Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2403705, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250330

RESUMEN

Thermoelectric generators held great promise through energy harvesting from waste heat. Their practical application, however, is greatly constrained by poor raw material utilization and tedious processing in fabricating desired shapes. Herein, a state-of-the-art process is reported for 3D printing the half-Heusler (Nb0.88Hf0.12FeSb) thermoelectric material using laser powder bed fusion (LPBF). The multi-dimensional intra- and inter-granular defects created by this process greatly suppress thermal conductivity by providing numerous phonon scattering centers. The resulting LPBF-fabricated half-Heusler exhibits a high figure of merit ≈1.2 at 923 K and a single-leg maximum efficiency of ≈3.3% at a temperature difference (ΔT) of 371 K. Hafnium oxide nanoparticles generated during LPBF effectively prevent crack propagation, ensuring competent mechanical performance and reliable thermoelectric output. The findings highlight the significant potential of LPBF in driving the next industrial revolution of highly efficient and customizable thermoelectric materials.

2.
Materials (Basel) ; 17(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274709

RESUMEN

Gas-induced porosity is almost inevitable in additively manufactured aluminum alloys due to the evaporation of low-melting point elements (e.g., Al, Mg, and Zn) and the encapsulation of gases (e.g., hydrogen) during the multiple-phase reaction in the melt pool. These micropores are highly unstable during post-heat treatment at elevated temperatures and greatly affect mechanical properties and service reliability. In this study, the AlSi10Mg samples prepared by LPBF were subjected to solution heat treatment at 560 °C for 0.5 and 2 h, followed by artificial aging at 160 °C, 180 °C and 200 °C, respectively. The defect tolerance of gas porosity and associated damage mechanisms in the as-built and heat treated AlSi10Mg alloy were elucidated using optical, scanning electron microscopic analysis, X-ray micro computed tomography (XCT) and room temperature tensile testing. The results showed the defect tolerance of AlSi10Mg alloy prepared by LPBF was significantly reduced by the artificial aging treatment due to the precipitation of Mg-Si phases. Fracture analysis showed that the cooperation of fine precipitates and coarsened micropores assists nucleation and propagation of microcracks sites due to stress concentration upon tensile deformation and reduces the tensile elongation at break.

3.
Materials (Basel) ; 17(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39274783

RESUMEN

The processing of pure copper (Cu) has been a challenge for laser-based additive manufacturing for many years since copper powders have a high reflectivity of up to 83% of electromagnetic radiation at a wavelength of 1070 nm. In this study, Cu particles were coated with sub-micrometer tungsten (W) particles to increase the laser beam absorptivity. The coated powders were processed by powder bed fusion-laser beam for metals (PBF-LB/M) with a conventional laser system of <300 watts laser power and a wavelength of 1070 nm. Two different powder manufacturing routes were developed. The first manufacturing route was gas atomization combined with a milling process by a planetary mill. The second manufacturing method was gas atomization with particle co-injection, where a separate W particle jet was sprayed into the atomized Cu jet. As part of the investigations, an extensive characterization of powder and additively manufactured test specimens was carried out. The specimens of Cu/W powders manufactured by the milling process have shown superior results. The laser absorptivity of the Cu/W powder was increased from 22.5% (pure Cu powder) to up to 71.6% for powders with 3 vol% W. In addition, a relative density of test specimens up to 98.2% (optically) and 95.6% (Archimedes) was reached. Furthermore, thermal conductivity was measured by laser flash analysis (LFA) and thermo-optical measurement (TOM). By using eddy current measurement, the electrical conductivity was analyzed. In comparison to the Cu reference, a thermal conductivity of 88.9% and an electrical conductivity of 85.8% were determined. Moreover, the Vickers hardness was measured. The effect of porosity on conductivity properties and hardness was investigated and showed a linear correlation. Finally, a demonstrator was built in which a wall thickness of down to 200 µm was achieved. This demonstrates that the Cu/W composite can be used for heat exchangers, heat sinks, and coils.

4.
Materials (Basel) ; 17(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39203143

RESUMEN

Tungsten and its alloys have a high atomic number, high melting temperature, and high thermal conductivity, which make them fairly appropriate for use in nuclear applications in an extremely harsh radioactive environment. In recent years, there has been growing research interest in using additive manufacturing techniques to produce tungsten components with complex structures. However, the critical bottleneck for tungsten engineering manufacturing is the high melting temperature and high ductile-to-brittle transition temperature. In this study, laser powder bed fusion has been studied to produce bulk pure tungsten. And finite element analysis was used to simulate the temperature and stress field during laser irradiation. The as-printed surface as well as transverse sections were observed by optical microscopy and scanning electron microscopy to quantitatively study processing defects. The simulated temperature field suggests small-sized powder is beneficial for homogenous melting and provides guidelines for the selection of laser energy density. The experimental results show that ultra-dense tungsten bulk has been successfully obtained within a volumetric energy density of 200-391 J/mm3. The obtained relative density can be as high as 99.98%. By quantitative analysis of the pores and surface cracks, the relationships of cracks and pores with laser volumetric energy density have been phenomenologically established. The results are beneficial for controlling defects and surface quality in future engineering applications of tungsten components by additive manufacturing.

5.
Materials (Basel) ; 17(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39203328

RESUMEN

Research into the processability of NiTiHf high-temperature shape memory alloys (HTSMAs) via laser powder bed fusion (LPBF) is limited; nevertheless, these alloys show promise for applications in extreme environments. This study aims to address this limitation by investigating the printability of four NiTiHf alloys with varying Hf content (1, 2, 15, and 20 at. %) to assess their suitability for LPBF applications. Solidification cracking is one of the main limiting factors in LPBF processes, which occurs during the final stage of solidification. To investigate the effect of alloy composition on printability, this study focuses on this defect via a combination of computational modeling and experimental validation. To this end, solidification cracking susceptibility is calculated as Kou's index and Scheil-Gulliver model, implemented in Thermo-Calc/2022a software. An innovative powder-free experimental method through laser remelting was conducted on bare NiTiHf ingots to validate the parameter impacts of the LPBF process. The result is the processability window with no cracking likelihood under diverse LPBF conditions, including laser power and scan speed. This comprehensive investigation enhances our understanding of the processability challenges and opportunities for NiTiHf HTSMAs in advanced engineering applications.

6.
Micromachines (Basel) ; 15(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39203627

RESUMEN

At present, no consensus has been reached on the generation mechanism of anisotropy in materials fabricated by laser powder bed fusion (LPBF), and most attention has been focused on crystallographic texture. In this paper, an analysis and test were carried out on the hardness, defect distribution, residual stress distribution, and microstructure of WE43 magnesium alloy fabricated by LPBF. The results indicate that LPBF WE43 exhibits obvious anisotropy-the hardness HV of X-Z surface (129.9 HV on average) and that of Y-Z surface (130.7 HV on average) are about 33.5% higher than that of X-Y surface (97.6 HV on average), and the endurable load is smaller in the stacking direction Z compared to the X and Y directions. The factors contributing more to the anisotropy are listed as follows in sequence. Firstly, the defect area of the X-Y projection surface is about 13.2% larger than that of the other two surfaces, so this surface shows greatly reduced mechanical properties due to the exponential relationship between the material strength and the number of defects. Secondly, for laser scanning in each layer/time, the residual stress accumulation in the Z direction is higher than that in the X and Y directions, which may directly reduce the mechanical properties of the material. Finally, more fine grains are distributed in X-Z and Y-Z surfaces when comparing them with those in an X-Y surface, and this fine-grain strengthening mechanism also contributes to the anisotropy. After T5 aging heat treatment (250 °C/16 h), a stronger crystallographic texture is formed in the <0001> direction, with the orientation density index increasing from 10.92 to 21.38, and the anisotropy disappearing. This is mainly caused by the enhancement effect of the texture in the <0001> direction on the mechanical properties in the Z direction cancelling out the weakening effect of the defects in the X-Y surface in the Z direction.

7.
Heliyon ; 10(15): e35047, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39165969

RESUMEN

This study harnessed bivariate correlational analysis, multiple linear regression analysis and tree-based regression analysis to examine the relationship between laser process parameters and the final material properties (bulk density, saturation magnetization (M s ), and coercivity (H c )) of Fe-based nano-crystalline alloys fabricated via laser powder bed fusion (LPBF). A dataset comprising of 162 experimental data points served as the foundation for the investigation. Each data point encompassed five independent variables: laser power (P), laser scan speed (v), hatch spacing (h), layer thickness (t), and energy density (E), along with three dependent variables: bulk density, M s , and H c . The bivariate correlational analysis unveiled that bulk density exhibited a significant correlation with P, v, h, and E, whereas M s and H c displayed significant correlations exclusively with v and P, respectively. This divergence may stem from the strong influence of microstructure on magnetic properties, which can be impacted not only by the laser process parameters explored in this study but also by other factors such as oxygen levels within the build chamber. Furthermore, our statistical analysis revealed that bulk density increased with rising P, h, and E, while decreased with higher v. Regarding the magnetic properties, a high M s was achievable through low v, while low H c resulted from high P. It was concluded that P and v were considered as the primary laser process parameters, influencing h and t due to their control over the melt-pool size. The application of multiple linear regression analysis allowed the prediction of the bulk density by using both laser process parameters and energy density. This approach offered a valuable alternative to time-consuming and costly trial-and-error experiments, yielding a low error of less than 1 % between the mean predicted and experimental values. Although a slightly higher error of approximately 6 % was observed for M s , a clear association was established between M s and v, with lower v values corresponding to higher M s values. Additionally, a further comparison was conducted between multiple linear regression and three tree-based regression models to explore the effectiveness of these approaches.

8.
Adv Model Simul Eng Sci ; 11(1): 16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184936

RESUMEN

Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change.

9.
Materials (Basel) ; 17(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39124399

RESUMEN

The Inconel 718 superalloy demonstrates the potential to fabricate high-temperature components using additive manufacturing. However, additively manufactured Inconel 718 typically exhibits low strength, necessitating post-heat treatments for precipitate strengthening. This study investigated the microstructures and mechanical properties of the Inconel 718 superalloy fabricated via laser powder bed fusion. The room-temperature and high-temperature tensile properties of the Inconel 718 alloy samples following various post-heat treatments were evaluated. The results indicate that the as-built samples exhibited columnar grains with fine cell structures. Solution treatment resulted in δ phase formation and grain recrystallization. Subsequent double aging led to finely distributed nanoscale γ' and γ″ particles. These nanoscale particles provided high strength at both room and high temperatures, resulting in a balanced strength and ductility comparable to the wrought counterpart. High-temperature nanoindentation analyses revealed that the double-aging samples exhibited very high hardness and low creep rates at 650 °C.

10.
Bioact Mater ; 41: 312-335, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39161793

RESUMEN

Zinc (Zn)-based biodegradable metals (BMs) fabricated through conventional manufacturing methods exhibit adequate mechanical strength, moderate degradation behavior, acceptable biocompatibility, and bioactive functions. Consequently, they are recognized as a new generation of bioactive metals and show promise in several applications. However, conventional manufacturing processes face formidable limitations for the fabrication of customized implants, such as porous scaffolds for tissue engineering, which are future direction towards precise medicine. As a metal additive manufacturing technology, laser powder bed fusion (L-PBF) has the advantages of design freedom and formation precision by using fine powder particles to reliably fabricate metallic implants with customized structures according to patient-specific needs. The combination of Zn-based BMs and L-PBF has become a prominent research focus in the fields of biomaterials as well as biofabrication. Substantial progresses have been made in this interdisciplinary field recently. This work reviewed the current research status of Zn-based BMs manufactured by L-PBF, covering critical issues including powder particles, structure design, processing optimization, chemical compositions, surface modification, microstructure, mechanical properties, degradation behaviors, biocompatibility, and bioactive functions, and meanwhile clarified the influence mechanism of powder particle composition, structure design, and surface modification on the biodegradable performance of L-PBF Zn-based BM implants. Eventually, it was closed with the future perspectives of L-PBF of Zn-based BMs, putting forward based on state-of-the-art development and practical clinical needs.

11.
Adv Sci (Weinh) ; : e2402962, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951958

RESUMEN

The ultrafine cellular structure promotes the extraordinary mechanical performance of metals manufactured by laser powder-bed-fusion (L-PBF). An in-depth understanding of the mechanisms governing the thermal stability of such structures is crucial for designing reliable L-PBF components for high-temperature applications. Here, characterizations and 3D discrete dislocation dynamics simulations are performed to comprehensively understand the evolution of cellular structures in 316L stainless steel during annealing. The dominance of screw-type dislocation dipoles in the dislocation cells is reported. However, the majority of dislocations in sub-grain boundaries (SGBs) are geometrically necessary dislocations (GNDs) with varying types. The disparity in dislocation types can be attributed to the variation in local stacking fault energy (SFE) arising from chemical heterogeneity. The presence of screw-type dislocations facilitates the unpinning of dislocations from dislocation cells/SGBs, resulting in a high dislocation mobility. In contrast, the migration of SGBs with dominating edge-type GNDs requires collaborative motion of dislocations, leading to a sluggish migration rate and an enhanced thermal stability. This work emphasizes the significant role of dislocation type in the thermal stability of cellular structures. Furthermore, it sheds light on how to locally tune dislocation structures with desired dislocation types by adjusting local chemistry-dependent SFE and heat treatment.

12.
Materials (Basel) ; 17(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39063691

RESUMEN

Laser powder bed-fused Ti6Al4V alloy has numerous applications in biomedical and aerospace industries due to its high strength-to-weight ratio. The brittle α'-martensite laths confer both the highest yield and ultimate tensile strengths; however, they result in low elongation. Several post-process heat treatments must be considered to improve both the ductility behavior and the work-hardening of as-built Ti6Al4V alloy, especially for aerospace applications. The present paper aims to evaluate the work-hardening behavior and the ductility of laser powder bed-fused Ti6Al4V alloy heat-treated below (704 and 740 °C) and above (1050 °C) the ß-transus temperature. Microstructural analysis was carried out using an optical microscope, while the work-hardening investigations were based on the fundamentals of mechanical metallurgy. The work-hardening rate of annealed Ti6Al4V samples is higher than that observed in the solution-heat-treated alloy. The recrystallized microstructure indeed shows higher work-hardening capacity and lower dynamic recovery. The Considère criterion demonstrates that all analyzed samples reached necking instability conditions, and uniform elongations (>7.8%) increased with heat-treatment temperatures.

13.
Materials (Basel) ; 17(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063817

RESUMEN

This study investigates the influence of heat treatments on the corrosion behaviour of CuSn10 tin bronze, additively manufactured using Laser Powder Bed Fusion (LPBF). LPBF enables the creation of finely structured, anisotropic microstructures, whose corrosion behaviour is not yet well understood. After production, specimens were heat-treated at 320 °C, 650 °C, and in a two-stage treatment at 800 °C and 400 °C, followed by hardness and microstructure analysis. Corrosion tests were conducted using linear polarisation, salt spray, and immersion tests. The results show that heat treatments at 320 °C and 650 °C have no significant effect on the corrosion rate, while the two-stage treatment shows a slight improvement in corrosion resistance. Differences in microstructure and hardness were observed, with higher treatment temperatures leading to grain growth and tin precipitates. The formation of a passive protective layer was detected after 30 h of OCP measurement. Results from other studies on corrosion behaviour were partially reproducible. Differences could be attributed to varying chemical compositions and manufacturing parameters. These findings contribute to the understanding of the effects of heat treatments on the corrosion resistance of additively manufactured tin bronze and provide important insights for future applications in corrosive environments.

14.
Micromachines (Basel) ; 15(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064420

RESUMEN

To explore the size, morphology, and distribution patterns of internal pore defects in WE43 magnesium alloy formed by laser powder bed fusion (LPBF), as well as their impact on its mechanical properties, computer tomography (CT), metallographic microscopy, and scanning electron microscopy were used to observe the material's microstructure and the morphology of tensile test fractures. The study revealed that a large number of randomly distributed non-circular pore defects exist internally in the LPBF-formed WE43 magnesium alloy, with a defect volume fraction of 0.16%. Approximately 80% of the defects had equivalent diameters concentrated in the range of 10∼40 µm, and 56.2% of the defects had sphericity values between 0.65∼0.7 µm, with the maximum defect equivalent diameter being 122 µm. There were a few spherical pores around 20 µm in diameter in the specimens, and unfused powder particles were found in pore defects near the edges of the parts. Under the test conditions, the fusion pool structure of LPBF-formed WE43 magnesium alloy resembled a semi-elliptical shape with a height of around 66 µm, capable of fusion three layers of powder material in a single pass. Columnar grains formed at the edge of individual fusion pools, while the central area exhibited equiaxed grains. The "scale-like pattern" formed by overlapping fusion pool structures resulted in the microstructure of LPBF-formed WE43 magnesium alloy mainly consisting of fine equiaxed grains with a size of 2.5 µm and columnar grains distributed in a band-like manner.

15.
Materials (Basel) ; 17(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38998403

RESUMEN

The non-equilibrium solidification process in the additive manufacturing of titanium alloy leads to special microstructures, and the resulting changes in corrosion behavior are worthy of attention. In this paper, the microstructure and electrochemical corrosion behavior of Ti6Al4V alloys prepared using laser powder bed melting (LPBF) and casting are systematically compared. The results show that the LPBF-processed Ti6Al4V alloy is composed of dominant acicular α' martensite within columnar prior ß phase, and less ß disperses have also been discovered, which is significantly different from the α + ß dual-phase structure of cast Ti6Al4V alloy. Compared to the as-cast Ti6Al4V alloy, LPBF-processed Ti6Al4V alloy has a thinner and unstable passive film, and exhibits slightly poorer corrosion resistance, which is mainly related to its higher porosity, a large amount of acicular α' martensite and less ß phase compared to as-cast Ti6Al4V alloy. This result proves that suitable methods should be taken to control the relative density and phase composition of LPBF-processed Ti6Al4V alloys before application.

16.
Materials (Basel) ; 17(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38998447

RESUMEN

The application of 2024 aluminum alloy (comprising aluminum, copper, and magnesium) in the aerospace industry is extensive, particularly in the manufacture of seats. However, this alloy faces challenges during laser powder bed fusion (PBF-LB/M) processing, which often leads to solidification and cracking issues. To address these challenges, LaB6 nanoparticles have been investigated as potential grain refiners. This study systematically examined the impact of adding different amounts of LaB6 nanoparticles (ranging from 0.0 to 1.0 wt.%) on the microstructure, phase composition, grain size, and mechanical properties of the composite material. The results demonstrate that the addition of 0.5 wt.% LaB6 significantly reduces the average grain size from 10.3 µm to 9 µm, leading to a significant grain refinement effect. Furthermore, the tensile strength and fracture strain of the LaB6-modified A2024 alloy reach 251 ± 2 MPa and 1.58 ± 0.12%, respectively. These findings indicate that the addition of appropriate amounts of LaB6 nanoparticles can effectively refine the grains of 2024 aluminum alloy, thereby enhancing its mechanical properties. This discovery provides important support for the broader application of 2024 aluminum alloy in the aerospace industry and other high-performance fields.

17.
Materials (Basel) ; 17(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38998441

RESUMEN

Titanium parts fabricated by additive manufacturing, i.e., laser or electron beam-powder bed fusion (L- or EB-PBF), usually exhibit columnar grain structures along the build direction, resulting in both microstructural and mechanical anisotropy. Post-heat treatments are usually used to reduce or eliminate such anisotropy. In this work, Ti-6Al-2Zr-1Mo-1V (TA15) alloy samples were fabricated by L-PBF to investigate the effect of post-heat treatment and load direction on the dynamic response of the samples. Post-heat treatments included single-step annealing at 800 °C (HT) and a hot isotropic press (HIP). The as-built and heat-treated samples were dynamically compressed using a split Hopkinson pressure bar at a strain rate of 3000 s-1 along the horizontal and vertical directions paralleled to the load direction. The microstructural observation revealed that the as-built TA15 sample exhibited columnar grains with fine martensite inside. The HT sample exhibited a fine lamellar structure, whereas the HIP sample exhibited a coarse lamellar structure. The dynamic compression results showed that post-heat treatment at 800 °C led to reduced flow stress but enhanced uniform plastic strain and damage absorption work. However, the HIP samples exhibited both higher stress, uniform plastic strain, and damage absorption work owing to the microstructure coarsening. Additionally, the load direction had a subtle influence on the flow stress, indicating the negligible anisotropy of flow stress in the samples. However, there was more significant anisotropy of the uniform plastic strain and damage absorption. The samples had a higher load-bearing capacity when dynamically compressed perpendicular to the build direction.

18.
Ultrason Sonochem ; 108: 106947, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878713

RESUMEN

In this work study, a comparative analysis was undertaken to investigate investigation into the cavitation erosion (CE) and corrosion behavior of laser powder bed fusion (LPBF) TC4 and as-cast TC4 in 0.6 mol/L NaCl solution. Relevant results indicated that LPBF TC4 revealed a rectangular checkerboard-like pattern with a more refined grain size compared to as-cast TC4. Meanwhile, LPBF TC4 surpassed its as-cast counterpart in CE resistance, demonstrating approximately 2.25 times lower cumulative mass loss after 8 h CE. The corrosion potential under alternating CE and quiescence conditions demonstrated that both LPBF TC4 and as-cast TC4 underwent a rapid potential decrease at the initial stages of CE, while a consistent negative shift in corrosion potential was observed with the continuously increasing CE time, indicative of a gradual decline in repassivation ability. The initial surge in corrosion potential during the early CE stages was primarily attributed to accelerated oxygen transfer. As CE progressed, the significant reduction in corrosion potential for both LPBF TC4 and as-cast TC4 was attributed to the breakdown of the passive film. The refined and uniform microstructure in LPBF TC4 effectively suppresses both crack formation and propagation, underscoring the potential of LPBF technology in enhancing the CE resistance of titanium alloys. This work can provide important insights into developing high-quality, reliable, and sustainable CE-resistant materials via LPBF technology.

19.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931488

RESUMEN

Piezoelectric materials, which exhibit a charge distribution across the surfaces in reaction to mechanical strain, find significant utility in actuation and sensing applications. Apart from actuation applications like acoustic devices, motors, and vibration damping, an emerging domain for ultrasonic actuators lies in additive manufacturing processes. Ultrasonic waves applied during solidification aim to modulate grain structure and minimize defects. This research focuses on a fixture designed to facilitate and optimize ultrasonic wave propagation through the build plate in laser powder bed fusion additive manufacturing by utilizing a piezoelectric transducer. Three implementations of piezoelectric transducers were evaluated based on their out-of-plane ultrasonic velocity transmissions. It was determined that a thin plate adhered to the surface of the piezoelectric transducer yielded the most favorable outcomes for implementation, achieving 100% transmission of velocity and energy. Preliminary analysis of melt pool morphology and defects in single-track laser scanning experiments demonstrated the impact of ultrasound on solidification, hinting at a novel approach to enhancing the printability of alloys in laser powder bed fusion additive manufacturing processes. The optimal fixture and the explored transducing efficiency could further guide advanced ultrasound testing to enable in situ defect and texture detection during the additive manufacturing processes.

20.
Sci Rep ; 14(1): 14697, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926441

RESUMEN

Laser powder bed fusion (LPBF) is an additive manufacturing technology with high practical value. In order to improve the quality of the fabricated parts, process monitoring has become a crucial solution, offering the potential to ensure manufacturing stability and repeatability. However, a cardinal challenge involves discerning a precise correlation between process characteristics and potential defects. This paper elucidates the integration of an off-axis vision monitoring mechanism via a high-speed camera focused on capturing the single-track melting phenomenon. An innovative image processing method was devised to segment the plume and spatters, while Kalman filter was employed for multi-object tracking of the spatters. The features of both the plume and spatters were extracted, and their relationship with molten states was investigated. Finally, the PSO-XGBoost algorithm was utilized to identify five molten states, achieving an accuracy of 92.16%. The novelty of this approach resides in its unique combination of plume characteristics, spatter features, and computationally efficient machine learning models, which collectively address the challenge of limited field of view prevalent in real production scenarios, thereby enhancing process monitoring efficacy. Relative to existing methodologies, the proposed PSO-XGBoost approach offers heightened accuracy, convenience, and appropriateness for the monitoring of the LPBF process. This work provides an effective and novel approach to monitor the LPBF process and evaluate the part fabrication quality for complex and changeable working conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA