Barré syndrome, and poisoning, which require a systematic and timely evaluation and proper management.(1,2,3) In pediatrics, clinical presentations may be atypical, and diagnostic overlap sometimes makes the final diagnosis challenging. This can be addressed through taking accurate history, performing a physical exam, conducting a comprehensive assessment, and using appropriate diagnostic algorithms.

7.
Plants (Basel) ; 11(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36015475

RESUMEN

Grasspea (Lathyrus sativus L.), a legume crop with excellent resistance to a broad array of environmental stressors, has, to this point, been poorly genetically characterized. High-density genetic linkage maps are critical for draft genome assembly, quantitative trait loci (QTLs) analysis, and gene mining. The lack of a high-density genetic linkage map has limited both genomic studies and selective breeding in grasspea. Here, we developed a high-density genetic linkage map of grasspea using genotyping-by-sequencing (GBS) to sequence 154 grasspea plants, comprising 2 parents and 152 F2 progeny. In all, 307.74 Gb of data was produced, including 2,108,910,938 paired-end reads, as well as 3536 SNPs mapped to seven linkage groups (LG1-LG7). With an average length of 996.52 cM per LG, the overall genetic distance was 6975.68 cM. Both the χ2 test and QTL analysis, based on the Kruskal-Wallis (KW) test and interval mapping (IM) analysis, revealed the monogenic inheritance of flower color in grasspea, with the responsible QTL located between 308.437 cM and 311.346 cM in LG4. The results can aid grasspea genome assembly and accelerate the selective breeding of new grasspea germplasm resources.

8.
Phytochemistry ; 202: 113296, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35868566

RESUMEN

Plant secretomics has been especially important in understanding the molecular basis of plant development, stress resistance and biomarker discovery. In addition to sharing a similar role in maintaining cell metabolism and biogenesis with the animal secretome, plant-secreted proteins actively participate in signaling events crucial for cellular homeostasis during stress adaptation. However, investigation of the plant secretome remains largely overlooked, particularly in pulse crops, demanding urgent attention. To better understand the complexity of the secretome, we developed a reference map of a stress-resilient orphan legume, Lathyrus sativus (grasspea), which can be utilized as a potential proteomic resource. Secretome analysis of L. sativus led to the identification of 741 nonredundant proteins belonging to a myriad of functional classes, including antimicrobial, antioxidative and redox potential. Computational prediction of the secretome revealed that ∼29% of constituents are predicted to follow unconventional protein secretion (UPS) routes. We conducted additional in planta analysis to determine the localization of two secreted proteins, recognized as cell surface residents. Sequence-based homology comparison revealed that L. sativus shares ∼40% of the constituents reported thus far from in vitro and in planta secretome analysis in model and crop species. Significantly, we identified 571 unique proteins secreted from L. sativus involved in cell-to-cell communication, organ development, kinase-mediated signaling, and stress perception, among other critical roles. Conclusively, the grasspea secretome participates in putative crosstalk between genetic circuits that regulate developmental processes and stress resilience.


Asunto(s)
Fabaceae , Lathyrus , Productos Agrícolas/metabolismo , Grano Comestible/metabolismo , Lathyrus/genética , Lathyrus/metabolismo , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Proteómica , Secretoma , Verduras/metabolismo
9.
Molecules ; 27(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35744809

RESUMEN

ODAP (N-oxalyl-L-2,3-diaminopropionic acid) is present in the seeds of grass pea. In this study, variation of total ODAP accumulation in leaves throughout the crop growth starting from 40 days after sowing to maturity, and the distribution pattern of ODAP in different plant parts including the seeds at the mature stage was analyzed. Five grass pea accessions were evaluated for two subsequent growing seasons in one location of ICARDA, Aleppo (Syria). The results found that the rate of accumulation of total ODAP varied during plant development. Increased rates of synthesis were noticed in young leaves of grass pea. The highest total ODAP content in leaves was noted in the early growth stage (40-50 days after sowing). Mean total ODAP content in leaves ranged from 0.17 to 0.96 percent during 2010-2011 and from 0.19 to 1.28 percent during 2011-2012. During maturity, the total ODAP content was lowest in the seeds than in leaves, stems, pod cover, seed coat, and cotyledons. The ranges of total ODAP content were 0.13 (seed)-0.34 (stem), 0.20 (seed)-1.01 (leaf), 0.22 (seed)-0.62 (leaf), 0.21 (seed)-0.66 (leaf), and 0.21 (seed)-0.78 (leaf) percent in B387, B222, B390, Bio-520, and B587 accessions, respectively, during maturity. The results indicated that the rate of accumulation and synthesis of total ODAP varied during the plant lifespan. The lowest total ODAP content of leaves was observed after 130 days of sowing. The lower total ODAP content after the early vegetative stage of grass pea plants makes them suitable as a feed.


Asunto(s)
Aminoácidos Diaminos , Lathyrus , Neurotoxinas , Pisum sativum , Plantones , beta-Alanina/análogos & derivados
10.
J Biol Chem ; 298(5): 101806, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35271851

RESUMEN

Grass pea (Lathyrus sativus L.) is a grain legume commonly grown in Asia and Africa for food and forage. It is a highly nutritious and robust crop, capable of surviving both droughts and floods. However, it produces a neurotoxic compound, ß-N-oxalyl-L-α,ß-diaminopropionic acid (ß-ODAP), which can cause a severe neurological disorder when consumed as a primary diet component. While the catalytic activity associated with ß-ODAP formation was demonstrated more than 50 years ago, the enzyme responsible for this activity has not been identified. Here, we report on the identity, activity, 3D structure, and phylogenesis of this enzyme-ß-ODAP synthase (BOS). We show that BOS belongs to the benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase superfamily of acyltransferases and is structurally similar to hydroxycinnamoyl transferase. Using molecular docking, we propose a mechanism for its catalytic activity, and using heterologous expression in tobacco leaves (Nicotiana benthamiana), we demonstrate that expression of BOS in the presence of its substrates is sufficient for ß-ODAP production in vivo. The identification of BOS may pave the way toward engineering ß-ODAP-free grass pea cultivars, which are safe for human and animal consumption.


Asunto(s)
Aminoácidos Diaminos , Lathyrus/enzimología , Neurotoxinas , Acetiltransferasas , Aminoácidos Diaminos/metabolismo , Simulación del Acoplamiento Molecular
11.
J Sci Food Agric ; 102(12): 4988-4999, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33301170

RESUMEN

BACKGROUND: Grass pea (Laithyrus sativus L.) is a rustic plant whose seeds are rich in polyphenols and antioxidants, and it has been consumed as food by human beings since ancient times. This study was conducted in Italy between 2017and 2019 to evaluate, under field conditions, the stability of seed yield, biomass and 1000-seed weight (THS) and to assess the antioxidant composition and activity of 11 grass pea accessions. RESULTS: Analysis of variance revealed significant effects of the environment, accession and accession × environment (A × E) on the yield, above-ground biomass and THS. We found that the environment (year) and A × E explained 52.61% and 23.76% of the total seed yield variation, respectively. No relationship was observed between the yield and the total protein of seeds. Most grass pea accessions showed sensitivity to frost conditions that occurred in the third growing season. The total phenolic content ranged from 50.51 to 112.78 mg 100 g-1 seeds and antioxidant activity ranged from 0.576 to 0.898 mmol Trolox equivalents 100 g-1 seeds and from 0.91 to 1.6 mmol Fe2+  100 g-1 seeds in 2,20-azinobis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power, respectively. Among the accessions, the 'Campi Flegrei' and 'di Castelcività' showed the best performance with the highest yield and stability, phenolic content and superior antioxidant activity. CONCLUSION: The results showed that the yield of grass pea was mainly influenced by different climate conditions. This variability in yield, phenolic content and antioxidant activity among different accessions could help breeders and farmers select high-performance accessions for cultivation. © 2020 Society of Chemical Industry.


Asunto(s)
Lathyrus , Antioxidantes/análisis , Genotipo , Humanos , Lathyrus/química , Pisum sativum/genética , Fenoles/análisis , Semillas/química , Semillas/genética
12.
J Sci Food Agric ; 102(6): 2553-2562, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34687471

RESUMEN

BACKGROUND: ß-N-oxalyl-l-α,ß-diaminopropionic acid (ß-ODAP) is a physiological indicator in response to drying soil. However, how abscisic acid (ABA) modulates ß-ODAP accumulation and its related agronomic characteristics in drought stressed grass pea (Lathyrus sativus L.) continue to be unclear. The present study aimed to evaluate the effects of ABA addition on drought tolerance, agronomic characteristics and ß-ODAP content in grass pea under drought stress. RESULTS: Exogenous ABA significantly promoted ABA levels by 19.3% and 18.3% under moderate and severe drought stress, respectively, compared to CK (without ABA, used as control check treatment). ABA addition activated earlier trigger of non-hydraulic root-sourced signal at 69.1% field capacity (FC) (65.5% FC in CK) and accordingly prolonged its operation period to 45.6% FC (49.0% FC in CK). This phenomenon was mechanically associated with the physiological mediation of ABA, where its addition significantly promoted the activities of leaf superoxide dismutase, catalase and peroxidase enzymes and the biosynthesis of leaf proline, simultaneously lowering the accumulation of malondialdehyde and hydrogen peroxide under moderate and severe stresses. Interestingly, ABA application significantly increased seed ß-ODAP content by 21.7% and 21.3% under moderate and severe drought stress, but did not change leaf ß-ODAP content. Furthermore, ABA application produced similar shoot biomass and grain yield as control groups. CONCLUSION: Exogenous ABA improved the drought adaptability of grass pea and promoted the synthesis of ß-ODAP in seeds but not in leaves. Our findings provide novel insights into the agronomic role of ABA in relation to ß-ODAP enrichment in grass pea subjected to drought stress. © 2021 Society of Chemical Industry.


Asunto(s)
Lathyrus , Ácido Abscísico , Aclimatación , Aminoácidos Diaminos , Sequías , Lathyrus/química , Pisum sativum , beta-Alanina/análogos & derivados
13.
Mol Biol Rep ; 49(1): 519-529, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741704

RESUMEN

BACKGROUND: The demand for grass peas (Lathyrus sativus L.) had increased as high nutritional safe food, but most of the accessions of South Asia and Africa had low grain harvest. Therefore, this study had been undertaken to collect grass pea germplasm for boosting yields and quality improvement. METHODS AND RESULTS: In this study, 400 accessions of grass pea from different geographical regions had characterized by using 56 Simple Sequences Repeat (SSRs) markers. In total 253 alleles were detected, the maximum and minimum polymorphic information content (PIC) indices were 0.70 and 0.34 found in markers G17922 and G18078, correspondingly. The germplasm was split into two main and one sub-group by cluster assay, by SSR assay, and three populations by model-based population structure analysis (Pop1, Pop2 and admixed). Neighbors joining tree assay showed the tested germplasm highly diverse in structure. Three-dimensional principal components analysis (PCA) and two dimensional principles coordinate analysis (PCoA) exhibited two main and one admixed group (P1, P2 and P1P2). In addition, FST population value of pairwise mean and analysis of molecular variance (AMOVA) showed high population structure across all pairs of populations on an average 0.1710 advocating all population structure categories varied significantly. The average predictable heterozygosity distant was 0.4472-0.4542 in same cluster for the individuals. CONCLUSION: Discovery from this study revealed SSR markers based polymorphic bands showed in the diversified grasspea germplasm which might be utilized as genetic resource of a breeding scheme and prospective uses for mapping analyses of recombinant inbred lines (RIL).


Asunto(s)
Variación Genética , Lathyrus/clasificación , Lathyrus/genética , Filogenia , Filogeografía , Algoritmos , Marcadores Genéticos , Genética de Población , Genotipo , Repeticiones de Microsatélite , Modelos Genéticos
14.
Int J Biol Macromol ; 182: 26-36, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798584

RESUMEN

In the present study, Grass pea protein isolate (GPPI)- Alyssum homolocarpum seed gum (AHSG) complex nanoparticles were formed through two fabrication methods and their physicochemical properties, structure and stability against sodium chloride and different pHs were investigated. Type 1 particles were formed by creating GPPI nanoparticles, and then coating them with AHSG; while Type 2 particles were fabricated through the heat treatment of GPPI-AHSG complexes at 85 °C for 15 min. The preparation methods did not influence the magnitude of electrical charges on biopolymer particles. The particle size analysis revealed that Type 2 particles had lower mean diameter (d = 360.20 nm) compared to Type 1 particles (d = 463.22 nm). Structural properties of Type 1 and Type 2 particles were determined using Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), Differential scanning calorimetry (DSC), Atomic force microscopy (AFM), and transmission electron microscopy (TEM). Hydrogen bonding, electrostatic and hydrophobic interactions were the main driving forces contributed to the formation of both GPPI-AHSG complex particles. Assessments of morphological and structural properties also indicated that both Type 1 and 2 particles had spherical shapes and heat treatment increased the ordered intermolecular structures in biopolymer particles. Type 2 particles had higher denaturation temperature and better pH and salt stability when compared to Type 1 particles. These results indicate that thermal treatment was effective for the fabrication of stable GPPI-AHSG complex nanoparticles.


Asunto(s)
Nanopartículas/química , Gomas de Plantas/química , Proteínas de Plantas/química , Desnaturalización Proteica , Brassicaceae/química , Calor , Hidrogeles/química , Lathyrus/química , Semillas/química , Electricidad Estática
15.
J Agric Food Chem ; 69(6): 1953-1962, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33538593

RESUMEN

ß-N-Oxalyl-l-α,ß-diaminopropionic acid (ß-ODAP), found in Lathyrus sativus at first, causes a neurological disease, lathyrism, when over ingested in an unbalanced diet. Our previous research suggested that ß-ODAP biosynthesis is related to sulfur metabolism. In this study, ß-cyanoalanine synthase (ß-CAS) was confirmed to be responsible for ß-ODAP biosynthesis via in vitro enzymatic analysis. LsCAS was found to be pyridoxal phosphate (PLP)-dependent via spectroscopic analysis and dual functional via enzymatic activity analysis. Generation of a M135T/M235S/S239T triple mutant of LsCAS, which are the key sites to control the ratio of CAS/cysteine synthase (CS) activity, switches reaction chemistry to that of a CS. LsCAS interactions were further screened and verified via Y2H, BiFC and pull-down assay. It was suggested that LsSAT2 interacts and forms a cysteine regulatory complex (CRC) with LsCAS in mitochondria, which improves LsSAT while reduces LsCAS activities to affect ß-ODAP content positively. These results provide new insights into the molecular regulation of ß-ODAP content in L. sativus.


Asunto(s)
Aminoácidos Diaminos , Lathyrus , Lathyrus/genética , Liasas , Serina O-Acetiltransferasa
16.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445673

RESUMEN

Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.


Asunto(s)
Aclimatación , Lathyrus/fisiología , Fotosíntesis , Tallos de la Planta/fisiología , Salinidad , Desarrollo de la Planta , Estrés Salino , Plantones/fisiología , Estrés Fisiológico
17.
Pest Manag Sci ; 77(1): 285-299, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32696596

RESUMEN

BACKGROUND: The viviparous aphid Aphis craccivora Koch (Hemiptera: Aphididae) is a serious threat to the crop yield of Lathyrus sativus L. (Fabaceae), commonly known as grass pea. The synthetic insecticides applied to control this insect pest are not safe for the environment. Hence, it is necessary to find volatile organic compounds (VOCs) from two cultivars [BIO L 212 Ratan (BIO) and Nirmal B-1 (NIR)] of L. sativus plants causing behavioral preference of A. craccivora. RESULTS: The VOCs from undamaged (UD), insect-damaged (ID) [plants on which 50 or 100 adults of A. craccivora were fed for 4 h (ID 50 or ID 100)], and mechanically damaged (MD) plants were identified and quantified by gas chromatography-mass spectrometry and gas chromatography-flame ionization detection analyses, respectively. Total VOCs were higher in ID plants compared to UD plants of each cultivar. However, total VOCs were higher in NIR cultivar compared to BIO cultivar for both UD and ID plants. Benzyl alcohol was predominant in volatile extracts of all treatments. In Y-tube olfactometer bioassays, females showed preference towards volatile extracts of UD, ID, and MD plants of each cultivar compared to the control solvent (CH2 Cl2 ). Insects preferred certain synthetic blends comparable to volatile extracts of UD, ID, and MD plants of each L. sativus cultivar against the control solvent. CONCLUSION: Females preferred a synthetic blend of benzyl alcohol, 1,3-diethylbenzene, thymol, and 1-hexadecene at ratios of 142.49: 62.03:1.18:1 dissolved in 25 µL of CH2 Cl2 in olfactometer bioassays, which could be used in developing lures to control this insect pest.


Asunto(s)
Áfidos , Lathyrus , Compuestos Orgánicos Volátiles , Animales , Femenino , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis
18.
Res Vet Sci ; 132: 49-53, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32480188

RESUMEN

The present study was undertaken to develop an animal model to study neurolathyrism. For this purpose 24 goat (Capra hircus) kids (new born, 15 days old) were divided into four groups. Group I Control, Group II Low toxin (0.17 g% ß-ODAP containing grass pea), Group III high toxin (0.96 g% ß-ODAP containing grass pea) and Group IV high toxin (0.96 g% ß-ODAP containing grass pea flour (powder) fortified with 5 mg% pure ß-ODAP). The experiment was continued for 3 months. Clinical examination was carried out weekly. Muscle conduction velocity (MCV), nerve conduction velocity (NCV), blood and urinary ß-ODAP, nitrite in blood and cerebrospinal fluid (CSF) examination were performed by standard methods. Clinical examination showed neurolathyrism symptoms in three kids. The abnormal MCV and NCV were observed in all the experimental animals. Blood nitrite, blood and urine ß-ODAP levels were significantly increased in experimental groups. Three kids were affected with neurolathyrism due to consumption of grass pea irrespective of its ß-ODAP content and kid may serve as a neurolathyrism model.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades de las Cabras/etiología , Latirismo/veterinaria , Lathyrus/envenenamiento , Síndromes de Neurotoxicidad/veterinaria , Animales , Cabras , Latirismo/etiología , Síndromes de Neurotoxicidad/etiología
19.
Ecotoxicol Environ Saf ; 192: 110260, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32050135

RESUMEN

Rehabilitation of heavy metals contaminated soils using association between legumes and beneficial rhizospheric microorganisms such as plant growth-promoting bacteria (PGPR) is a major challenge in agronomy. The present study focuses on assessing the impact of field inoculation with I1 (Rhizobium leguminosarum (M5) + Bacillus simplex + Luteibacter sp. + Variovorax sp.) and I5 (R. leguminosarum (M5) + Pseudomonas fluorescens (K23) + Luteibacter sp. + Variovorax sp.) on growth and phytoremediation potential of Lathyrus sativus plants as well as soil quality and fertility. The experimentation was carried out in mine tailings of northern Tunisia. Obtained Results indicated that the in situ inoculation with I1 and I5 significantly increased the shoots (47% and 22%) and roots dry weights (22% and 29%), as well as nodules number (48% and 31%), respectively, compared to uninoculated plants. The maximum Pb accumulation in the above-ground tissue was recorded in plants inoculated with I5 (1180.85 mg kg-1 DW). At the same time, we noticed a reduction in total Pb and Cd in the rhizosphere of inoculated plots mainly in those inoculated with I5 reaching 46% and 61%, respectively, compared to uninoculated plots. Likewise, I5 inoculum significantly enhanced soil total nitrogen (35%) and available phosphorus (100%), as well as ß-glucosidase (16%), urease (32%) and alkaline phosphatase (12%) activities. Here we demonstrate the usefulness of L. sativus inoculated with I5 inoculum formed by mixing efficient and heavy metals resistant PGPR to boost an efficient reclamation of Cd and Pb contaminated soils and, ultimately, to improve their quality and fertility.


Asunto(s)
Cadmio/metabolismo , Lathyrus/metabolismo , Plomo/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Lathyrus/crecimiento & desarrollo , Lathyrus/microbiología , Raíces de Plantas/crecimiento & desarrollo , Rizosfera , Suelo/química
20.
Plant J ; 101(2): 484-500, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31559657

RESUMEN

Amplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly-free approach that utilizes ultra-long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities. Using the satellite DNA-rich legume plant Lathyrus sativus as a model, we demonstrated this approach by analyzing 11 major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73× genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR-retrotransposons that occasionally expanded in length. While the corresponding LTR-retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of the L. sativus chromosomes, which suggests that these genome regions are favourable for satellite DNA accumulation.


Asunto(s)
ADN Satélite , Frecuencia de los Genes , Nanoporos , Retroelementos , Secuencias Repetidas en Tándem , Centrómero , Cromosomas de las Plantas , ADN de Plantas/genética , Evolución Molecular , Genoma de Planta , Heterocromatina , Lathyrus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA