Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Intervalo de año de publicación
1.
Polymers (Basel) ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125228

RESUMEN

Using biopolymers for soil stabilization is favorable compared to more conventional methods because they are more environmentally friendly, cost-effective, and long-lasting. This study analyzes the physical properties of guar gum and laterite soil mixes. A comprehensive engineering study of guar gum-treated soil was conducted with the help of a brief experimental program. This study examined the effects of soil-guar gum interactions on the strengthening behavior of guar gum-treated soil mixtures using a series of laboratory tests. The treated laterite soil's dry density increased marginally, while its optimum moisture content decreased as the guar gum increased. Treatment with guar gum significantly enhanced the strength of laterite soil mixtures. For laterite soil with 2% guar gum, the unsoaked CBR increased by 148% and the soaked CBR increased by 192.36%. The cohesiveness and internal friction angle increased by 93.33% and 31.52%, respectively. These results show that using guar gum dramatically improves the strength of laterite soil, offering a more environmentally friendly and sustainable alternative to traditional soil additives. Using guar gum in T8 subgrade soil requires a 1395 mm pavement depth and costs INR 3.83 crores, 1.52 times more than laterite soil. For T9 subgrade soil, the depth was 1495 mm, costing INR 4.42 crores, 1.72 times more than laterite soil. This study introduces a novel approach to soil stabilization by employing guar gum, a biopolymer, to enhance the physical and mechanical properties of laterite soil. Furthermore, this study provides a detailed cost-benefit analysis for pavement applications, revealing the financial feasibility of using guar gum despite it requiring a marginally higher initial investment.

2.
J Environ Radioact ; 278: 107469, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38889474

RESUMEN

Compacted soil layers effectively prevent the migration of radon gas from uranium tailings impoundments to the nearby environment. However, surface damage caused by wet and dry cycles (WDCs) weakens this phenomenon.In order to study the effect of crack network on radon exhalation under WDCs, a homemade uranium tailing pond model was developed to carry out radon exhalation tests under five WDCs. Based on image processing and morphological methods, the area, length, mean width and fractal dimension of the drying cracks were quantitatively analyzed, and multiple linear regression was used to establish the relationship between the geometric characteristics of the cracks and the radon exhalation rate under multiple WDCs. The results suggested that the radon release rate and crack network of the uranium tailings pond gradually stabilized as the water content decreased, following rapid development in a single WDC process. The radon release rate increased continuously after each cycle, with a cumulative increase of 25.9% over 5 cycles. The radon release rate and average crack width remained consistent in size, and a binary linear regression considering width and fractal dimension could explain the changes in radon release rate after multiple WDCs.


Asunto(s)
Monitoreo de Radiación , Radón , Uranio , Radón/análisis , Uranio/análisis , Monitoreo de Radiación/métodos , Contaminantes Radiactivos del Agua/análisis , Estanques/química , Contaminantes Radiactivos del Suelo/análisis , Minería , Contaminantes Radiactivos del Aire/análisis
3.
Front Microbiol ; 15: 1359019, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655078

RESUMEN

The extraction of nickel, cobalt, and other metals from laterite ores via bioleaching with sulfur-oxidizing and ferric iron-reducing, autotrophic, acidophilic bacteria (e.g. Acidithiobacillus species) has been demonstrated under anaerobic as well as aerobic conditions in experiments in different laboratories. This study demonstrated the bioleaching of laterites from Brazil with the addition of elemental sulfur in 2-L stirred-tank bioreactors with pure and mixed cultures of Acidithiobacillus and Sulfobacillus species under aerobic conditions. In particular, a potential disturbance of mineral dissolution under aerobic conditions by ferrous iron-oxidizing acidophiles likely introduced as contaminants in an applied bioleaching process was investigated with Leptospirillum ferrooxidans at 30°C and Leptospirillum ferriphilum at 40°C, at maintained pH 1.5 or without maintained pH leading to an increase in acidity (with pH values <1.0) due to the biological production of sulfuric acid. Despite the proportion of ferrous iron to the total amount of extracted iron in the solution being drastically reduced in the presence of Leptospirillum species, there was a negligible effect on the extraction efficiency of nickel and cobalt, which is positive news for laterite bioleaching under aerobic conditions.

4.
Bioresour Technol ; 397: 130514, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432546

RESUMEN

Use of Grewia biopolymer as a natural coagulant aid was explored in a dual-coagulant system (conventional coagulant + biopolymer) for wastewater treatment. Such use not only improved turbidity removal efficiency over a wide pH range (5-9) but also helped reducing the concentration demand of inorganic coagulants by 25-50 %. Response surface methodology was employed for investigating the interaction between factors (initial pH, coagulant, and biopolymer concentration) affecting coagulation/flocculation of aqueous laterite suspension, and process optimization for more than 80 % turbidity removal in the desired final pH range (6-7). Mechanisms potentially involved in coagulation/flocculation using biopolymer was elucidated. Techno-economic assessment indicated the feasibility of pilot-scale production of the biopolymer and its use in wastewater treatment. This study demonstrates that Grewia biopolymer has the potential to be used as a coagulant aid and will help researchers select appropriate markets for further cost reduction and successful implementation of biopolymer-based wastewater treatment.


Asunto(s)
Grewia , Purificación del Agua , Residuos Industriales/análisis , Biopolímeros , Floculación , Purificación del Agua/métodos
5.
Environ Sci Technol ; 58(14): 6391-6401, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551030

RESUMEN

Chromium (Cr) leached from iron (Fe) (oxyhydr)oxide-rich tropical laterites can substantially impact downstream groundwater, ecosystems, and human health. However, its partitioning into mineral hosts, its binding, oxidation state, and potential release are poorly defined. This is in part due to the current lack of well-designed and validated Cr-specific sequential extraction procedures (SEPs) for laterites. To fill this gap, we have (i) first optimized a Cr SEP for Fe (oxyhydr)oxide-rich laterites using synthetic and natural Cr-bearing minerals and laterite references, (ii) used a complementary suite of techniques and critically evaluated existing non-laterite and non-Cr-optimized SEPs, compared to our optimized SEP, and (iii) confirmed the efficiency of our new SEP through analyses of laterites from the Philippines. Our results show that other SEPs inadequately leach Cr host phases and underestimate the Cr fractions. Our SEP recovered up to seven times higher Cr contents because it (a) more efficiently dissolves metal-substituted Fe phases, (b) quantitatively extracts adsorbed Cr, and (c) prevents overestimation of organic Cr in laterites. With this new SEP, we can estimate the mineral-specific Cr fractionation in Fe-rich tropical soils more quantitatively and thus improve our knowledge of the potential environmental impacts of Cr from lateritic areas.


Asunto(s)
Cromo , Hierro , Humanos , Cromo/química , Ecosistema , Minerales , Oxidación-Reducción , Óxidos/química
6.
Sci Rep ; 14(1): 4067, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374179

RESUMEN

Multiple-compaction demonstrates cyclic loading on laterite soils used in highway construction and its effects on engineering properties. The method determines the mechanical stability of derived soils from porphyritic granite, granite gneiss, and charnockite. Fifty-one soil samples were obtained from the horizons of the laterite soil profiles. Four sets of dynamic compactions were carried out on each sample. Index engineering properties such as specific gravity, Atterberg limits, and particle size distribution were investigated before and after multiple-compaction. The changes in engineering properties and moisture-density characteristics were investigated using the granulometric modulus and hardness index. Through multiple-compaction, larger grains in soils derived from granite gneiss and porphyritic granite disintegrated into smaller particles. The fine grains break down more easily than the large grains of quartz bound by clayey materials in charnockite-derived soils. Interestingly, the maximum dry density and optimum moisture content remain consistent in porphyritic and granite gneiss-derived soils after multiple compactions. Based on the densification and behaviour of the derived soils under multiple compaction in highway construction, porphyritic granite and granite gneiss-derived soils are more suitable as engineering materials than charnockite-derived soils.

7.
Heliyon ; 10(4): e25973, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38390106

RESUMEN

A sustainable method to reduce the use of natural resources and the negative effects of the concrete industry on the environment is to use waste lateritic aggregate in self-compacting concrete and evaluate its fresh, mechanical and durability characteristics. Using RSM's central composite design (CCD), Thirteen different SCC mixtures have been designed with varying input factor combinations (LA: 0-100%, PPF: 0-2%) and tested for eight responses (rheological properties, like slump flow, V-funnel time, and T500; mechanical properties, like compressive, split-tensile, and flexural strengths, and durability properties like drying shrinkage and rapid chloride penetration test). The analysis of variance (ANOVA) test was performed to determine the accuracy of the mathematical models developed following the experimental results. ANOVA was used to verify eight response models (seven quadratic and one linear). The inclusion of laterite aggregate has been found to linearly reduce the workability of fresh concrete. Self-compacting concrete will have a lower V-funnel value if any combination of components falls below these two limit values (31% LA and 1.12% PPF). The area bounded by the 760-mm contour line and the graph axes recorded the highest slump flow at (28% LA and 1.26% PPF). Similarly, SCC with a lower T500 value will be produced by any combination of components below these two limit values (25% LA and 1.11% PPF). By replacing 28.5% of the granite aggregate with laterite aggregate and adding 1.24% polypropylene fiber, the compressive strength of M30 grade self-compacting concrete increased by 12.33% after 28 days. A similar strength gain of 7.89% was seen in the splitting tensile by replacing 28% of the granite aggregate with laterite aggregate and adding 1.46% polypropylene fiber over the control mix, and a flexural strength gain of 14.46% was seen by replacing 31.4% of laterite aggregate and adding 1.2% polypropylene fiber, respectively. The low drying shrinkage values are related to a combination of LA concentration (34.4% replacement) and PPF (1.31%) and minimum chloride ingress is located in the region with a LA concentration (30.5% replacement) and a PPF content (1.26%), The projected optimal data were verified experimentally with an error rate of less than 5%. Thus, it is highly recommended that the created model be adequate and capable of optimizing both the experimental and analytical values. It is recommended that the utilization of 25% LA and 1% PPF in lateritic self-compacting concrete provides optimum outcomes for the construction industry in the field of civil engineering.

8.
Materials (Basel) ; 17(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255510

RESUMEN

Ultrasonic-assisted precipitation was employed to sustainably isolate Fe in the hydrochloric acid lixivium of low-grade laterite for the synthesis of battery-grade iron phosphate. The recovery efficiency of Ni and Co exceeded 99%, while the removal efficiency of the Fe impurity reached a maximum of 95%. Precipitation parameters for the selective isolation of Fe (MgO precipitant, pH 1, 70-80 °C) were optimized and used in ultrasonic precipitation experiments. The use of ultrasonic waves in the precipitation process enhanced micromixing by reducing the size of primary grains and mitigating particle agglomeration, thereby significantly improving the purity of the isolated compound and providing high-quality iron phosphate (FePO4·2H2O). The LiFePO4/C composite prepared from as-precipitated FePO4 exhibited excellent electrochemical performance, with a discharge capacity of 149.7 mAh/g at 0.1 C and 136.3 mAh/g at 0.5 C after 100 cycles, retaining almost 100% cycling efficiency. This novel and facile method for iron removal from laterite acid lixivium not only efficiently removes excess iron impurities leached due to the poor selectivity of hydrochloric acid, but also enables the high-value utilization of these iron impurities. It enhances economic benefits while simultaneously alleviating environmental pressure.

9.
Materials (Basel) ; 16(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38138747

RESUMEN

This study aimed to investigate the efficiency of a geopolymer binder of the type of Na-poly(ferro-silico-aluminate) as a matrix for the stabilization of heavy metals along with their effect on the development of structural performances. The artificial contamination of soil with ions was carried out and used to prepare an alkali-activated iron-rich lateritic soil binder. Further, various microstructural analyses were carried out to explain the stabilization mechanism. The stabilization efficiency was assessed by leaching tests in de-ionized water and hydrochloric acid (0.1 M, HCl). Then, the physical properties were determined to evaluate the impact of heavy metals on the structural performance of the binder. Results demonstrated that the prepared geopolymer binder has the lowest stabilization capacity in an acidic medium (low pH) than in water with high pH. However, the stabilization of Cu ions was effective at 99%, while the Cd ion is barely retained in the matrix. Firstly, the mechanism consists of chemical bonds through ion exchange with sodium of the Na-poly(ferro-silico-aluminate) network. Secondly, through physical interaction with the pore network of the matrix, the heavy metals induced structural deterioration in the geopolymer matrix with a decrease in the compressive strength and bulk density and an increase of both apparent porosity and water absorption.

10.
Environ Sci Pollut Res Int ; 30(58): 121548-121557, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37955727

RESUMEN

The potential impact of heavy metal ion infiltration on macroscopic and microscopic soil properties is a subject of academic interest. Laterite has an extensive distribution in southern China and is extensively utilized as a vertical containment wall for landfills. Consequently, there is a need to investigate how heavy metal ions affect laterite's microstructure and mechanical properties. To examine the impact of Cu2+ on laterite's microporous characteristics and mechanical properties, laboratory tests were conducted on the permeability, shear strength, microporous characteristics, and strong absorbed water content of Cu2+-contaminated laterite. The results show that Cu2+ hydrolysis generates an acidic environment, which leads to erosion of the cementing substance between the laterite particles, increasing the laterite's porosity and decreasing the soil's cohesive strength, thus affecting the shear strength and permeability of the laterite. When the concentration of Cu2+ is 5.0 g/L, the laterite demonstrated the most significant decrease in shear strength, 43.01%, while the permeability coefficient increased from 3.24 × 10-8 cm/s to 1.32 × 10-7 cm/s. Meanwhile, Cu2+ changes the content of strong absorbed water in laterite. The change of strong absorbed water content will affect the Van der Waals between laterite particles, promote the evolution of soil micropore structure, and lead to a decrease in the proportion of intra-aggregate pores (d < 1 µm) and an increase in the proportion of inter-aggregate pores (1 µm < d < 10 µm), which in turn affects the macroscopic shear strength and permeability. This study has improved our understanding of the mechanisms underlying the microporosity and mechanical property evolution of laterite when subjected to heavy metal attack.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cobre/química , Contaminantes del Suelo/análisis , Suelo/química , Agua
11.
Materials (Basel) ; 16(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005061

RESUMEN

Nickel is widely used in industrial processes and plays a crucial role in many applications. However, most of the nickel resource mainly exists as nickel oxide in laterite nickel ore with complex composition, resulting in difficulty in upgrading the nickel content using physical separation methods. In this study, high-grade ferronickel concentrates were obtained through a carbothermal reduction and magnetic separation using laterite nickel ore and anthracite as raw materials. The effects of different types of additives (CaF2, Na2SO4, and H3BO3), carbon ratio (the molar ratio of oxygen atoms in the laterite nickel ore to carbon atoms in anthracite), and grinding time on the recoveries and grades of ferronickel concentrates were experimentally investigated, along with the microstructure and chemical composition of the products. CaF2 was proved to be the primary active additive in the aggregation and growth of the ferronickel particles and the improvement of the grade of the product. Under the optimal conditions of CaF2 addition of 9.85 wt%, carbon ratio of 1.4, and grinding time of 240 s, high-grade magnetically separable ferronickel concentrate with nickel grade 8.93 wt% and iron grade 63.96 wt% was successfully prepared. This work presents a practical method for the highly efficient recovery and utilization of iron and nickel from low-grade laterite nickel ore, contributing to the development of strategies for the sustainable extraction and utilization of nickel resources.

12.
Materials (Basel) ; 16(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959548

RESUMEN

After the atmospheric hydrochloric acid leaching method is used to treat laterite ore and initially purify it, the extract that results often contains a significant amount of Fe2+ impurities. A novel metallurgical process has been proposed that utilizes microbubble aeration to oxidize Fe2+ ions in laterite hydrochloric acid lixivium, facilitating subsequent separation and capitalizing on the benefits of microbubble technology, including its expansive specific surface area, negatively charged surface attributes, prolonged stagnation duration, and its capacity to produce active oxygen. The study examined the impacts of aeration aperture, stirring speed, oxygen flow rate, pH value, and reaction temperature. Under optimized experimental conditions, which included an aeration aperture of 0.45 µm, stirring at 500 rpm, a bubbling flow rate of 0.4 L/min, pH level maintained at 3.5, and a temperature range of 75-85 °C, the oxidation efficiency of Fe2+ surpassed 99%. An analysis of the mass transfer process revealed that microbubble aeration markedly enhances the oxygen mass transfer coefficient, measured at 0.051 s-1. The study also confirmed the self-catalytic properties of Fe2+ oxidation and conducted kinetic studies to determine an apparent activation energy of 399 kJ/mol. At pH values below 3.5, the reaction is solely governed by chemical reactions; however, at higher pH values (>3.5), both chemical reactions and oxygen dissolution jointly control the reaction.

13.
Heliyon ; 9(7): e17750, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539268

RESUMEN

The objective of this study was to investigate the impact of the geographic and climatic conditions on laterites properties and on geopolymerization based-laterite. Four different laterite deposits in the four geographical zones of Cameroon were studied. This included the center, north, south and west corners of Cameroon, having chemical composition of SiO2 + Al2O3 + Fe2O3 = 88.94, 87.6, 89.13 and 78.97%, respectively. The center and south laterites from the black forest, with high pluviometry and relative humidity, show significant amounts of Fe2O3. While the west laterite from grass field - mountainous areas and the north-laterite from plain arid and semi-arid climate still show lower iron concentrations. The IR absorption bands of the different laterites appear between 1007 and 1047 cm-1; characteristic bands of aluminosilicate. The BET (Brunauer-Emmett-Teller) Specific surface area values are comprised in the range of [21.9, 24.1 m2/g] for non-calcined laterite and between [45.6 and 123.5 m2/g] for laterites calcined at 550 °C and 575 °C. The main particle size values are 5.71, 6.37, 7.43 and 8.45 µm for center-laterite, west-laterite, north laterite and south-laterite, respectively. Although, they differ in the degree of laterization, all the laterites present almost total conversion to geopolymers, due to the presence of amorphous kaolinite and reactive goethite. However, the iron content has significant impact on the globular microstructure. The particle size of laterites, their high values of BET surface area and their significant reactivity make them promising substitutes to metakaolin and other supplementary cementitious materials.

14.
J Environ Radioact ; 264: 107201, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37167644

RESUMEN

Zr-Nb alloy is used as the pressure tube in pressurized heavy water reactors (PHWR). Prolonged neutron irradiation of the pressure tubes leads to the formation of a long-lived radioisotope 94Nb. Thus, the discharged pressure tubes possess huge 94Nb activity which persists for a prolonged period.If these discharged pressure tubes come in contact with ground water, 94Nb isotope may leach and migrate and this can lead to a long-term radiological impact in the environment.In the present study, we have explored the capability of laterite as a filler material for the containment and retarding the migration of 94Nb. In this regard, detailed characterization of the laterite soil was carried out using energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), fourier transform infra-red spectrometry (FTIR), total cation exchange capacity determination, zeta potential measurement and thermogravimetric analysis (TGA). The sorption study of 94Nb on laterite was carried and the effects of different physico-chemical parameters like pH, ionic strength, temperature and equilibration time were evaluated. Ionic strength, temperature and time dependent sorption studies assist to explore the probable sorption mechanism of 94Nb on laterite, which helps in understanding the migration behaviour of 94Nb in natural aquatic environment. This study suggests that laterite is a promising material in containment of 94Nb isotope owing to its good cation exchange behaviour in the acidic medium and ability to form surface complex in the neutral medium.


Asunto(s)
Niobio , Monitoreo de Radiación , Niobio/química , Suelo , Temperatura , Cationes , Adsorción , Concentración de Iones de Hidrógeno , Cinética
15.
J Mech Behav Biomed Mater ; 142: 105831, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075528

RESUMEN

This study investigates the compressive deformation and the effect of structural architecture on the compressive strength of bioprocessed mycelium biocomposites reinforced with laterite particles. In the mycelium blocks, lignocellulosic hemp hurds function as reinforcing and nutritional substrates. The mycelium acts as a supportive matrix, binding the hemp hurds and the laterite particles which are integrated for further reinforcement to improve the compressive strength of the composite. The compressive behavior of the composites is elucidated using a combined approach of experimental and theoretical studies. The deformation mechanisms are investigated via in-situ observations of the specimens under uniaxial compressive loading. The experiments show that the compressive deformation results in progressive micro-buckling in slender specimens, whereas thicker samples exhibit a soft elastic response at small strain levels followed by continuous stiffening at larger strains. Based on the experimental observations and the morphological characterization, a column buckling analysis was developed for the mycelium-hemp composites to further explain the observed deformation phenomena.


Asunto(s)
Modelos Teóricos , Micelio , Micelio/química , Fuerza Compresiva , Presión
16.
Environ Sci Pollut Res Int ; 30(25): 67263-67277, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37103713

RESUMEN

In this work, laterite (LA) and rice husk ash (RHA)-based alkali-activated materials (AAMs) with varying %RHA contents (0, 5, 10, 15, and 20%) were prepared for the removal of malachite green (MG) dye from water. The precursors and AAMs were characterized by standard methods (XRF, XRD, TG/DTA SEM, and FTIR). The SEM micrographs and iodine index values showed that the incorporation of RHA improves the microporosity of laterite-based geopolymers. The incorporation of RHA did not result in any new mineral phases after alkalinization. Geopolymerization increased both the adsorption rate and capacity of the geopolymers relative to LA by approximately 5 times. The maximum adsorption capacity was 112.7 mg/g, corresponding to the GP95-5 (5% RHA) geopolymer. The adsorption capacity was therefore not solely controlled by the RHA fraction. The adsorption kinetics data was best predicted by the pseudo-second-order (PSO) model. The adsorption mechanism entails electrostatic interactions and ion exchange. These results show the suitability of laterite-rice husk ash (LA-RHA)-based alkali-activated materials as adsorbents for the efficient sequestration of malachite green in aqueous solution.


Asunto(s)
Oryza , Álcalis , Colorantes de Rosanilina , Agua , Adsorción , Cinética , Concentración de Iones de Hidrógeno
17.
Chemosphere ; 328: 138519, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36972875

RESUMEN

Predicting the redox behavior of organic contaminants and heavy metals in soils is challenging because there are few soil redox potential (Eh) models. In particular, current aqueous and suspension models usually show a significant deviation for complex laterites with few Fe(II). Here, we measured the Eh of simulated laterites over a range of soil conditions (2450 tests). The impacts of soil pH, organic carbon, and Fe speciation on the Fe activity were quantified as Fe activity coefficients, respectively, using a two-step Universal Global Optimization method. Integrating these Fe activity coefficients and electron transfer terms into the formula significantly improved the correlation of measured and modeled Eh values (R2 = 0.92), and the estimated Eh values closely matched the relevant measured Eh values (accuracy R2 = 0.93). The developed model was further verified with natural laterites, presenting a linear fit and accuracy R2 of 0.89 and 0.86, respectively. These findings provide compelling evidence that integrating Fe activity into the Nernst formula could accurately calculate the Eh if the Fe(III)/Fe(II) couple does not work. The developed model could help to predict the soil Eh toward controllable and selective oxidation-reduction of contaminants for soil remediation.


Asunto(s)
Hierro , Contaminantes del Suelo , Hierro/análisis , Electrones , Oxidación-Reducción , Suelo , Compuestos Ferrosos , Contaminantes del Suelo/análisis
18.
Chemosphere ; 316: 137685, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36603682

RESUMEN

Adsorption has proven to be most effective for arsenic removal. But standalone adsorption cannot cater to the need for large-scale treatment in centralized water supply systems. Combining adsorption with other low-pressure membrane processes may aid in scaling up and intensifying the overall arsenic removal. In the present pilot study, a low-cost laterite-derived adsorbent (LDA) has been used in combination with cross-flow ultrafiltration (Ads-UF) to develop a strategy suitable for remediation of arsenic-contaminated water. Effect of adsorbent particles on permeate flux has been assessed at different transmembrane pressure (0.2-0.6 MPa). Two different hybrid configurations, with and without intermediate sand filtration (SF), i.e. Ads-SF-UF and Ads-UF, were considered. Resistance-in-series and combined complete pore block-cake layer models have been used to understand the flux profiles. In the case of arsenic-spiked groundwater, it was observed that flux decline, at 0.6 MPa, was 28% higher with Ads-UF during a 12 h run compared to Ads-SF-UF. Spent LDA retrieved from the sand column was found to retain the elemental composition as that of the unused LDA (as per FT-IR and EDX) and was considered safe for disposal based on Toxicity Characteristic Leaching Procedure (TCLP). Cost estimation for a facility with 200 m3/day treatment capacity has also been presented.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Purificación del Agua , Ultrafiltración , Arsénico/análisis , Arena , Espectroscopía Infrarroja por Transformada de Fourier , Proyectos Piloto , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis , Membranas Artificiales , Adsorción
19.
Heliyon ; 8(11): e11553, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36411934

RESUMEN

Soil is a material that has been used in construction for centuries and nowadays represents one third of the world's construction. Cement and lime which are common stabilisers used to make soil-based blocks durable have been found to be harmful to the environment. Therefore, finding environmentally friendly materials as a substitute for cement and lime is of vital importance. In Africa, gum Arabic is a widely available organic material (a biopolymer). The objective of this study was therefore to evaluate the effects of gum Arabic on maximum dry density and optimum moisture content of laterite soil in order to use gum Arabic as a binder for the stabilization of laterite soil blocks. Light compaction test (Standard Proctor Test) was carried out for the mixture of laterite soil, sand, and gum Arabic. The proportion of sand was 20% by mass of laterite soil in this mixture; the gum Arabic was varied from 0 to 10% with a step of 2, by mass of laterite soil. The results showed that the maximum dry density decreased from 1883 kg/m3 to 1693 kg/m3 after the addition of 0%-10% gum Arabic in laterite soil, respectively. Whereas the optimum moisture content increased from 14.88% to 18.38% after the addition of 0%-10% gum Arabic, respectively. The observed results of the maximum dry density have been found to be within the recommended range. Based on the findings from this study, gum Arabic can be recommended as binder in the stabilisation of laterite blocks.

20.
Geochem Trans ; 23(1): 2, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167930

RESUMEN

The Santa Elena Ophiolite is a well-studied ultramafic system in Costa Rica mainly comprised of peridotites. Here, tropical climatic conditions promote active laterite formation processes, but the biogeochemistry of the resulting serpentine soils is still poorly understood. The aim of this study was to characterize the soil geochemical composition and microbial community of contrasting landscapes in the area, as the foundation to start exploring the biogeochemistry of metals occurring there. The soils were confirmed as Ni-rich serpentine soils but differed depending on their geographical location within the ophiolite area, showing three serpentine soil types. Weathering processes resulted in mountain soils rich in trace metals such as cobalt, manganese and nickel. The lowlands showed geochemical variations despite sharing similar landscapes: the inner ophiolite lowland soils were more like the surrounding mountain soils rather than the north lowland soils at the border of the ophiolite area, and within the same riparian basin, concentrations of trace metals were higher downstream towards the mangrove area. Microbial community composition reflected the differences in geochemical composition of soils and revealed potential geomicrobiological inputs to local metal biogeochemistry: iron redox cycling bacteria were more abundant in the mountain soils, while more manganese-oxidizing bacteria were found in the lowlands, with the highest relative abundance in the mangrove areas. The fundamental ecological associations recorded in the serpentine soils of the Santa Elena Peninsula, and its potential as a serpentinization endemism hotspot, demonstrate that is a model site to study the biogeochemistry, geomicrobiology and ecology of tropical serpentine areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA